MCUの5V耐圧ピン

弊社FreeRTOS習得ページで使う評価ボード:LPCXpresso54114(Cortex-M4/100MHz、256KB Flash、192KB RAM)は、FreeRTOSだけでなく、Mbed OSZephyr OSなどオープンソース組込みRTOSにも対応しています。多くの情報がありRTOSを学ぶには適した評価ボードだと思います。

LPCXpresso54114 Board power diagram(出典:UM10973に加筆)
LPCXpresso54114 Board power diagram(出典:UM10973に加筆)

さて、このLPCXpresso54114の電圧ブロック図が上図です。MCUはデフォルト3.3V動作、低電力動作用に1.8Vも選択可能です。一方、Arduinoコネクタへは、常時5Vが供給されます。

本稿は、このMCU動作電圧とArduinoコネクタに接続するセンサなどの動作電圧が異なっても制御できる仕組みを、ソフトウェア開発者向けに説明します。

MCU動作電圧

高速化や低電力化の市場要求に沿うようにMCU動作電圧は、3.3V → 3.0V → 2.4V → 1.8Vと低下しつつあります。同時にMCUに接続するセンサやLCDなどの被制御デバイスも、低電圧化しています。しかし、多くの被制御デバイスは、未だに5V動作が多く、しかも低電圧デバイスに比べ安価です。

例えば、5V動作HD44780コンパチブルLCDは1個500円、同じ仕様で3.3V動作版になると1個550円などです。※弊社マイコンテンプレートに使用中のmbed-Xpresso Baseboardには、5V HD44780コンパチブルLCDが搭載されています。

レベルシフタ

異なる動作電圧デバイス間の最も基本的な接続が、間にレベルシフタを入れる方法です。

TI)TXS0108E:8ビットレベルシフタモジュールの例で示します。低圧A側が1.8V、高圧B側が3.3Vの動作図です。A側のH/L電圧(赤)が、B側のH/L電圧(緑)へ変換されます(双方向なので、B側からA側への変換も可能です)。

8ビットレベルシフタTXS0108Eのアプリケーション動作(出典:TI:TXS0108Eデータシート)
8ビットレベルシフタTXS0108Eのアプリケーション動作(出典:TI:TXS0108Eデータシート)

レベルシフタ利用時には、電圧レベルの変換だけでなく、データレート(スピード)も重要です。十分なデータレートがあれば、1.8VのH/L波形は、そのまま3.3VのH/L波形へ変換されますが、データレートが遅いと波形が崩れ、送り側のH/L信号が受け側へ正確に伝わりません。

例えば、LCD制御は、複数のLCDコマンドをMCUからLCDへ送信して行われます。データレートが遅い場合には、コマンドが正しく伝わらず制御ができなくなります。

MCUの5V耐圧ピン:5V Tolerant MCU Pad

LPCXpresso54114のGPIOピンには、5V耐圧という属性があります。PIO0_0の[2]が5V耐圧を示しています。

LPCLPCXpresso54114の5V耐圧属性(出典:5411xデータシート)
LPCLPCXpresso54114の5V耐圧属性(出典:5411xデータシート)

5V耐圧を簡単に説明すると、「動作電圧が3.3/1.8V MCUのPIO0_0に、5Vデバイスをレベルシフタは使わずに直接接続しても、H/L信号がデバイスへ送受信できる」ということです。または、「PIO0_0に、1ビットの5Vレベルシフタ内蔵」と解釈しても良いと思います。

※ハードウェア担当者からはクレームが来そうな説明ですが、ソフトウェア開発者向けの簡単説明です。クレームの内容は、ソフトウェア担当の同僚へ解説してください😌。

全てのGPIOピンが5V耐圧では無い点には、注意が必要です。但し、ArduinoコネクタのGPIOピンは、5V耐圧を持つものが多いハズです。接続先デバイスが5V動作の可能性があるからです。

また、I2C/SPIバスで接続するデバイスもあります。この場合でも、MCU側のI2C/SPI電圧レベルとデバイス側のI2C/SPI電圧レベルが異なる場合には、レベルシフタが必要です。MCU側I2C/SPIポートに5V耐圧属性がある場合には、GPIO同様直接接続も可能です。

I2Cバスは、SDA/SCLの2本制御(SPIなら3本)でGPIOに比べMCU使用ピン数が少ないメリットがあります。しかし、その代わりに通信速度が400KHzなど高速になるのでデータレートへの注意が必要です。

LPCXpresso54114以外にも5V耐圧ピンを持つMCUは、各社から発売中です。ちなみに、マイコンテンプレート適用のMCUは、6本の5V耐圧GPIOを使ってmbed-Xpresso Baseboard搭載5V LCDを直接制御しています。

mbed-Xpresso Baseboard搭載5V HD44780コンパチLCDの3.3V STM32G071RB直接制御例
mbed-Xpresso Baseboard搭載5V HD44780コンパチLCDの3.3V STM32G071RB直接制御例

5V耐圧MCUデータシート確認方法

MCUのGPIOやI2C/SPIを使って外部センサやLCDなどのデバイスを制御する場合、下記項目を確認する必要があります。

  1. MCU動作電圧と被制御デバイス動作電圧は同じか?
  2. MCU動作電圧と被制御デバイス動作電圧が異なる場合、外付けレベルシフタを用いるか、またはMCU内蔵5V耐圧ピンを用いるか?
  3. MCU内蔵5V耐圧GPIOやI2C/SPIを利用する場合、そのデータレートは、制御に十分高速か?

5V耐圧ピンは、使用するMCU毎に仕様が異なります。MCUデータシートは、英語版なら「tolerant」、日本語版なら「耐圧」で検索すると内容確認が素早くできます👍。

MCU動作電圧と接続デバイス動作電圧が異なっても、MCUのH/L信号が被制御デバイスへ正しく伝わればデバイスを制御できます。

MCU動作電圧に合わせたデバイス選定やレベルシフタ追加ならば話は簡単ですが、トータルコストや将来の拡張性などを検討し、5V耐圧ピンの活用も良いと思います。

NXPのFreeMASTER

FreeMASTERは、NXP組込みMCUのアプリケーションのリアルタイム変数モニタと、モニタデータの可視化ツールです。関連投稿:STマイクロエレクトロニクスのSTM32CubeMoniterとほぼ同じ機能を提供します。

NXP資料FreeMASTER Run-Time Debugging Tool – Overview を使ってFreeMASTERの特徴を示します。

FreeMASTERとIDEデバッガ機能差

FreeMASTERと、開発者が普段使うIDEデバッガとの差が一目で解る図がP13にあります。

FreeMASTERとデバッガの違い(出典:FreeMASTER Run-Time Debugging Tool – Overview)
FreeMASTERとデバッガの違い(出典:FreeMASTER Run-Time Debugging Tool – Overview)

両者の機能境界が、ソースコードのデバッグ機能です。IDE(MCUXpresso IDE)でも変数ロギングやグラフ化機能はありますが、プログラム開発者向けの最低機能に絞ったものです(limited functionality)。

これに対し、FreeMASTERは、msec分解能のグラフ化と、μsec分解能のデータ取得が可能です。更に取得データを利用し、Field-tune parametersやRemote controlなど多くの機能を持つツールです。データの取得は、MCU実装のUARTやUSB、SWD経由です。

FreeMASTERを使うと、外付け制御パネルの代替やGUIアプリケーションとしても活用できます。例えば、下図のようなモータ制御パネルが、PC上でFreeMASTERソフトウェアのみで実現できる訳です。

FreeMASTERを使ったモータ制御パネル例(出典:FreeMASTER Run-Time Debugging Tool – Overview)
FreeMASTERを使ったモータ制御パネル例(出典:FreeMASTER Run-Time Debugging Tool – Overview)

 FreeMASTER構成

Windows PCにおけるFreeMASTER構成がP20です。詳細は、P21~25に示されています。Linux PCでの構成は、P26に示したFreeMASTER Liteが使われます。

FreeMASTER Windows PC構成(出典:FreeMASTER Run-Time Debugging Tool – Overview)
FreeMASTER Windows PC構成(出典:FreeMASTER Run-Time Debugging Tool – Overview)

MCU開発トレンド:ビジュアル化と脱Windows

組込みアプリケーションのビジュアル化は、最近のMCU開発トレンドです。

MCU本体の性能を使わずに変数データを取出し、そのデータを高性能PCとプラグイン機能を利用し、データ可視化やリモート制御を実現します。本稿で紹介したNXPのFreeMASTERやSTのSTM32CubeMoniterがこのトレンドをけん引する技術です。

また、オープンソースLinux PCへのMCU開発環境移行や各社IDEマルチプラットフォーム化、つまり脱Windowsもトレンドの1つです。

上級開発者向けというイメージが強かったLinux PCですが、一般ユーザへも普及し始めました(Wikipediaより)。筆者も昨年から、MCU開発Main-PCのWindows 10とは別に、Backup-PCにLinux Mintを新規インストールし試用中です。

半年間の試用では、OSインストール、大型/定期更新、セキュリティに関してもLinux Mintの方が、Windows 10より安定感があります。

もはや現状のWindows 10では、信頼性があったWindows 7のレベルにはならない気がします。

既存Windows 10に手を加えるよりも、新OSを開発するほうが、早道で、安心してPCを利用したい一般ユーザ要求も同時に満たせるのではないでしょうか? 商業的理由は、セキュリティ対応強化とすれば、内容不明ながら大多数の納得も得られるでしょう。※あくまで、ソフトウェア開発経験者個人の見解です。

NXP新CEO Kurt Sievers氏

2020年5月28日、蘭)NXPのCEOがリチャード・L・クレマー(Richard L. Clemmer)氏から、カート・シーヴァーズ(Kurt Sievers)氏への交代発表がありました。こちらのEE Times記事に新CEOカート・シーヴァーズ氏の経歴や、米中貿易摩擦下でのNXP中国分析などが示されています。

欧州MCUベンダNXPのアフターCOVID-19への布石、さすがに早いです。

STM32G0xテンプレートV2発売

STマイクロエレクトロニクス統合開発環境STM32CubeIDEのHAL APIを利用し開発したSTM32G0xテンプレートVersion2を、6月1日から発売します。

上記弊社サイトよりテンプレート付属説明資料P1~P3が無料ダウンロードできますので、ご検討ください。

STM32G0xテンプレートV2内容

従来よりも高性能で低消費電力動作の新汎用MCU:STM32G0シリーズのアプリケーション開発を、初心者でも簡単に始められ、しかも、処理能力やセキュリティ要求が変化した場合でも、開発資産を活かしたままMCU変更が可能なHAL APIプログラミングに重点を置きました。

そこでVersion2では、LL APIからHALAPI利用アプリケーション開発用テンプレートへの変更、統合開発環境SW4STM32から、STM32CubeIDEへの変更に対応しました。

STM32G0xのもう一つの特徴であるセキュアブート、セキュアファームウェア更新機能を活用する機能は、G0xテンプレートV2以降で対応します。

これらセキュリティ機能は、関連投稿:STM32G0/G4のRoot of Trust(1)~(3)で示したように、IoT MCUでは必須です。これら実装のメインストリーム(=汎用)・マイコンは、現在G0/G4シリーズです。

Root of Trust対応中のSTM32マイコン一覧(出典:FLXCUBESBSFU0819J)
Root of Trust対応中のSTM32マイコン一覧(出典:FLXCUBESBSFU0819J)

汎用性とセキュリティの両方を持つSTM32マイコンをご検討中の方は、先ずはSTM32G0xテンプレートV2で汎用性の部分をマスターできます。

STM32G0xテンプレートV2のご購入、お待ちしております。

Windows 10 May 2020 Update(バージョン2004)対策

5月28日、Windows 10の新バージョン2004の配布が始まりました。残念ながら、早くも複数の大型更新トラブルが発生中です(10件の更新トラブル情報)。

Fast/Slow リングの目的、月一Windows 10 Updateでの多くのトラブル、一般PC利用者への悪影響…等々、このところのMicrosoftは、何か変だと思わずにはいられません。

バージョン2004への更新を暫く避けようと考えている方は、Pro/Homeともに、コチラの方法が参考になります。

STM32マンスリー・アップデートHTML化

STマイクロエレクトロニクスのSTM32マンスリー・アップデートが、6月からスマホ閲覧に好適なHTML配信に変わります。2020年5月号が最後のメール配信でした。HTML配信はブラウザで「絵的」に見るのには確かに適していますが、「字的」な記憶や記録に残りにくい気がするので、個人的には残念です。

そこで、これまでのメール配信版の全マンスリー・アップデートから、5月30日発売のSTM32G0xテンプレートVersion2対象STM32G0シリーズ関連部分を忘れないようピックアップしました。

STM32G0シリーズ特徴

STM32G0シリーズ(出典:マンスリー・アップデート2019年10月)
STM32G0シリーズ(出典:マンスリー・アップデート2019年10月)
Dead Battery機能デフォルト有効(出典:マンスリー・アップデート2019年7月)
Dead Battery機能デフォルト有効(出典:マンスリー・アップデート2019年7月)

※テンプレートで使うNucleo-G071RBは、USB Power Delivery機能(Dead Battery機能)が「デフォルト無効」となっています。

STM32G042/G031/G030新登場(出典:マンスリー・アップデート2020年1月)
STM32G042/G031/G030新登場(出典:マンスリー・アップデート2020年1月)
STM32マイコンでRoot of Trust実現のX-CUBE-SBSFU(出典:マンスリー・アップデート2020年3月)
STM32マイコンでRoot of Trust実現のX-CUBE-SBSFU(出典:マンスリー・アップデート2020年3月)
SBSFU機能(出典:STM32_Security-Introduction)
SBSFU機能(出典:STM32_Security-Introduction)

報告は、A4で1枚以内にまとめろとOJTで学びました。今風に言うと、Twitterのような短文で報告せよということです。記事に、70nm新製造プロセス、64ピンパッケージでも1ペア電源ピン説明が無いのは、少し不満ですが、少ない文字量でSTM32G0特徴をまとめる良い見本になりました。

これは、読者にソフトウェア開発者が多いからでしょうか🤨? 黄色ハイライトは筆者加筆です。

STM32G0xテンプレートV2変更内容

さて、このSTM32G0シリーズ向けSTM32G0xテンプレートV2は、下記3項目がV1からの変更内容です。

  • IoT必須セキュアブート、セキュアFWアップデート実装STM32G0特徴を活用(詳細は、コチラの関連投稿を参照してください。V1は、この特徴を活かしきれていませんでした😂)
  • 高性能専用LL API利用から、汎用HAL API利用アプリケーション開発用テンプレートへ変更
  • SW4STM32統合開発環境から、STM32CubeIDEへ変更

項目2と3をVersion2で対応します。余裕があれば項目1にも対応するかもしれません。

STM32FxテンプレートV2発売

STマイクロエレクトロニクス統合開発環境STM32CubeIDEのHAL APIを利用し開発したSTM32FxテンプレートVersion2を発売します。

上記サイトよりテンプレート説明資料P1~P3が無料ダウンロードできますので、ご検討ください。本稿は、この「ダウンロード以外」の資料項目を簡単に示します。

全ツールビルトインSTM32CubeIDE

STM32CubeIDEは、従来は別ツールとして提供してきたSTM32CubeMXがビルトイン済みです。しかも開発ツール全てが自動的に最新版へ更新します。もちろんHelp>Check for Updatesで手動更新も可能です。

2020年5月15日現在のブログ関連STM32MCUに関係するSTM32CubeIDE状況が下図です。

STM32CubeIDE状況(2020年5月15日現在)
STM32CubeIDE状況(2020年5月15日現在)

STM32FxテンプレートV2は、HAL(Hardware Abstraction Layer)API利用アプリケーション開発用テンプレートですので、MCU性能過不足時、他のSTM32MCUコアへも開発アプリケーションが流用可能で、プロトタイプ開発に最適です。

STM32FxテンプレートV2ダウンロード説明資料以外の概略

以下、単語の頭に付くSTM32は省略して記述します。また、付属説明資料も同様にSTM32を省略記述していますので、ご注意ください。

AN記載CubeMXプロジェクトが読めない時の対策

アプリケーション開発の出発点となるビルトインツール:CubeMXが最新版へ自動更新されるのは、次々に発売される最新STデバイスを直ぐに開発できるメリットがあります。しかし、逆に開発者が参照するアプリケーションノート(AN)記載のCubeMXプロジェクトとの版数差が大きくなるデメリットもあります。

この版数差が大きくなると、AN記載CubeMXプロジェクトが、ビルトインCubeMXで読めない場合があります。特にF0/F1シリーズなど古くから提供されてきたデバイスのANに顕著です。STM32FxテンプレートV2付属説明資料で、この対策を示しています。

CubeIDE新規プロジェクト作成(1)/(2)/(3)の違い

STM32CubeIDEの3新規プロジェクト作成の差
STM32CubeIDEの3新規プロジェクト作成の差

CubeIDEユーザマニュアル:UM2553には、本日時点で新規プロジェクト作成説明は(1)/(3)のみです。未説明の最新版新規プロジェクト作成(1)/(2)/(3)の違いなど、開発をスムースに進める様々なTipsも説明資料に加えています。

CubeMX変更箇所、別資料化

STM32FxテンプレートVersion1では、CubeMX周辺回路の設定をテンプレート説明資料内に記載しておりました。ご購入者様からのご質問も、このCubeMX設定に関するものが多く、このツールの重要性が判ります。

そこでVersion2は、このCubeMX設定をCubeMX変更箇所.pdfとして別資料化し、CubeIDEプロジェクト内に添付しました。CubeMXプロジェクト編集時に、同時参照ができます。

STM32CubeIDEプロジェクト内添付のSTM32CubeMX変更箇所説明資料
STM32CubeIDEプロジェクト内添付のSTM32CubeMX変更箇所説明資料

例えば、ベースボードテンプレートのLCD接続に利用したSTM32F0評価ボード:Nucleo-F072RBのGPIOピン設定方針なども記載しています。CubeMXピン配置は、MCUパッケージで選択しますので、評価ボード利用のCubeMX使用ピン設定時に、下図は便利だと思います。

ベースボードと評価ボード接続時のSTM32CubeMX使用ピン設定方針
ベースボードと評価ボード接続時のSTM32CubeMX使用ピン設定方針

STM32FxテンプレートV2と添付説明資料を使うと、STM32汎用MCU開発をスムースに進められます。

STM32FxテンプレートV2のご購入、お待ちしております。

STM32CubeMX使い方刷新STM32Fx/G0xテンプレートV2発売5/15、5/30

サードパーティ仏)AC6社の統合開発環境SW4STM32で開発したSTM32FxテンプレートとSTM32G0xテンプレートを、新しいSTマイクロエレクトロニクス純正STM32CubeIDE対応のVersion2:V2へ更新し販売開始します(STM32Fxテンプレートは2020/05/15、STM32G0xテンプレートは2020/05/30)。

V2では、V1ご購入者様から頂いたご意見ご感想を反映し、新しいSTM32CubeIDEやビルトインSTM32CubeMX使い方説明に工夫を加え、開発トラブル回避、既存アプリケーション資産活用方法などの新たなTipsも添付解説資料に加えました。

テンプレートと合わせてスムースなSTM32MCUアプリケーション開発にお役に立てると思います。

本稿は、説明を工夫したSTM32CubeIDEビルトインSTM32CubeMX使い方の一部を紹介します。

STM32CubeMX使い方:コツ

※以下、用語の頭に付く「STM32」は省略して記述します。

MCU周辺回路の初期化コードを自動生成するCubeIDEビルトインCubeMXも、以前投稿したスタンドアロンCubeMXの使い方と同じです。

CubeMXはSTM32MCU開発の出発点となるツールですので、十分理解した上で着手したいものです。テンプレートV2では、ビルトインCubeMXが生成するファイルに着目し、説明に以下の「使い方のコツ」と「簡単な順位」を追加しました。

CubeMXは、生成するファイル数が多い上に、使用するMCU周辺回路が増えると、生成コード量も多くなり、初めての方には少し解りにくいツールです。弊社テンプレートV1も、このCubeMXに関する質問を多く頂きました。それでも、コツを知っていれば十分使いこなせます。

そのコツとは、以下2点です。
・チェックが必要な自動生成ファイルは、main.hのみ
・main.cに自動追加される周辺回路ハンドラと、初期化コードが分かれば使える

F1シリーズSTM32F103RBの評価ボード:Nucleo-F103RBに弊社テンプレートを応用した例で説明します。

STM32CubeMX生成のF1BaseboardTemplateファイル構成
STM32CubeMX生成のF1BaseboardTemplateファイル構成

CubeMXが自動生成するファイルが、赤:CubeMX生成欄の9個です。このうち注目すべきは、太字赤☑で表示したmain.hとmain.cです。

main.hは、CubeMXで設定したユーザラベル、評価ボードならばB1[Blue PushButton]やUSART_TX/RX、LD2[GreenLed]などを定義した生成ファイルです(※[ ]内は、自動生成時に削除されますので覚え書きなどに使えます)。

main.hのコメント:Private definesの後にこれらの定義が生成されます。これら定義をチェックしておくと、「CubeMX自動生成コードを読むときに役立ち」ます。

main.cは、CubeMXが生成するメイン処理で、評価ボードのCubeMXデフォルトでコード生成:(Alt+K)した場合には、main.cのコメント:Private variablesの後にUSARTハンドラ:huart2と、コメント:Private function prototypesの後にUSART2の初期化コード:MX_USART2_UART_Init()と、その「初期化コード本体がmain.cソースの後ろの方に自動生成」されます。

その他の7個ファイルは、当面無視しても構いません。CubeMXデフォルトのHAL (Hardware Abstraction Layer)APIを利用し、割込みを使わない限り、ユーザコードには無関係だからです(※7個ファイルを知りたい方は、関連投稿:STM32CubeMX生成ファイルのユーザ処理追記箇所を参照してください)。

CubeMXが周辺回路:USART2初期化コードとそれに使う定義を自動生成済みなので、後は、main.cの無限ループ内の指定区間:USER CODE BEGIN xyz~USER CODE END xyzに、Usart2やLD2を使ったHAL APIユーザコードを追記すれば、アプリケーションが完成します。

追記したユーザコードは、再度CubeMXでコード生成しても、指定区間のまま引き継がれます。

ちなみに、アプリケーションで使用可能なHAL APIは、Ctrl+Spaceでリスト表示されます(Content Assist)。そのリストから使用するHAL APIを選択すれば、効率的なユーザコード追記が可能です。
※Content Assistの賢いところは、「ソースコード記述の周辺回路ハンドラを使ってHAL APIをリスト化」するところです。記述なしハンドラのAPIはリスト化されません。

つまり、CubeMXのPinout & Configurationタブで周辺回路を設定後コード生成しさえすれば、直ぐにユーザコードを追記できるファイルが全て自動的に準備され、これらファイルの指定区間へユーザコードを追記すれば、アプリケーションが完成する、これがCubeMXの使い方です。

このCubeMX使い方理解に最低限必要なファイルが、簡単順位:0のmain.hとmain.cの2個です。CubeMX生成ファイル数は9個ありますが、先ずはこの2個だけを理解していれば十分です。

LD2を点滅させるアプリケーションなどを指定区間へ自作すると、具体的に理解が進みます。

STM32CubeMX使い方:周辺回路のファイル分離

評価ボードのCubeMXプロジェクトファイル(*.ioc)は、デフォルトでB1[Blue PushBotton]とUSART2、LD2[GreenLed]を使っています。これらは、評価ボード実装済み周辺回路です。

これら評価ボード実装済み周辺回路へ、弊社テンプレートを適用したのが、シンプルテンプレートです(表:シンプル追加の欄)。

例えば、B1スイッチ押下げ状態をSW_PUSH、USART送信タイムアウトをUSART2_SEND_TIMEOUTなどソースコードを読みやすくする定義の追加は、CubeMX生成main.hの指定区間へ追記することでもちろん可能です。

しかし、他MCUコアへの移植性や変更のし易さを狙って、あえて別ファイル:UserDefine.hへこれらを記述しています。

同じ狙いで、LD2とB1、USART2のユーザ追記制御部分を、Led.cとSw.c、Usart2.cへファイル分離しています。ファイル分離により、HAL API利用のためMCUコア依存性が無くなり、例えば別コアのF0やG0評価ボードで同じ周辺回路を使う場合は、そのファイルのまま流用可能になります。

これらファイル分離した周辺回路の追記制御部分を、main.cの無限ループと同様に起動するのが、Launcher.cです。

つまり、シンプルテンプレートは、評価ボード実装済み周辺回路に、何も追加せずに弊社テンプレートを適用したシンプルな応用例です。その理解に必要なファイルが、緑:シンプル追加欄の☑で、簡単な順に1~5の番号を付けています。

CubeMXのそのままの使い方で周辺回路を追加すると、生成ファイル数は、赤:9個のままですが生成コード量が増えます。周辺回路の初期設定コード増加は当然ですが、この部分はCubeMX自動生成のためミス発生はありません。

しかし、ユーザコード指定区間へ、追加した周辺回路の制御コードを追記するのは、ユーザ自身です。様々な周辺回路制御が混在し追記量が増えてくると、バグやケアレスミスの元になります。

この対策に、周辺回路毎にファイルを分割し、この分割したファイルへ制御コードを記述するのが、シンプルテンプレートです。1周辺回路の制御コードが1ファイル化されていますので、簡単順位1~5の内容は、どれもとても簡単です。

さらに、ADC制御やLCD制御など、殆どの組込アプリケーションで必要になる周辺回路を追加し、Baseboardと評価ボードを結線、デバッグ済みのアプリケーションがベースボードテンプレートです(橙:ベースボード追加欄の3個)。

ユーザ追加ファイルは、全てMCUコア依存性がありません。CubeMXのHAL APIコード生成を行えば、コアに依存する部分は、CubeMX生成ファイル内に閉じ込められるからです。つまり、ユーザ追加ファイルは、全てのSTM32MCUへ流用できる訳です。

これらシンプルテンプレート、ベースボードテンプレートから新たなSTM32MCUアプリケーション開発を着手すれば、新規にアプリケーションをゼロから開発するよりも初期立上げの手間を省け、さらに機能追加や削除も容易です。

STM32CubeMX使い方:周辺回路プロパティ、既存AN利用法

CubeMXへ追加した周辺回路のプロパティ設定値やその理由、更に、既存アプリケーションノート利用方法など、新しいSTM32CubeIDE開発トラブルを回避し、スムースに開発着手できる様々なTipsをテンプレート添付説明資料へ加えています。

マイコンテンプレートサイトでSTM32Fxテンプレートは2020/05/15、STM32G0xテンプレートは2020/05/30発売開始です。ご購入をお待ちしております。
※STM32Fx/G0xテンプレートV1ご購入後1年以内の方は、後日V2を自動配布致しますのでお待ちください。

STM32Fx/G0xテンプレートV2改版状況

STマイクロエレクトロニクスの新しい純正統合開発環境:STM32CubeIDEを使い

2017/09/01発売 STM32Fxテンプレート
2019/06/01発売 STM32G0xテンプレート

を、5月中頃にVersion2:V2改版完了を目標に開発中です。どちらのテンプレートも、サードパーティ仏)AC6社の統合開発環境:SW4STM32と当時のSTM32CubeMXで開発しました。もちろん当時、STM32CubeMXビルトインSTM32CubeIDEはありませんでした。
※STM32CubeMXビルトインSTM32CubeIDEの詳細は、コチラの関連投稿3章を参照してください。

STM32FxテンプレートとSTM32G0xテンプレートのVersion2改版
STM32FxテンプレートとSTM32G0xテンプレートのVersion2改版

本稿は、改版で気が付いた1~3年前のSTM32MCU開発と、現在の「変わったところ/変わらないところ」を説明します。SW4STM32からSTM32CubeIDEへのIDE変更は自主的に変える部分ですが、IDE以外も色々な部分が変わっています。

本稿の目的

本稿は、従来IDEのSW4STM32から新しいSTM32CubeIDEへの移行を妨げるのが目的ではありません。

ほんの数年前のMCU開発環境であっても、最新開発環境へ変える場合には、環境変化への対応時間が必要であることを示したい訳です。

この数年間のブランクは、顧客へ納入済みのアプリケーションを改版、改良する場合によく出会う時間差です。MCU環境は目まぐるしく変わります。この変化にどのように上手く対応していくかも、MCU開発者要件の1つです。

現状のMCU開発は、複数の開発ツールがそれぞれ連携してアプリケーション開発が進みます。セキュリティなどの付加サービスであれば、なおさらです。これら複数ツールは、足並みを揃えて全てが一気に最新環境へ対応することは少ないでしょう。

さらに、STM32G0シリーズのような新しいデバイス情報も収集しておく必要があります。これらを考慮したうえで、顧客からのアプリケーション改版、改良案件に対して、その時点での最適解を提案することが必要だと思います(以下、用語の頭に付く「STM32」は省略して記述します)。

STM32CubeMX:コード生成ツール

CubeMXの自動生成する周辺回路の初期設定コードが変わりました。USART2の例が下図です。

STM32CubeMXの周辺回路初期設定変化
STM32CubeMXの周辺回路初期設定変化

左の従来は、USER CODE追記部分が有りませんが、右の現在は、BEGIN~END部分へユーザコードを追記できます。USART2以外にも、TIM3やIWDGの初期設定コードが同様に変わっています。

この追記部分のおかげで、より解り易い処理フロー作成が可能です。弊社テンプレートV2もこれを活用します。

MCUの消費電流Chartが生成レポート6.6に追加されました。25℃/3.3V動作時のG0/F0/F1各SimpleTemplateのChartを示します。縦軸を比較すると新汎用MCU:G0シリーズの低電力性能がよく解ります。

STM32G0、STM32F0、STM32F1の消費電流比較
STM32G0、STM32F0、STM32F1の消費電流比較

G0シリーズの特徴は、コチラの関連投稿などを参照してください。

AN:アプリケーションノート

アプリケーション開発に最も役立つのが公式AN:サンプルコード集です。CubeMXを開発起点とするサンプルコード集が、F0はAN4735、F1はAN4724、G0はAN5110です。基本的な周辺回路制御方法と、それらを生成するCubeMXプロジェクトファイルが一覧表になっています。

例えば、F1のHAL(Hardware Abstraction Layer)API利用ADCサンプルコード4種を抜き出したのが下記です。

STM32F1シリーズのADCサンプルコード
STM32F1シリーズのADCサンプルコード

従来比、各AN添付のCubeMXプロジェクトファイルは増えましたが、F0/F1は、ブランクプロジェクト(≒開発起点に使えない空プロジェクトファイルで下図左側)です。ここは、数年前と変わっていません。

また、どのサンプルコードもSW4STM32/IAR EWARM/Keil MDK-ARM対応で、未だ新しいCubeIDEには対応していません。
※サンプルコードの中身は、中級開発者には参考になりますが、初心者には、CubeMXプロジェクトファイルがある方が周辺回路の設定内容がより解り易いと思います。

ちなみに弊社テンプレートには、開発起点となるCubeMXプロジェクトファイルを自作し添付しています(下図右側がF1BaseboardTemplateの例)。

この添付CubeMXプロジェクトファイルがあると、どなたにでもテンプレートを活用したアプリケーション開発やピン配置変更、内容修正が容易です。周辺回路設定方法などもV1で頂いたテンプレートご購入者様の意見を反映し添付します。

STM32CubeMXブランクプロジェクトとSTM32F1テンプレートのプロジェクトファイル比較
STM32CubeMXブランクプロジェクトとSTM32F1テンプレートのプロジェクトファイル比較

STM32G0シリーズHAL APIアプリケーション重要性

F0~F1のMCU性能を1つでカバーし、かつ低消費動作なG0シリーズMCUには、その性能を100%活かせる専用LL(Low Layer)API開発が適すと考え、G0xテンプレートV1は、LL APIを主として発売しました。

しかし、G0シリーズは、コア依存性が少ないHAL APIアプリケーション開発がSBSFU実装も可能であり優れています(詳細は、コチラのG0/G4 Root of Trust関連投稿を参照してください)。G0xテンプレートV2は、HAL APIでテンプレートを新規開発します。
※SBSFUを実装したG0xテンプレートは、V2以降(多分V3)で予定しています。

BSP:Board Support Package

従来のSW4STM32は、サンプルコードにBSPを使っていました。しかし、新しいCubeIDEは、BSPを使わずHAL APIで直接制御するサンプルコードが主流です。BSPの実体はHAL APIの組合せですので、BSPを使うよりも評価ボード依存性が無く、より応用流用し易いのは、CubeIDEです。

テンプレートV2も、BSPを使わないCubeIDE方式にします。

Baseboard

mbed-Xpresso BaseboardとNucleo評価ボード接続
mbed-Xpresso BaseboardとNucleo評価ボード接続

秋月電子で簡単に入力できたBaseboardが、現在取扱終了です。代わりにアマゾンマルツで簡単入手できます。

LCDやSWなどのシールドをそれぞれ単体で追加購入するよりも、低価格で評価ボード機能追加ができます。その分、手配線は必要ですが😅、オス-オスジャンパーワイヤで手軽に接続ができます。

STM32CubeIDE日本語文字化け

CubeIDE当初から続く日本語文字化けは、最新版でも解消されていません。コチラの方法で解決しました。

SW4STM32 Webinar

従来の統合開発環境:SW4STM32もまだまだ現役です。例えば、2020年5月5日、15:00~17:00に2時間無料Webinarがあります(多分、英語かフランス語)。最新STM32MP1対応SW4STM32解説なので、興味ある方は、視聴してはいかがでしょう!

Free webinar on Embedded Linux with System Workbench for Linux

さいごに

開発環境変化への対応が必要と説明しましたが、実際にどれ程の時間が必要かは示していません。上手く対応できれば即座ですが、下手をすると本来のアプリケーション開発、改良よりも時間が掛かってしまいます。実際、筆者が対処に結構時間を要したものもありました。

STM32FxテンプレートV2とSTM32G0xテンプレートV2は、筆者が経験したSTM32CubeIDE開発トラブル対処法や、既存AN資産を活用するための様々な対処方法やTipsも解説資料に加えます。テンプレートと合わせてスムースなSTM32MCU開発にお役に立てると考えています。

STM32CubeMonitor

STマイクロエレクトロニクスのSTM32MCU純正開発環境STM32Cubeツールファミリに新に追加されたSTM32CubeMonitorを解説します。

STM32CubeMonitor特徴1:変数リアルタイムモニタ

STM32MCUアプリケーション開発フローと、純正開発環境STM32Cubeツールファミリ:STM32CubeMX、STM32CubeIDE、STM32CubeProgrammer、 STM32CubeMonitorの機能配分が下図です(以下、各ツールの頭に付くSTM32は省略して記述します)。

STM純正 4 Software Development Toolsと機能(出典:STMサイト)
STM純正 4 Software Development Toolsと機能(出典:STMサイト)

この1~4段階の開発フローを繰返すことでアプリケーション完成度が上がります。CubeMX、CubeIDE、CubeProgrammerの機能には重複部分がありますが、Monitoring機能を持つのは、CubeMonitorだけです。

通常のMCU開発は、CubeMXがビルトインされた4段階全てをカバーする統合開発環境:CubeIDEを使えば事足ります(CubeMXビルトインCubeIDEの詳細は、関連投稿の3章をご覧ください)。

CubeProgrammerは、MCUオプションバイト設定などCubeIDEではできないBinary Programmingの+α機能を提供します。例えば、STM32G0/G4のRoot of Trust(3)の投稿で示したSBSFU書込みや消去などがこの機能に相当します。

CubeIDEでも、デバッガ上でアプリケーションの変数モニタは可能です。しかし、あくまでDebugging MCUの(開発者向け)変数モニタです。CubeMonitorは、アプリケーションを通常動作させたまま、変数をリアルタイム(ライブ)モニタができる点が、CubeIDEとは異なるMonitoring機能です。

STM32CubeMonitor特徴2:データ可視化

リアルタイムで取得したデータは、下図のようにPCダッシュボードに予め準備済みのChartや円グラフにして可視化することができます。しかも、これら表示が、PCだけでなく、スマホやタブレットへも出力可能です。

STM32CubeMonitorのデータ可視化(出典:DB4151)
STM32CubeMonitorのデータ可視化(出典:DB4151)

つまり、CubeMonitorを使えば、開発したアプリケーションのライブ動作を、あまり手間をかけずにビジュアル化し、エンドユーザの顧客が解るように見せることができる訳です。これが、一押しの特徴です。

文章で説明するよりも、コチラの動画を見ていただくと一目瞭然です。

組込みアプリケーションのビジュアル化

組込みアプリケーション開発も、自動車のADAS(Advanced Driver-Assistance Systems:先進運転支援システム)のおかげでビジュアル化がトレンドです。

組込みアプリケーションのビジュアル化
組込みアプリケーションのビジュアル化

もちろん、超高性能MCUやデュアルコアMCUで実現するアプローチが本流です。が、本稿で示した2020年3月発表のCubeMonitorを使えば、産業用MCUでも案外簡単にビジュアル表示出力が可能になりそうです。

組込みアプリケーションは、MCUで結構大変な処理を行っていても、外(顧客)からは単にMCUデバイスしか見えません。CubeMonitorで処理データを可視化するだけでも、複雑さや大変さを顧客へ示すツールにもなります。

欧州MCUベンダ事情

2020年4月7日、独)Infineon Technologies(インフィニオン テクノロジー)が、米)Cypress Semiconductor(サイプレス セミコンダクタ)の買収に必要となる規制当局の承認を得たと発表しました(EE Times Japan記事)。同じEE Timesの3月9日記事では、米国が、国家安全保障上リスクのため買収を阻止し、破断の可能性も示唆していましたが、結局、買収成立のようです。

本稿は、MCU開発者向けに欧州MCUベンダ動向と、コロナ・エフェクト記事をピックアップし、MCU開発者のリクス分散必要性を示します。

CypressとInfineon

CypressとInfineon
CypressとInfineon

本ブログ掲載中のCypressは、ARM Cortex-M0/M0+/M4コアと、タッチセンサ:CapSenseやオペアンプ等の独自アナログコンポーネントを1パッケージ化したPSoCマイコンが特徴です。
※本ブログ検索窓に‘CapSense’を入力するとCapSenseコンポーネント利用の関連投稿がご覧いただけます。また、CapSense利用の弊社PSoC4000S/4100S/4100PSテンプレートも販売中です。

同業のNXPやSTMが、Eclipse IDEをベースとした標準的なARMコアマイコン開発環境をユーザへ提供するのに対し、Cypressは、独自コンポーネントの特徴を活かす開発環境PSoC Creatorを提供し、洗練された高度なMCU制御技術と、解り易い資料を提供できる会社という印象を持っています。

PSoC Creatorは、ソフトウェアだけでなくハードウェア関係者にも活用して頂きたいツールで、これ1つで殆ど全てのPSoC関連リンクへ簡単にアクセスできます。ツール更新方法もEclipseベースのIDEより優れています。

このCypressを買収したInfineonは、独)シーメンスから分離・独立し、自動車用や産業用など様々な分野へパワー半導体の供給を主力とする製造、販売会社です(ウィキペディアより)。

Infineonの狙い

2019年6月10日EE Times のインフィニオンの狙いは「日本市場攻略」記事によると、主力のパワー半導体の豊富な品揃えに加え、Cypressの制御技術を獲得することで、日本半導体ベンダへ大きなインパクトを与え、日本市場攻略が、インフィニオンの狙いだそうです。

追記:買収完了で2019年売上高ランキングで見るとInfineinとCypress合わせて、7位TIと8位STMの間に入ることになるそうです(EE Times、2020年4月17日)。

コロナ・エフェクト

STM、ARM、日本の動向
STM、ARM、日本の動向

Cypress買収は、COVID-19前のビジネス戦略結果です。

欧州MCU各ベンダが、COVID-19パンデミック後どう変化するかは解りません。現時点での動きが下記です。

仏伊)STマイクロエレクトロニクスは、フランス生産工場出勤者を縮小、イタリアは製造継続と発表しました。また、独)Infineon工場は、全て稼働中です(EE Times、2020年4月1日)。

英)ARMは、Arm Development Studio Gold Edition評価ライセンスの有効期間を延長、MDK Professional Edition評価ライセンスのCOVID-19対策プロジェクト1年間ライセンススポンサー提供など、在宅勤務ライセンスを提供中です(ARMメールサービス)。

日本政府は、緊急事態宣言時でも半導体工場を事業継続可能に指定しました(EE Times、2020年4月10日)。

MCU開発者

コロナ・エフェクト
コロナ・エフェクト

欧州/米/アジアのMCUベンダにCOVID-19が与える影響は、数年前のように再びMCUベンダ間のM&Aが盛んになるのか? それとも現状で落ち着くのか? オープンアーキテクチャRISC-Vが勢力を伸ばすか? 今のところ、全く不透明です。

しかし、我々MCU開発者へもテレワーク化や開発MCU変更などの影響が必ず及びます。変わるところ、変わらないところを個人レベルでも見極め、今のうちに準備しリスク分散対策の必要があると思います。

筆者お気に入りのCypressらしさが、今回の買収で変わらないことを願っております。

LibreOfficeの使い方(総集編)

2020年10月13日に全サポートを終了するMicrosoft Office 2010代替として、本ブログは、約1年間LibreOfficeを試用してきました。この総集編としてLibreOfficeカテゴリ全投稿(15)の中から、LibreOfficeの使い方ポイントをまとめました(詳細な内容は、リンク先の投稿を参照してください)。

総集編のもくじが下記です。

弊社使用頻度が高いWord代替Writer(文書作成)と、Visio代替Draw(図形描画)の説明に集中していますが、他のCalc(表計算)、Impress(プレゼン作成)、Base(データベース管理)、Math(数式作成)も同様です。

LibreOfficeの使い方(総集編)もくじ

  1. 2パッケージ、Windows USBポータブル、手動更新
  2. セキュリティ
  3. ユーザインタフェース(メニュー/ツールバー/アイコン変更)
  4. Writer/Draw基本設定、弊社無償テンプレート
  5. Office併用の使い方
  6. 発展的LibreOfficeの使い方

2パッケージ、Windows USBポータブル、手動更新

LibreOfficeは、最新機能を盛込んだFresh(最新版)と、Freshリリース後数か月で初期バグがほぼ無くなったStill(安定版)のPCインストール用2パッケージがあります。Freshが1か月、Stillが3か月毎の更新スケジュールです(COVID-19パンデミック前の状況)。

LibreOffice 2パッケージ概要
パッケージ 想定ユーザ 投稿時版数(リリース日) 更新スケジュール
Fresh(最新版) 新しいもの好き、パワーユーザ向け v6.4.2(2020/03/19) 1か月
Still(安定版) ビジネス&法人企業、慎重なユーザ向け v6.3.5(2020/02/20) 3か月

なお、筆者はFreshを1年間試用してきましたが、期間中バグには遭遇しませんでした。

Fresh/Stillともに、Windows USBポータブル版もあります。ポータブル版を使うと、利用PCに一切作業履歴が残らないので、出先のPCやネットカフェなどでもLibreOfficeを気楽に使えます。

LibreOfficeの更新は、更新版を上書きインストールします。各種設定も引き継がれます。更新版は、LibreOfficeヘルプ(H)でLibreOfficeサイトへアクセスし、更新有無を確認、有の時は、更新版を手動ダウンロード&インストールします。

この手動更新を手間と見るか、それともユーザ主体アップデートと見るかは、意見が分かれるところです。

日本語版リリースノートを見てアップデート必要性をユーザが判断し、手動で更新する方が、ブラウザなどと異なるこの手の仕事直結アプリケーションには向いていると思います。勝手にアップデートされ、しかも時々トラブルが発生するOfficeは、ビジネス用途には不安が残ります。

セキュリティ

ツール(T)>オプション(O)>セキュリティの下記2箇所に☑追加がお勧めです。

LibreOfficeセキュリティ対策
LibreOfficeセキュリティ対策。ツール(T)>オプション(O)>セキュリティで信頼された場所ではないドキュメントからのリンクをブロックにチェックをいれる。

ユーザインタフェース(メニュー/ツールバー/アイコン変更)

1年間のLibreOffice試用期間中、最も変更が多かったのが、ユーザインタフェース(UI)です。

具体的には、下図のようにメニュー構成やツールバーのユーザカスタマイズの関連で、Fresh v6.4.2では、アイコンのスタイル変更も可能になりました。

LibreOffice Fresh v6.4.2のアイコンスタイル変更
LibreOffice Fresh v6.4.2のアイコンスタイル変更

変更の目的は、新規LibreOfficeユーザの獲得だと思います。

メニューは誰もが最も目にする場所で、OfficeユーザをLibreOfficeへ惹きつけ、新規にLibreOfficeユーザを増やすのには最適な箇所です。LibreOfficeは無償ですが、運営寄付も歓迎しています。多くのユーザ獲得により、安定運営に繋がります。

それでも、UIをアイコンからリボン形式に勝手に大変更するなどの既存ユーザを悩ます変更は、LibreOfficeではありえません。あくまでユーザ主体の変更です。

お勧めのUIは、ノートPCなど表示エリアが小さくても効率的な作業ができるシングルツールバーで、その他にも6種類ものUIがあります。

初めての方が判りにくいのは、①:表示(V)>ユーザインタフェース(I)でツールバーを選び、②:ツール(T)>オプション(O)>LibreOffice>表示で、①で選んだツールバーのアイコンスタイルや大きさ(自動/小/大/特大)を、更にカスタマイズする2段構成だということです。

UIは、利用PC環境などで好みが変わるので、「汎用的なシングルツールバー」がお勧めとだけコメントします。

Writer/Drawフォント設定、弊社テンプレート

表示フォントも好みの問題です。

但し、OfficeとLibreOfficeを併用する場合には、同一フォントを利用する方が、見た目も文字間隔なども同じになり良いと思います。

たとえフォントを同一にしてもOffice文書をLibreOfficeで読み込むと、レイアウト崩れが生じる時があります。完全互換アプリケーションでは無いためです。しかし、同じOfficeファミリでさえ完全互換は実現できていません

お勧めのフォントは、Writer/Drawどちらもメイリオです。このメイリオフォント設定済み、タイトルや見出しなどのスタイルも設定済みの弊社Draw/Writerテンプレートを無償配布しています。

LibreOffice付属公式テンプレートは、使い勝手が良いとは言えません。弊社Writer/Drawテンプレートを使うと、文書の見た目が出来上がっていますので、内容に注力して作業ができます。

Office併用の使い方

全サービス終了のOffice 2010と完全互換ではないLibreOfficeを、2020年10月13日以降どのように使っていくと便利かを検討した結果が、LibreOffice/Office併用案です。

Office 2010に限らず、既成Office文書も利用しつつLibreOffice環境へ移行する1つの方法です。

発展的LibreOfficeの使い方

LibreOfficeの特徴ポイントが以下です。

  1. 世界標準文書と、新旧Office文書の読取り/書込み能力
  2. Windows/Mac/LinuxマルチOS動作、日本語対応、無償、欧州発ソフトウェア

ポイント1を活用した使い方が、前章で示したLibreOfficeとOffice 2010併用のPC文書環境です。

ポイント2活用の、発展的なLibreOfficeの使い方が以下です。

弊社メインPCのOSは、Windows 10 Pro 64bit版です。ここ数年続くWindows Updateトラブル状況が改善されないので、バックアップPCのOSは、WindowsからLinux Mint 19.3 MATE 64-bit版へ変更し運用中です。OSがLinuxの場合、自作の古いPCでもWindowsよりも軽快に動作するメリットもあります。

ビスネスPCのOSは?
信頼性重視ビスネスPCのOSはWindows、Mac、Unixのどれが良いか?

このように異なるOSが混在するPC文書環境では、Windows/Mac/Linuxで動作する無償LibreOfficeが最適です。

文書を含むユーザデータがPC間で同期済みであれば、万一、Windows Updateでトラブルが発生しても、Linux PCで開発を中断せずに継続できるからです。また、OSが異なるため、メイン/バックアップ同時PCトラブルの発生確率は低くいです。

Linuxには、PC文書アプリケーションとして、初めからLibreOfficeがインストール済みなのも好都合です。

最近は、PCアプリケーションのマルチOS化が進んだので、筆者ビジネスに関しては、Windows/Linuxどちらも同じPCアプリケーションが動作します(逆に日本語対応は、後退しつつある気がします)。唯一異なるアプリケーションが、Officeです。OfficeもMacで動作するようにはなりましたが、Linux動作は困難だ(MSは狙っていない)と思います。

LibreOffice、OfficeどちらもPC文書作成の基本機能は、既に完成の域に達しています。

圧倒的ユーザ数を持つ米国発有償Officeは、Microsoftビジネス戦略に沿った改良や改版が、一方、後発の欧州発(The Document Foundation)無償LibreOfficeは、Officeユーザ獲得やUIを主とする操作性の改良、クラウド対応などが今後も続くと思います。

本ブログで紹介したLibreOffice機能は、そのほんの一部です。例えば、LibreOffice Fresh v6.4.2で追加されたQRコード生成機能は、スマホ主体となったユーザのリンク生成に非常に役立つ機能です。このように、エンドユーザ重視の改良が目立つのもLibreOfficeの特徴と言えるでしょう。

スマホ主体ユーザ向きのQRコード生成機能
スマホ主体ユーザ向きのQRコード生成機能

今後どのようにLibreOfficeを使っていくかは、ユーザ次第です。上記特徴を踏まえ、WindowsとLinux共用メイン文書作成アプリケーションとして徐々に使い方を拡大したいと考えています。

* * *

本稿が、Office 2010サービス終了をきっかけに、代替アプリケーションとしてLibreOfficeを検討中の方や、COVID-19の影響で、自宅PCで職場の文書作成を継続する方法を検討中の方などのご参考になれば幸いです。