ATM Cortex-M4コアマイコン関連の情報をまとめています。

MCU:マイコン,PSoC/PRoCマイコン,Cortex-M0+コア,Cortex-M4コアPSoC Creator,PSoC 6,CY8CKIT-145-40XX PSoC 4000S CapSense Prototyping Kit,CY8CPROTO-063-BLE,ModusToolbox

米)Cypress(サイプレス)は、2020年4月、独)Infineon(インフィニオン)に買収され子会社になりました。買収の影響かは不明ですが、お気に入りCypress IDEのPSoC Creatorが、ModusToolboxへ移行しつつあります。ModusToolbox v2.3.0.4276(以下ModusToolbox)の特徴、PSoC Creatorからどう変わったのかを示します。

About Eclipse IDE for ModusToolbox
About Eclipse IDE for ModusToolbox

Windows/Mac/LinuxマルチOS、GitHub

PSoC Creator(以下Creator)は、Windowsのみで動作するCypress独自IDEです。ModusToolboxは、Eclipse IDEをベースとし、Windows/Mac/LinuxマルチOS対応となりました。また、最新サンプルコードやライブラリは、GitHub経由でオンライン提供へと変わりました。

ModusToolbox対応PSoC 4/6デバイス

ModusToolbox対応中のPSoC 4/6評価ボードとデバイスを抜粋したのが下図です(全評価ボードとデバイスは、リリースノートを参照してください)。

ModusToolbox 2.3のPSoC 4/6対応デバイス
ModusToolbox 2.3のPSoC 4/6対応デバイス

弊社PSoC 4000S/4100S/4100PSテンプレートで使ったCY8CKIT-145-40XX、PSoC 6 FreeRTOSテンプレートで使用予定のCY8CPROTO-063-BLEともに、ModusToolbox v2.3で開発できます(PSoC 6 FreeRTOSテンプレートは、前稿参照)。前バージョン2.2から新たにPSoC 4が追加されました。

AN228571:「ModusToolboxソフトウェアを使用するPSoC 6 MCU入門」は、全てのPSoC 6アプリケーション開発に、ModusToolbox利用を推薦しています。また、PSoC 4も追加されたことを考えると、ModusToolbox は、PSoC Creatorの後継IDEの可能性大です。

Creator回路図はDevice Configuratorへ

Creatorの特徴は、ソフトウェア開発の最初に、回路図:TopDesign.cyschへPSoCコンポーネントを配置、必要ならコンポーネント間配線を行うことです。ソフトウェア出発点が、多少ハードウェア開発者向きです。

PSoC Creatorの特徴:TopDesign.cysch
PSoC Creatorの特徴:TopDesign.cysch

ModusToolboxはこの回路図配置が、GUIで使用リソースの設定を行うDevice Configuratorへ変わりました。他社Eclipse IDEベースのIDE(例えば、NXP:MCUXpresso IDEやSTマイクロ:STM32CubeIDE)でも同様の周辺回路設定があります。

ModusToolbox のDevice Configurator
ModusToolbox のDevice Configurator(出展:AN228571)

つまり、見た目も操作性も、Eclipse IDEベースの他社IDEと殆ど同じになりました。

PSoCコンポーネントに重きを置いたCreatorプログラミングよりも、Eclipse IDEに慣れた開発者の親しみ易さ、GitHub経由のサンプルコード等の最新版配布による利便性を重視し、よりソフトウェア開発者向きにしたIDEがModusToolboxです。

ModusToolboxソフトウェア構成

ModusToolboxソフトウェア構成
ModusToolboxソフトウェア構成(出展:AN228571)

ModusToolboxソフトウェア構成を見ると、GitHub経由の提供部分が解ります。

下層の各種ドライバ、HAL、BSPsから、ミドルウェアのBluetooth、Mbed OSやFreeRTOS等のライブラリ、これらのサンプルコードも全てGitHubから最新版が取得可能です。

IDE基本部分と、開発ニーズや時節に応じて変化する部分を分け、変化部分はGitHubから最新情報を提供する構成は、優れていると思います。

まとめ

Infineon/Cypressの最新IDE ModusToolboxの特徴を説明しました。Eclipse IDEベースのWindows/Mac/LinuxマルチOS対応で、GitHub経由で最新ドライバやサンプルコードが利用可能です。

PSoC 6アプリケーション開発は、PSoC CreatorからModusToolbox利用を推薦し、最新版ModusToolbox v2.3.0.4276へPSoC 4も追加されたことから、Creator後継のIDEになりそうです。
※ModusToolbox v2.3.1.4663(2021-05-06)はパッチファイルで、v2.3.0.4276の事前インストールが必要です。

なお、PSoC 4/6開発にCreatorも引続き使えます。しかし、今のところ既存CreatorプロジェクトからModusToolboxプロジェクトへの移行ツールは見当たりませんので、新規PSoC 4/6開発は、ModusToolboxで行う方が良いと思います。

ModusToolbox概要は、コチラの英語動画でご覧いただけます。また、丸文株式会社さんの開発ツールページに、インストール方法サンプルコード使用手順などが分かり易く説明されています。

MCU:マイコン,LPCマイコン,STM32マイコン,PSoC/PRoCマイコン,Cortex-M4コアARMマイコン,Cortex-M0+,PSoC Creator,RTOS,PSoC 6,FreeRTOS,Cortex-M4,FreeRTOSConfig.h,Azure RTOS

低価格(4000円以下)、個人での入手性も良い32ビットARM Cortex-M4コア評価ボードのRTOS状況を示します。超低価格で最近話題の32ビット独自Xtensa LX6ディアルコアESP32も加えました。

Vendor NXP STマイクロ Cypress Espressif Systems
RTOS FreeRTOS
Azure RTOS
CMSIS-RTOS FreeRTOS
Mbed OS
FreeRTOS
Eva. Board LPCXpresso54114 NUCLEO-G474RE CY8CPROTO-063-BLE ESP32-DevKitC
Series LPC54110 STM32G4 PSoC 6 ESP32
Core Cortex-M4/150MHz Cortex-M4/170MHz Cortex-M4/150MHz
Cortex-M0+/100MHz
Xtensa LX6/240MHz
Xtensa LX6/240MHz
Flash 256KB 512KB 1024KB 480KB
RAM 192KB 96KB 288KB 520KB
弊社対応 テンプレート販売中 テンプレート開発中 テンプレート検討中 未着手

※8月31日、Cypress PSoC 6のRTOSへ、MbedOSを追加しました。

主流FreeRTOS

どのベンダも、FreeRTOSが使えます。NXPは、Azure接続用のAzure RTOSも選択できますが、現状はCortex-M33コアが対応します。ディアルコア採用CypressのRTOS動作はM4側で、M0+は、ベアメタル動作のBLE通信を担います。STマイクロのCMSIS-RTOSは、現状FreeRTOSをラップ関数で変換したもので実質は、FreeRTOSです(コチラの関連投稿3章を参照してください)。

同じくディアルコアのEspressifは、どちらもRTOS動作可能ですが、片方がメインアプリケーション、もう片方が通信処理を担当するのが標準的な使い方です。

価格が上がりますがルネサス独自32ビットコアRX65N Cloud Kitは、FreeRTOSとAzure RTOSの選択が可能です。但し、無償版コンパイラは容量制限があり、高価な有償版を使わなければ開発できないため、個人向けとは言えません。

※無償版でも容量分割と書込みエリア指定など無理やり開発するトリッキーな方法があるそうです。

クラウドサービスシェア1位のAWS(Amazon Web Services)接続用FreeRTOSが主流であること、通信関連は、ディアルコア化し分離処理する傾向があることが解ります。

ディアルコア

ディアルコアで通信関連を分離する方式は、接続クラウドや接続規格に応じて通信ライブラリやプロトコルを変えれば、メイン処理側へ影響を及ぼさないメリットがあります。

例えば、STマイクロのCortex-M4/M0+ディアルコアMCU:STM32WBは、通信処理を担うM0+コアにBLEやZigBee、OpenThreadのバイナリコードをSTが無償提供し、これらを入れ替えることでマルチプロトコルの無線通信に対応するMCUです。

メイン処理を担うM4コアは、ユーザインタフェースやセンサ対応の処理に加え、セキュティ機能、上位通信アプリケーション処理を行います。

通信処理は、クラウド接続用とセンサや末端デバイス接続用に大別できます。

STM32WBやCY8CPROTO-063-BLEが採用した末端接続用のBLE通信処理を担うディアルコアのCortex-M0+には、敢えてRTOSを使う必要は無く、むしろベアメタル動作の方が応答性や低消費電力性も良さそうです。

一方、クラウド接続用の通信処理は、暗号化処理などの高度なセキュティ実装や、アプリケーションの移植性・生産性を上げるため、Cortex-M4クラスのコア能力とRTOSが必要です。

デュアルコアPSoC 6のFreeRTOS LED点滅

デュアルコアPSoC 6対応FreeRTOSテンプレートは、現在検討中です。手始めに表中のCY8CPROTO-063-BLEのメイン処理Cortex-M4コアへ、FreeRTOSを使ってLED点滅を行います。

と言っても、少し高価なCY8CKIT-062-BLEを使ったFreeRTOS LED点滅プログラムは、コチラの動画で紹介済みですので、詳細は動画をご覧ください。本稿は、CY8CPROTO-063-BLEと動画の差分を示します。

CY8CPROTO-063-BLE のCortex-M4とM0+のmain_cm4.c、main_cm0p.cとFreeRTOSConfig.hが下図です。

PSoC 6 CY8CPROTO-063-BLE FreeRTOS LED点滅のmain_cm4.cとmain_cm0.c
PSoC 6 CY8CPROTO-063-BLE FreeRTOS LED点滅のmain_cm4.cとmain_cm0.c
PSoC 6 CY8CPROTO-063-BLEのFreeRTOSConfig.h
PSoC 6 CY8CPROTO-063-BLEのFreeRTOSConfig.h

日本語コメント追記部分が、オリジナル動画と異なる箇所です。

RED LEDは、P6[3]ポートへ割付けました。M0+が起動後、main_cm0p.cのL18でM4システムを起動していることが判ります。これらの変更を加えると、動画利用時のワーニングが消えCY8CPROTO-063-BLE でFreeRTOS LED点滅動作を確認できます。

PSoCの優れた点は、コンポーネント単位でプログラミングができることです(コチラの関連投稿:PSoCプログラミング要点章を参照してください)。

PSoCコンポーネント単位プログラミング特徴を示すCreator起動時の図
PSoCコンポーネント単位プログラミング特徴を示すCreator起動時の図

PSoC Creator起動時の上図が示すように、Cypressが想定したアプリケーション開発に必要なコンポーネントの集合体が、MCUデバイスと言い換えれば解り易いでしょう。つまり、評価ボードやMCUデバイスが異なっても、使用コンポーネントが同じなら、本稿のように殆ど同じ制御プログラムが使えます。

PSoC 6 FreeRTOSテンプレートも、単に設定はこうです…ではなく、様々な情報のCY8CPROTO-063-BLE利用時ポイントを中心に、開発・資料化したいと考えています。PSoCプログラミングの特徴やノウハウを説明することで、ご購入者様がテンプレートの応用範囲を広げることができるからです。

MCU:マイコン,STM32マイコン,Cortex-M4コアIoTマイコン,FreeRTOS,STM32CubeMX,セキュリティ,STM32CubeIDE,NUCLEO-G474RE,STM32G4,STM32G4テンプレート,CMSIS RTOS,アプリケーションテンプレート,NUCLEO評価ボード

販売中のNXP版FreeRTOSアプリケーションテンプレートに続いて、STマイクロエレクトロニクス版CMSIS-RTOSアプリケーションテンプレート構想を示します。

IoT MCU開発者にRTOS開発経験とスキルが必須であること、短期で効率的にRTOSスキルを磨けるSTマイクロエレクトロニクス版CMSIS-RTOSアプリケーションテンプレート構想を示し、汎用性、セキュリティ、広い流用性を持つSTM32G4をターゲットMCUにした理由を示します。

IoT MCU開発者スキル

IoT MCU開発者スキルの階層構造
IoT MCU開発者スキルの階層構造

IoT MCU開発者は、ベアメタルMCU開発スキルの上に、FreeRTOSやAzure RTOSなど接続するクラウドに応じたRTOSスキルが必要です。クラウド接続後、顧客要求のIoTサービスを実装しますが、実装時には、競合他社より早い開発スピードなどの差別化スキルも要求されます。

更に、IoTセキュリティや、より高性能なデュアルコアMCUへの流用、顧客横展開など、発展性への配慮も必要です。これらは、図示したようにベアメタルMCU開発スキルを基礎とする階層構造です。
※スキルとは、開発経験に基づいた手腕、技量のことです。

RTOS開発経験とスキル

全てのモノをネットワークへ繋ぐ時代は、従来のMCUからIoT MCUへの変革が必要です。IoT MCU開発者にとってRTOS開発経験とスキルは、近い将来必須になります。理由が下記です。

・RTOSライブラリ利用がクラウド接続に必須  👉①IoT MCU急増への備え
・大規模MCU開発にRTOSが便利(≒必須)   👉②開発規模拡大への備え
・ベアメタル開発よりもRTOS開発が効率的   👉③ソフトウェア資産への備え(補足参照)

つまり、過去何度も提言されたMCUソフトウェア資産化・部品化を、RTOSが実現するからです。逆に、IoT MCU開発では、このソフトウェア資産化・部品化(ライブラリ活用)無しには、実現できない規模・技術背景になります。
※例えば、IoTセキュリティだけでも専門家が対応すべき領域・規模・技術背景になりそうです。

IoT MCU開発の成功には、様々な専門家技術が活用できる土台のRTOSは必須です。IoT MCU開発専門家の一員となるには、RTOS開発経験とスキルは必須と言えるでしょう。

効率的RTOSスキル習得

ベアメタル開発経験者の効率的なRTOS基礎固め、スキル取得を弊社STM版CMSIS-RTOSアプリケーションテンプレートの目的とします。

この目的は、NXP版FreeRTOSアプリケーションテンプレートと同じです。違いは、NXP版がFreeRTOSを用い、STM版は、コード生成ツール:STM32CubeMXが出力するCMSIS-RTOSを用いる点です。

現時点のSTM版CMSIS-RTOS APIは、FreeRTOS APIをラップ(wrapper)したもので、中身はFreeRTOSそのものです。※CMSIS-RTOS詳細は、コチラの関連投稿を参照してください。

ベアメタル開発経験者のRTOS基礎固め・スキル獲得を、短期・効果的に達成するには、

・基本的RTOS待ち手段(タスク同期:セマフォとタスク間通信:Queue)理解
・RTOSプロトタイプ開発にも使える弊社テンプレートプロジェクト活用

が適しています。

既に持っているベアメタル開発経験を活かし、例えば、単独RTOSサンプルプロジェクトでは得られない複数タスク優先順位を変えた時の各タスク挙動や、RTOSセマフォ送受失敗時の挙動などスキルアップに役立つ事柄を、自ら評価・判断できるからです。この評価を助けるために、同じ動作のベアメタルプロジェクトもテンプレートに添付します。

効率的にRTOS開発スキルを習得する方法として、自己のベアメタル開発経験を使ってRTOS習得・スキルアップする本手法は、Betterな方法だと思います。

コチラにFreeRTOS習得に役立つ情報をまとめています。ポイントとなる点をざっと掴んで、実際の開発環境で試し、参考書やマニュアルなどの内容を開発者自ら考える、これにより新技術やスキルを、身に付けることができると思います。

STM版CMSIS-RTOSアプリケーションテンプレート構想

STM版CMSIS-RTOSアプリケーションテンプレートも、NXP版同様、同一動作のベアメタルプロジェクトを添付します。

RTOS/ベアメタルどちらのプロジェクトも、ADC入力、LCD出力、SWチャタリング対策入力、LED出力、VCOM入出力の動作確認済みで、プロトタイプ開発着手時のスタートプロジェクトとしても利用可能です。

付属説明資料には、ベアメタル視点からのCMSIS-RTOS説明を加えます。また、テンプレート利用CMSIS-RTOS APIとFreeRTOS APIの対応表も添付する予定です。

CMSIS-RTOSアプリケーションテンプレートをご購入後、ベアメタル開発経験者が、RTOSプロジェクトとベアメタルプロジェクトの比較・評価がスグに始められる構成です。※比較・評価は、ご購入者ご自身で行ってください。

STM32メインストリームMCU比較(出展:STマイクロエレクトロニクスに加筆)
STM32メインストリームMCU比較(出展:STマイクロエレクトロニクスに加筆)

CMSIS-RTOSアプリケーションテンプレート動作環境は、メインストリームMCUのSTM32G4評価ボード:NUCLEO-G474RE(Cortex-M4/170MHz、Flash/512KB、RAM/96KB)とHAL APIを用います。

STM32G4は、高性能で汎用性とIoT MCU基本的セキュティ機能を備え、RTOSテンプレートのターゲットIoT MCUとして最適です。

STM32G4のセキュリティ機能を示したのが下図です。

STM32G0とG4のセキュリティ対応(出展:STM32 Security対応表に加筆)
STM32G0とG4のセキュリティ対応(出展:STM32 Security対応表に加筆)

また、STM32G4の汎用性、他MCUへの開発ソフトウェア流用性の広さを示したのが下図です(詳細は、コチラの関連投稿3章を参照してください)。

NUCLEO-G474RE搭載のSTM32G474RETx Compatible MCU List。2021年8月時点で98MCU!
NUCLEO-G474RE搭載のSTM32G474RETx Compatible MCU List。2021年8月時点で98MCU!

NUCLEO-G474RE評価ボードの他には、ArduinoプロトタイプシールドとBaseboardを用います。

つまり、販売中のNXP版FreeRTOSアプリケーションテンプレート評価ボード:LPCXpresso54114が、STマイクロエレクトロニクスNUCLEO-G474REにのみ変化した構成です。

CMSIS-RTOS動作もNXP版と同様、Hardware Independent FreeRTOS Exampleを基としますので、(両テンプレートをご購入頂ければ)STMとNXPのRTOSアプリケーション開発の直接比較なども可能です。

STM版CMSIS-RTOSアプリケーションテンプレートのリリースは、今秋のWindows 10 21H2更新後(Windows 11リリース後かも?)を予定しております。時間的に少し余裕がありますので、Cypress版PSoC 6ディアルコア対応FreeRTOSアプリケーションテンプレートも同時リリースできればBestだと考えています。

補足:③ソフトウェア資産への備え

ベアメタル開発でもソフトウェア規模が大きくなると、開発者が悩む点は、複数処理の待ち合わせ/制御順序です。対策は、処理を細かく分割し、優先度を考慮しつつ順次処理を行うのが常套手段です。

ところが、RTOSを使うと、この面倒な待ち処理や制御順序を、RTOSがタスク優先順位に応じて処理します。しかも、処理分割も、RTOSがTICK_RATE_HZ単位で勝手(!?)に行ってくれます😀。

RTOSにより、タスク数やTICK_RATE_HZ、最大優先順位に応じたスタックを大量に利用しますのでRAM使用量の増加、RTOS自身のオーバーヘッドなど副作用も生じますが、「タスク記述は、超簡単」になります。

初期設定と無限ループ、ループ内のRTOS待ち手段、優先順位を検討すれば、文字通り単一処理タスクを開発し、マルチタスク化はRTOSに任せます。

※ベアメタル開発経験者は、セマフォ、Queue、Mutex、イベントグループなどのRTOS待ち手段を、上記実現のためのAPIと捉えると、RTOS理解が早くなります。
※上記手法を使うと、ベアメタルサンプルプログラムもそのままRTOSへ組込めます。
※最も難しそうなのが優先順位検討ですが、ソース上で簡単に変更できます。
※RTOSマルチタスク処理を100%信頼した上での筆者感想です。

Cortex-M4コアでRTOSが使えMCUのFlash/RAMに余裕があれば、ベアメタル開発よりもRTOS開発の方が効率的に開発できると思います。また、この環境で開発したソフトウェアは、資産として別のRTOS開発へも使えるので個人ソフトウェア資産化も可能です。

上記は、RTOSの筆者感想です。弊社RTOSアプリケーションテンプレートをご購入頂き、各開発者でRTOSに対する独自感想を抱き、短期で効率的にRTOS開発経験とスキルを磨いて頂ければ幸いです。

MCU:マイコン,LPCマイコン,Cortex-M4コアテンプレート,FreeRTOS,MCUXpresso IDE,MCUXpresso SDK,LPCXpresso Config Tools,Azure RTOS,アプリケーションテンプレート

MCUXpresso suite of software and tools
MCUXpresso suite of software and tools

2021年7月15日、NXPの統合開発環境MCUXpresso IDEが、11.3.1から11.4.0へ更新されました。
新たに追加されたAzure RTOS、弊社FreeRTOSアプリケーションテンプレートの新環境での動作確認を示します。

Azure RTOS追加

FreeRTOSに比べ未だ12個と少数ですが、LPCXpresso55S06などCortex-M33コアのAzure RTOS 対応評価ボードとSDK v2.10.0が追加されました。Microsoft AzureのAWS追随が、統合開発環境に現れました(関連投稿:多様化MCU RTOS)。

Azure RTOS Boards
Azure RTOS Boards

これに伴い、IDEのRTOSメニューにAzure RTOSの Message QueuesやSemaphoresなどのViewが追加されました。Azure RTOSデバッグユーザガイトは、MCUXpressoIDE_11.4.0_6224インストールフォルダ内にありますので参照してください。

RTOSメニューに追加のAzure RTOS View
RTOSメニューに追加のAzure RTOS View

FreeRTOSアプリケーションテンプレートの新環境動作確認

Config Toolsもv10.0へ更新されましたので、新IDE更新後、旧11.3.1開発プロジェクトのPinパースペクティブで再度Update Codeのクリックが必要です。Updateクリック後、Develop画面に戻り再ビルドします。(Config Toolsの使い方は、コチラの関連投稿を参照してください)。

MCUXpresso Config ToolsのUpdate Code
MCUXpresso Config ToolsのUpdate Code

再ビルドは正常に終了し、新MCUXpresso IDE 11.4.0とFreeRTOS対応評価ボードLPCXpresso54114で、FreeRTOSアプリケーションテンプレートの動作確認をしました。

FreeRTOSアプリケーションテンプレートと付属資料も、11.4.0対応版へ更新します。

新MCUXpresso IDE 11.4.0で旧プロジェクト動作確認。LPCXpresso54114のSDK更新はなし。
新MCUXpresso IDE 11.4.0で旧プロジェクト動作確認。LPCXpresso54114のSDK更新はなし。

補足1:新旧統合開発環境併存

NXPの統合開発環境は、PC上で新旧環境が同時併存可能です。

環境が併存しますのでストレージ容量は必要です。また、ターゲットボードのSDK改版が無くても再度新IDEへのインストールが必要など手間もかかりますが、新環境構築が安心してできます。但し、新環境下でターゲットプロジェクト開くと、新環境用に変更され旧環境に戻せません。

ターゲットプロジェクトは、新旧環境で別々にすることを忘れないでください。

補足2:STM版CMSIS-RTOSアプリケーションテンプレート構想状況

FreeRTOSやAzure RTOSなど開発者が対応すべきMCU RTOSは、今後増える傾向です。RTOSが変わっても同じ開発アプリケーションを活用・流用できるのがCMSIS-RTOSメリットです。STM版RTOSアプリケーションは、このCMSIS-RTOSを使って構想中で、この状況を示します(詳細は、STM32RTOS開発3注意点(後編)などを参照してください)。

FreeRTOSとCMSIS-RTOSのセマフォAPI比較
FreeRTOSとCMSIS-RTOSのセマフォAPI比較

上側がFreeRTOSセマフォ送受、下側がCMSIS-RTOSセマフォ送受ソースです。どちらも殆ど同じです。

IDEにContent Assist機能(Ctrl+Space表示のAPI候補一覧)があるので、ソース記述は簡単で、基本的なRTOS手段(上記はタスク同期セマフォ)を理解済みなら、FreeRTOSに比べ情報が少ないCMSIS-RTOS開発でも、当初思ったより障壁は低いと感じています。

CMSIS-RTOSメリット/デメリットを比較して、メリットの大きさを感じた今回のNXP IDE更新でした。STM版CMSIS-RTOSアプリケーションテンプレート構想は、近日中に投稿予定です。


MCU:マイコン,STM32マイコン,Cortex-M0+コア,Cortex-M33コア,Cortex-M4コアIoTマイコン,STM32CubeMX,セキュリティ,STM32CubeIDE,STM32G071RB,HAL API,STM32G474RE,STM32RTOS

2021年7月19日、STマイクロエレクトロニクスのMCU統合開発環境が、STM32CubeIDE v1.7.0とSTM32CubeMX v6.3.0へ更新されました。Major releaseです。開発済みMCUのSTM32CubeMX設定を、簡単に別ターゲットMCUへ移植する機能を解説します。

Major Release

STM32CubeIDE(以下、CubeIDE)は、ベースのEclipse IDE 更新に追随し年数回更新があります。今回のCubeIDE v1.7.0更新内容に、特に気になる点はありません。

一方CubeIDE付属コード生成ツール:STM32CubeMX v6.3.0(以下、CubeMX)には、開発済みMCUのCubeMX設定を、別MCUや別シリーズMCUへ簡単に移植する機能があります。移植性の高いHAL(Hardware Abstraction Layer)APIと併用すると、開発済みソフトウェアの再利用が簡単で強力なAPI生成ツールになりました。

STM32CubeMX設定移植機能

CubeMXには詳細な英語ユーザマニュアルUM1718 Rev35(全368ページ)があり、p1に主要機能説明があります。本ブログでもCubeMXコード生成機能の使い方やその重要性、STM32F0からF1へのソフトウェア移植方法などを何度か紹介してきました(検索窓に「STM32CubeMX」と入力すると関連投稿がピックアップされます)。

従来投稿は、MCUのCubeMX設定を、ターゲットMCUへ各項目を見ながら手動移植する方法でした。この方法は、予めターゲットMCUとの互換性が解っている場合や、移植周辺回路が少ない場合には有効です。

しかし、MCUの種類が増え、別シリーズMCUへ、または多くの周辺回路設定を個別に移植したい場合は、事前チェックは面倒です。そんな時に役立つ2機能が、UM1718 p1太文字記載の下記です。

  • Easy switching to another microcontroller
  • Easy exporting of current configuration to a compatible MCU

どちらもCubeMX画面のPinout & Configurationタブ選択、Pinoutプルダウンメニュー>List Pinout Compatible MCUs (Alt-L)をクリックすると、Full Compatible/Need Hardware change MCUが一覧表で表示されます。

List pinout compatible MCUs
List pinout compatible MCUs

STM32G0xテンプレート例

販売中STM32G0xテンプレートで使用中の汎用MCU:STM32G071RB(Cortex-M0+/64MHz、Flash/128KB、RAM/36KB)の例を示します。これは、評価ボードNUCLEO-G071RB搭載MCUです。

STM32G071RB Full and Partial match MCU List
STM32G071RB Full and Partial match MCU List

評価ボード搭載のLQFP64パッケージでフィルタ設定すると、青色:完全互換の汎用STM32G0シリーズMCUが12アイテム、黄色:一部ハードウェア変更が必要な低電力STM32L0シリーズMCUが17アイテムリストアップされます。

例えば、FlashやRAMを増量したい場合には、STM32G0B1RBへ開発ソフトウェアがそのまま移植できることが解ります。また、より低電力化したい場合には、STM32L071RBへも移植可能です。あとは、ターゲットMCUを選択し、STM32G0xテンプレートのCubeMXプロジェクト設定を全て移植するか、または一部周辺回路のみを移植するかの選択も可能です。

つまり、開発済みソフトウェアを別MCUへ移植する際に、容易性(完全互換/一部HW変更)と方向性(大容量化/低電力化など他MCUシリーズ適用)を評価でき、かつ、ターゲットMCU選択後は、ダイアログに従って操作すれば、CubeMX設定全て、または周辺回路毎にターゲットMCUへ自動移植ができる訳です。

CubeMX設定の移植後は、ターゲットMCU上で通常のようにコード生成を実行すれば、周辺回路初期設定や動作に必要となる関数群の枠組みが作成されます。その枠組みへ、STM32G0xテンプレートのHAL API開発済みソフトウェアをコピー&ペーストし、ターゲットMCUへのソフトウェア移植が完了です。

汎用MCUとHAL APIプロトタイプ開発

最新メインストリーム(汎用)プロトタイプ開発イメージ
最新メインストリーム(汎用)プロトタイプ開発イメージ

CubeMX設定の自動移植が簡単なことは、前章まででご理解頂けたと思います。

前例STM32G0xテンプレート開発ソフトウェアの移植可能なMCU数が12+17=29と大きいのは、汎用MCUとHAL APIを使ったソフトウェア資産だからです。

最新IoT MCU開発でも、STM32G0/G4シリーズなどの移植性が高い汎用MCU(=メインストリームMCU)とHAL APIを使って主要機能をプロトタイプ開発し、CubeMX移植機能を使ってターゲットIoT MCUへ移植すれば、最新IoT MCUの差分機能開発に集中できます。

つまり、「汎用MCUとHAL API利用のプロトタイプ開発は、他MCUへの移植性が高く、汎用との差分開発に集中できる高い生産性」をもたらす訳です。

※STM32G0/G4シリーズは、新プロセスで従来汎用STM32F0/F1/F3シリーズを高速・低電力化・セキュリティ強化した新しい汎用MCUです。コチラの関連投稿や、STM32U5発表と最新IoT MCU動向を参照してください。

STM32G0とG4のセキュリティ対応(出展:STM32 Security対応表に加筆)
STM32G0とG4のセキュリティ対応(出展:STM32 Security対応表に加筆)

まとめ

STマイクロMCU統合開発環境が、STM32CubeIDE v1.7.0とSTM32CubeMX v6.3.0へMajor Releaseされました。

開発済みMCUのCubeMX設定を、別MCUへ簡単に移植する機能があり、移植性が高い汎用(メインストリーム)MCUとHAL APIによるプロトタイプ開発ソフトウェア資産を、効率的に他MCUへ再活用できる統合開発環境になりました。

補足:NUCLEO評価ボードのユーザLED不足対策

汎用MCUとHAL APIプロトタイプ開発には、低価格で入手性も良いNUCLEO評価ボードが適しています。

但し、NUCLEO評価ボードのユーザ緑LED(LD2)とSW(B1)が、各1個と少ない点が残念です。CubeIDEサンプルプログラムは、単機能サンプル動作なので各1個でもOKですが、少し複雑な例えばRTOS並列動作確認などには、特にLEDが不足します。

お勧めは、赤LED 2個、SW 1個が実装済みのArduinoプロトタイプシールドです。残念ながらNUCLEO評価ボードSW(B1)は操作できないのでシールドSWで代用します。評価ボードArduinoピンとの配線や、付属ブレッドボードへの回路追加も簡単です。ST以外の様々なMCUベンダのArduinoコネクタ付き評価ボードでも使えます。

NUCLEO評価ボードLED不足対策のArduinoプロトタイプシールド。付属ブレッドボードに回路追加も容易。
NUCLEO評価ボードLED不足対策のArduinoプロトタイプシールド。付属ブレッドボードに回路追加も容易。

NUCLEO-G474REとArduinoプロトタイプシールドの使用例を示します。ArduinoプロトタイプシールドのLED1は、Lpuart受信、LED2は、SW操作、評価ボードのLD2は、1s/500ms/40ms点滅の動作確認に使っています。

STM版RTOSアプリケーションテンプレート構想もこの環境で検討中です(関連投稿:STM32RTOS開発3注意点(前編)、(後編))。

MCU:マイコン,STM32マイコン,Cortex-M4コアARMマイコン,FreeRTOS,STM32CubeMX,STM32G071,STM32G4,Azure RTOS,CMSIS RTOS,CMSIS-V1

STM32MCUでRTOS開発を行う時の3注意点、前編のSTM32CubeMX、HALに続き、本稿後編でCMSIS-RTOS関連を示します。

※木曜からの東京オリンピック4連休のため、通常金曜を本日水曜日に先行して投稿します。

前編は、STM32RTOS開発実例として、NUCLEO-G474RE FreeRTOS_QueuesサンプルプロジェクトのSTM32CubeMX(以下CubeMX)コード出力を使い、HALタイムベース変更の必要性を示しました。後編は、前編と同じ実例を使ってCMSIS-RTOSの注意点を示します。

FreeRTOS_Queues STM32CubeMXファイルのTasks and Queues

NUCLEO-G474RE FreeRTOS_QueuesサンプルプロジェクトのCubeMX構成ファイル:FreeRTOS_Queues.icoを開き、Middleware>FREERTOSのTasks and Queuesタブをクリックしたのが下図です。

FreeRTOS_QueuesのSTM32CubeMXファイルTasks and Queues
FreeRTOS_QueuesのSTM32CubeMXファイルTasks and Queues

2つのタスク:MessageQueuePro(Qプロデューサ:送信タスク)とMessageQueueCon(Qコンシューマ:受信タスク)と、1つのQ:osQueue(深さ1:ワード)を、CubeMXで自動生成するパラメタが設定済みです。関連投稿:NXP版FreeRTOSのQueueデータ送受信と同じです。

全て黒文字パラメタですので、変更も可能ですが、このままソースコードを自動生成(Alt+K)してください。

CMSIS-RTOS APIからFreeRTOS API変換(wrapper)

CMSIS-RTOS APIからFreeRTOS API変換
CMSIS-RTOS APIからFreeRTOS API変換

main.cのL125に、osQueueを生成するAPI:osMessageCreateが自動生成済みです。また、L134とL138に、MessageQueueProとMessageQueueConのタスク(Thread)を生成するAPI:osThreadCreateも自動生成済みなのが判ります。

ここで、API先頭にosが付くのは、CMSIS-RTOSのAPIだからです(L145のosKernelStartも同様)。詳細は、次章で説明します。

さて、L125のosMessageCreateへカーソル移動し、F3をクリックすると、cmsis-os.cのL1040へジャンプし、CMSIS-RTOS APIのosMessageCreateの中身が見えます。その中身が、L1055のxQueueCreateで、これはFreeRTOSのAPIです。

つまり、CubeMXが自動生成したのは、CMSIS-RTOS APIですが、その実体は、FreeRTOS APIであることが判ります。
この例のように、CubeMXが生成したCMSIS-RTOS APIは、cmsis_os.cで全てFreeRTOS APIへ変換されます。

CMSIS-RTOS

CMSIS-RTOSは、Cortex-Mコア開発元ARM社が定めたRTOS APIの規格です。
※CMSIS:Cortex Microcontroller Software Interface Standard

Cortex-Mコアには、FreeRTOS/Azure RTOS/mbed OSなど様々なRTOSが使えます。下層のRTOSが変わるとAPIも変わりますが、そのAPIを変換し、上層アプリケーションへ共通なRTOS APIを提供する、これにより、

  1. RTOSが異なっても、同じ開発アプリケーションが使えること
  2. Cortex-Mコアが異なっても、開発アプリケーション移植を容易にすること

これらがCMSIS-RTOSの目的です。

これをラップ(wrap=…を包む)と呼ぶことがあります。ラップ関数(wrapper)とは、下層API差を隠蔽し、上層アプリケーションへ同一APIを提供する関数のことです。STM32RTOS開発でのCubeMXの役目の1つは、使用するRTOSに応じたwrapperを提供することです。

現在、STM32RTOS開発のCubeMXがラップしているのは、FreeRTOSだけです。今後、FreeRTOSがAzure RTOSなどへ変わっても、開発アプリケーションをそのまま活用するために、今の時点からCMSIS-RTOS APIを使っている訳です。

Cortex-M0/M0+/M3/M4/M7コア向けの共通RTOS APIがCMSIS V1、Cortex-A5/A7/A9と全Cortex-Mコア向けの共通RTOS APIがCMSIS V2です。STM32RTOS開発では、CMSIS V1を用います。

CMSIS-RTOS とFreeRTOSのAPI

UM1722にCMSIS-RTOS APIとFreeRTOS APIの一覧が示されています。抜粋したのが下表です。

FreeRTOSとCMSIS-RTOSのAPI
FreeRTOSとCMSIS-RTOSのAPI

接頭語にx/vなどが付くのがFreeRTOS API、osが付くのがCMSIS-RTOS APIです。

CubeMXが生成するコードは、常にCMSIS-RTOS APIですが、実体はFreeRTOS APIです。FreeRTOSが別のRTOSへ変わっても、CMSIS-RTOS APIは同じです。CMSIS-RTOS APIとFreeRTOS APIのwrapper分のオーバーヘッドは生じますが、下層RTOSに依存しない点は、先進的で優れています。

なおUM1722 Rev3には、単にAPI列記とwrapper、RTOSサンプルプロジェクトの簡単な説明が記載されているだけです。

まとめ

STM32MCUでRTOS開発を行う時の3注意点(前編:STM32CubeMX、HAL)に続き、本稿後編で3つ目のCMSIS-RTOSを示しました。

STM32RTOS開発のSTM32CubeMXが扱うRTOSは、現在FreeRTOSだけです。FreeRTOSが別のRTOSへ変わっても、CubeMXは、開発アプリケーション流用性を高めるためにFreeRTOS APIの代わりにRTOS共通CMSIS-RTOS APIを出力します。

CMSIS-RTOS APIには、Cortex-M0/M0+/M3/M4/M7コア間で開発アプリケーション移植性が高いCMSIS V1を使います。

CMSIS-RTOS API変換オーバーヘッドがありますが、流用性、移植性に優れたRTOSアプリケーション開発ができる点は、優れています。

あとがき

残念ながらCMSIS-RTOS情報は、シェア1位AWSのFreeRTOSに比べ少なく、この少ない情報を使ってSTM32RTOS開発を行うのは、大変です。
※2位がAzureのAzure RTOS、3位がGCP(Google Cloud Platform)のmbed OS。関連投稿はコチラ

例えば、最初の図:CubeMXのTasks and QueuesのGUI設定パラメタが多いにもかかわらず、UM1722サンプルプロジェクト説明が少ない点などです。

RTOSは、複数タスク(CMSIS-RTOSではThread)間の優先順位差とRTOS自身の動作により、開発タスク処理状態が変わります。ベアメタル視点に加え、RTOS視点でのタスク開発と経験が求められます。QueueなどRTOS単独手段理解が目的のサンプルプロジェクトだけでは、RTOS開発経験は積めません。

弊社はこれらの対策として、効率的なRTOS基礎固め、STM32RTOSアプリケーションのプロトタイプ開発早期着手を目的としたSTM版RTOSアプリケーションテンプレート(仮名)を検討中です。その構想は、固まり次第、別稿にて示す予定です。

なお、NXP版FreeRTOSアプリケーションテンプレートは、コチラで販売中です。

MCU:マイコン,STM32マイコン,Cortex-M0+コア,Cortex-M4コアARMマイコン,IoTマイコン,FreeRTOS,STM32CubeMX,HAL,NUCLEO-G071RB,NUCLEO-G474RE,API生成ツール,CMSIS RTOS

STマイクロエレクトロニクス)STM32MCUを使ってRTOS開発時のSTM32CubeMX、HAL、CMSIS RTOSの3注意点について示します。前編が、STM32CubeMXとHALについてです。CMSIS RTOSは、別途後編で示します。

STM32CubeMXとHAL の注意点を解説した後、サンプルプロジェクトで実例を示すという順番で説明します。

ソースコード生成ツール:STM32CubeMX

STマイクロのソースコード生成ツール:STM32CubeMX(以下CubeMX)は、MCU内蔵周辺回路の初期設定やAPIを、GUIベースで自動生成する非常に便利なツールです。

※MCUベンダのAPI生成ツールを比較した関連投稿は、コチラをご覧ください。

CubeMX生成APIは、ハードウェアを抽象化し、STM32MCU間で最大限の高いソフトウェア移植性を狙ったHAL (Hardware Abstraction Layer)と、よりハードウェアに近くHALよりも高速・軽量なエキスパート向けLL(Low-layer)の2種類から選択可能です。

HALとLL比較(出典:STM32 Embedded Software Overvire)
HALとLL比較(※説明のため着色しています。出典:STM32 Embedded Software Overvire)

一般的に、HAL APIが好まれます。というのは、このLL APIを利用し開発した2019年6月発売のSTM32G0xテンプレートV1の売上げはゼロでした。対策に、LL APIからHAL APIに変更し再開発した2020年6月発売のSTM32G0xテンプレートV2は、人気があるからです。

これらCubeMXの各種GUI設定や選択APIは、CubeMXファイル(.ico)に構成ファイルとして纏められます。

STM32MCU新規プロジェクト開発時に、この既成CubeMXファイル(.ico)を利用すると、ゼロから着手するのに比べ、効率的かつ間違いなく周辺回路や初期設定ができるため、利用価値の高いファイルです。

特に、ベアメタル比、さらに多くのCubeMX設定が必要となるRTOS開発では、既成CubeMXファイルを再利用するメリットがより高まります。同時に、生成コードの意味も理解しておく必要があります。

HALタイムベース

HALには、他ベンダにない便利なAPI:HAL_Delayがあります。

例えば、10msの待ち処理を行う場合、他ベンダなら、MCUコア速度に応じて適当にループ回数を調整したループ処理で10ms相当の遅延を自作します。しかし、HAL APIならば、HAL_Delay(10)の記述だけで、MCUコア速度に依存しない正確な10ms遅延が実現できます。

これは、HAL自身が、MCU内蔵タイマ:SysTickの利用を前提に設計されているからです。遅延処理を例に説明しましたが、STM32のHAL APIsは、SysTickと強く結びついています。

もちろん、HAL APIをベアメタル開発で利用する場合は、この結びつきに何ら問題はありません。

RTOSタイムベース

FreeRTOSも、タスク(スレッド)状態遷移タイムベースに、SysTickを使います。

これは、FreeRTOSだけでなく他のRTOSでも同じです。SysTickは、その名称が示すようにMCUシステムレベルのタイムベース専用タイマです。

従って、STM32MCUでRTOS開発を行い、かつHAL APIを利用する場合には、RTOS側でSysTickを使うのが、名称に基づいた本来の使い方です。

HALタイムベース変更

そこで、STM32RTOS開発でHAL利用の場合は、HALのタイムベースを、デフォルト使用のSysTickから別のタイマへ変更する必要が生じます。この変更に伴う手動設定も当然必要となります。

*  *  *

ここまでが、STM32RTOS開発におけるSTM32CubeMXとHALに関する注意点です。
これらの注意点が解っていると、次章で示すRTOSサンプルプロジェクトのCubeMXファイルの意味と生成コードが理解できます。

STM32RTOS開発実例

STM32RTOS開発実例に、評価ボード:NUCLEO-G474RE(Cortex-M4/170MHz、Flash/512KB、RAM/96KB)でRTOS開発する場合を示します。

NUCLEO-G071RB(Cortex-M0+/64MHz、Flash/128KB、RAM/32KB)でRTOS開発する時でも同様です。しかも、RTOSサンプルプロジェクトは、STM32G071RBの方が(発売が古いためか?)多いので、NUCLEO-G071RBをお持ちの方は、是非ご自身で試してみてください。

FreeRTOS Example Selector

STM32CubeIDEのFile>STM32 Projectで、新規プロジェクト作成パネルを表示します(最新情報更新のため、表示に少し時間がかかる場合があります)。Example Selectorタブを選択、Middleware>FreeRTOSにチェックを入れ、NUCLEO-G474REのFreeRTOS_Queuesを選択したのが下図です。

NUCLEO-G474REのFreeRTOS_Queues
NUCLEO-G474REのFreeRTOS_Queues

右上欄、Noteの内容が、前半までに示した注意点のことです。参照先UM1722 Rev3は、CMSIS RTOSとFreeRTOSの関係があるのみです。このCMSIS RTOSについては、別途後編で説明します。

Nextをクリックし、FreeRTOS_Queuesサンプルプロジェクトを新規作成します。

さて、FreeRTOS Examples Listが318アイテム(STM32CubeIDE v1.6.1時)もあるので、Exportをクリックし、出力されたExcelファイルをBoardでフィルタリング、NUCLEO-G071RBとNUCLEO-G474REを抽出したのが下図です。

FreeRTOS Example List
FreeRTOS Example List

緑に色付けしたNUCLEO-G071RBの方が、FreeRTOSサンプルプロジェクト数が多いことが判ります。開発予定のSTM版FreeRTOSアプリケーションテンプレートは、Cortex-M4コアが対象ですので、本稿ではNUCLEO-G474REのFreeRTOS_Queuesを実例として使いました。

FreeRTOS_QueuesのSTM32CubeMXファイル

FreeRTOS_QueuesサンプルプロジェクトのCubeMX構成ファイル:FreeRTOS_Queues.icoが下図です。グレー文字は変更不可、黒文字は変更可能を示します。

FreeRTOS_Queues.ico
FreeRTOS_Queues.ico

TIM6がグレーなのは、HALタイムベース変更先がTIM6だからです。Kernel settings CPU CLOCK HZのSystemCoreClockがグレーなのは、RTOSタイムベースがSysTickだからです。つまり、本来の名称に基づいたSysTickがRTOS側で使われ、HALの新タイムベースにTIM6が割当済みであることが解ります。

FreeRTOS APIは、変更不可のグレーCMSIS V1です。ここは、後編で説明します。

デフォルトDisabledのUSE IDEL HOOKを、Enabledに変更し、ソースコード自動生成のGenerate Code(Alt+K)を実行してください。

HALタイムベースTIM6変更結果

FreeRTOS_QueseのTIM6とHook関数
FreeRTOS_QueseのTIM6とHook関数

app_freertos.cのL62に、Hook関数:vApplicationIdleHoolのひな型が自動生成済みです。ここへWFIを追記すれば、FreeRTOSアイドル時に低電力動作ができます。コチラのNXP版関連投稿Step5: FreeRTOS低電力動作追記と同じです。

main.cのL289は、TIM6満了時動作です。HAL_IncTick()が自動生成済みです。ベアメタル開発のSysTickからTIM6へHALタイムベースが変更されたことが解ります。

そのTIM6は、stm32g4xx_hal_timebase_tim.cで、1MHz=1ms満了に初期設定済みです。

つまり、STM32RTOS開発でHAL利用時に必要となる変更が、「全てCubeMXで自動生成済み」なのが解ります。

※上図は、USE_TICK_HOOKもEnabledへ変更した例です。Disabledへ戻すなどして、CubeMX自動生成ファイルが変化することを確かめてください。

この実例のように、CubeMX付属RTOSサンプルプロジェクトのCubeMXファイル(*.ico)を再利用すれば、周辺回路や初期設定ミスを防ぎ、RTOS新規アプリケーション開発が容易になることが解ります。

まとめ

STM32MCUでRTOS開発を行う時の3注意点、STM32CubeMX、HAL、CMSIS RTOSのうち、前編としてSTM32CubeMX、HALの2注意点とサンプルプロジェクトを使ってその実例を示しました。

RTOS開発では、既成STM32CubeMXファイル再利用価値が高まること、HALタイムベース変更の必要性がご理解頂けたと思います。3つ目のCMSIS RTOS関連は後編で示します。

あとがき

ベアメタル開発経験者であっても、STM32RTOS開発時、CubeMXのNoteを読むだけで、ベアメタル開発では何の問題も無かったHAL タイムベース変更理由が解り、その結果生じるCubeMXファイルや自動生成ソースコードの中身が理解できる方は、少ないと思います。本稿は、この変更理由と生成コードに説明を加えました。

STM32CubeMXは、STM32MCU開発に必須で強力なAPI生成ツールです。が、時々、説明不足を感じます。問題は、どのレベル読者を相手にするかです。エキスパートなら説明不要ですが、初心者ならゼロから説明しても解らないかもしれません。文章による組込み技術説明が、難しいのが根本原因でしょう😂。

そんな組込み開発ですが、文章だけでなく、「実際に評価ボードと手足を使って慣れてくると、案外すんなり簡単に理解、習得できる方が多いのも組込み開発」です。

販売中のNXP版FreeRTOSアプリケーションテンプレートにも、本稿同様、詳しいFreeRTOS解説を付けています(一部ダウンロード可能)。FreeRTOS開発を手軽に試せ、習得を支援するツールです。

MCU:マイコン,LPCマイコン,Cortex-M4コアテンプレート,アプリケーション,ARMマイコン,PSoC 6,FreeRTOS,Cortex-M4,Amazon FreeRTOS,STM32G4,LPCXpresso54114

FreeRTOSアプリケーションテンプレート動作中
FreeRTOSアプリケーションテンプレート動作中

ARM Cortex-M4コア動作のFreeRTOSアプリケーションテンプレート第一弾、NXP)LPCXpresso54114対応版(税込2000円)を本日より発売します。概要、要点、FreeRTOSアプリケーションテンプレートとは、に関する説明資料は、コチラから無料ダウンロードできますのでご覧ください。

開発背景

IoT MCUのクラウド接続には、AWSならAmazon FreeRTOS、Microsoft AzureならAzure RTOSなどのRTOSが必要です。クラウド側からは、1つのRTOSライブラリを使って様々なMCUハードウェアを接続するための手段、これがRTOSです。

一方、IoT MCU側からは、接続先サービスに応じたRTOSライブラリ利用に加え、従来のベアメタル開発からRTOS上でのアプリケーション開発へ発展する必要もあります。IoT化に伴うこのような変化に対し、開発者個人が手間なく対応するためのツール、これが弊社FreeRTOSアプリケーションテンプレートです。

MCU RTOS多様化対策のFreeRTOSアプリケーションテンプレート
MCU RTOS多様化対策のFreeRTOSアプリケーションテンプレート

目的

FreeRTOSアプリケーションテンプレートの目的は、「RTOS基礎固め」と「FreeRTOSプロトタイプ開発のスタートプロジェクトとなること」の2点です。

RTOS開発は、ベアメタル開発とは異なります。

RTOS Kernelが、開発した処理(タスクやThread)と他タスクの優先順位により、処理実行/待機を決めます。開発タスク単体の流用性は高まりますが、タスク間同期や通信に、セマフォやQueueなどのRTOS独特の手段が必要です。

IoTにより全てのモノ(MCU)がクラウドへ接続する時代の基盤は、RTOSです。

ベアメタル開発経験者が、このRTOSの早期基礎固め、Kernelと自身で開発したタスクの並列処理を理解するには、個々にRTOS手段を説明するサンプルソフトよりも、具体的なRTOSアプリケーションの方が実践的で役立ちます。

RTOSアプリケーションがあれば、優先順位を変えた時のタスク動作変化や、その他経験に基づいたRTOS実務開発で知りたい事柄を手間なく試し、新たな知見・見識を得られるからです。これらは、サンプルソフトや、説明文から得ることは困難で、実際のRTOSアプリケーションで開発者自身が試行するのがベストです。

そこで、各FreeRTOS手段を説明した弊社MCU RTOS習得ページを理解した次の段階として、最初の図に示したプロトタイプ開発着手に必須となるADC/LCD/SW/LED/VCOM処理を、NXP)LPCXpresso54114(Cortex-M4/150MHz、Flash/256KB、RAM/192KB)とBaseboard、Arduinoプロトタイプシールドに実装し、動作確認済みRTOSプロジェクトが、FreeRTOSアプリケーションテンプレートです。

FreeRTOS Application Template (NXP Version)
FreeRTOS Application Template (NXP Version)

※上記プロジェクトは、クラウド接続は行っておりません。RTOS基礎固めとFreeRTOSプロトタイプ開発に適すことが目的ですので、クラウド接続RTOSライブラリは未実装です。

FreeRTOSを選んだのは、現在MCU RTOSシェア1位だからです(関連投稿はコチラ)。RTOS手段は、各RTOS共通技術であるSemaphoreとQueueの2つを用いております。LPCXpresso54114のFlashやRAM使用量にはまだ十分余裕がありますので、より高度なミューテックスやイベントグループなどの手段を適用するのも容易です。

特徴

本テンプレートには、上記FreeRTOSプロジェクトと同じ動作確認済みのベアメタル開発プロジェクトも添付しております。これは、ベアメタル開発に慣れた方が、FreeRTOSとベアメタルの差分をより明確に理解し、比較や評価をするためです(比較・評価は、ご購入者ご自身で行って頂きます)。

本テンプレート付属説明資料は、主にベアメタル開発者視点から見たFreeRTOSプロジェクトを解説しており、ベアメタルプロジェクトに関する説明は、ソースコードを読めばご理解頂けるとして省略しております。

従って、FreeRTOSアプリケーションテンプレートは、ベアメタル開発経験者を対象といたします。ベアメタル初心者の方は、先ずは各MCUベンダCortex-M0+/M3コア対応の従来マイコンテンプレートをご購入ください。従来テンプレート付属説明資料には、ベアメタル動作の詳しい説明が付いています。

※本テンプレートのベアメタルプロジェクトは、従来テンプレートCortex-M0+/M3コアをCortex-M4コア対応へ発展させたものです。ベアメタルプロトタイプ開発着手時に適すプロジェクトです。

FreeRTOSアプリケーションテンプレートは、ベアメタル開発経験者が、手間なく直にRTOSとベアメタルの差を理解・実感し、かつ、IoT基盤RTOSの効率的な基礎固めができるツールです。

なお、既に従来マイコンテンプレートご購入者様は、50%OFF特典があり、税込1000円にて本FreeRTOSアプリケーションテンプレートをご購入頂けます。弊社での確認ミスを防ぐため、ご購入時に従来テンプレート購入者様である旨、お知らせください。

勿論、従来テンプレートとFreeRTOSアプリケーションテンプレートの同時購入でも、この特典は適用されます。

まとめと今後

ベアメタル開発経験者が、IoT MCUクラウド接続に必要となるRTOSの効率的な基礎固め、FreeRTOSプロトタイプ開発着手プロジェクトとして使えることを目的に、NXP)LPCXpresso54114、Baseboard、Arduinoプロトタイプシールドを使ったFreeRTOSアプリケーションテンプレートを発売しました。

本テンプレートは、Amazon FreeRTOSのHardware Independent FreeRTOS Exampleを原本としています。第1弾はNXP)LPCXpresso54114へ適用しましたが、今後、STマイクロエレクトロニクス)STM32G4やCypress)PSoC 6など他社Cortex-M4コアの対応版も開発予定です。

MCU:マイコン,LPCマイコン,Cortex-M4コアmbed OS,RTOS,semaphore,Amazon Web Service,Amazon FreeRTOS,IoT,IoTエッジMCU,queue,Azure RTOS

IoT MCUクラウド市場は、AWSとMicrosoft Azureがリードしており世界収益の半分以上を占めるという記事に掲載されたのが下図です(EE Times 2021年6月7日、横軸:市場シェア、縦軸:年平均成長率)。Microsoftは徐々にAmazonに迫っており、市場シェア差は、過去1年で2ポイント縮まったそうです。

クラウトプロバイダの市場シェア(出典:記事)
クラウトプロバイダの市場シェア(出典:記事)

多様化MCU RTOS

AWSへの接続にはAmazon FreeRTOS、Microsoft AzureにはAzure RTOSを用います。IoTクラウド接続ウェビナーでは、どのMCUベンダでも先行しているAmazon FreeRTOSを使った接続例が主流です。しかし、最近は、Azure RTOS利用の接続資料やウェビナーも見られます。AWSとMicrosoft Azureの差が縮まりつつある証左でしょう。

また、第3勢力として急成長中のGoogleクラウド接続にはARM mbed OSが使われます。IoT MCUに実装するRTOSは多様化してきました。

IoT MCU RTOSとPCブラウザ

IoT MCU RTOSとPCブラウザ比較
IoT MCU RTOSとPCブラウザ比較

この状況は、PCブラウザが現状、複数共存しているのに似ています。

機能的には同じブラウザですが、表示/印刷/広告などの使い勝手が少しずつ異なるため、必要に応じて複数ブラウザを使い分ける方も多いでしょう。記憶容量の大きいPCでは、ブラウザ併用・共存も簡単です。

しかし、限られた容量しか持たないMCUの場合は、複数RTOSの中からMCU搭載RTOSは1つに絞られると思います。

例えば、AmazonやMicrosoft、Google各社の強み(販売/文書/広告)や特徴を活かし、IoT機器制御サービスやAI活用サービスなど魅力的クラウドサービスを各社各様で提供し、その価格、顧客との結びつきの強さなどがサービス選択の決め手となるでしょう。

いずれにせよ顧客が、利用するクラウドサービスを決め、その接続手段として各社RTOS接続ライブラリの使用、加えてRTOS環境での上層MCUソフトウェア開発を行うことになります。

問題は、RTOS環境のMCUソフトウェア開発手法がベアメタルと異なること、各社RTOS仕様が少しずつ異なることです。

多様化RTOS対策

仮に、Cortex-M4/M0+ディアルコアMCUで、クラウド通信処理全てを、Cortex-M0+コア側のRTOSライブラリで行い、通信とアプリケーションが完全分離された構成であれば、問題は解決します。接続サービス毎にRTOS通信ライブラリを変えさえすれば、対応できるからです。

BluetoothやThreadなど複数無線通信規格から1つを選んで処理するなど、この構成に近いベアメタルソフトウェア対応のMCUが既にあります。

しかし、主流ウェビナーで用いられる高性能Cortex-M4シングルコアを使って、クラウド通信とアプリケーションの両方を処理する場合には、接続先のクラウドに応じて「FreeRTOS/Azure RTOS/Mbed OSなど様々なRTOS環境の上層アプリケーション開発」になります。

RTOSの目的は、MCUハードウェア隠蔽と開発ソフトウェア流用性向上なのに、複数RTOS存在で開発アプリケーションが異なるとは、皮肉な結果です。

最初の図は、IoT MCU開発者が、今後急増するクラウド接続IoT MCU開発に、これら複数RTOSを効率的に習得し、かつ、顧客が選ぶ1個のRTOSアプリケーションを早期に開発できるスキルを獲得しなければならない現状や将来を示しているとも言えます。

こういう状況での常套手段は、共通部分と個別部分の分離、共通部分からの段階的習得です。

どのRTOSでもSemaphoreやQueueは、ほぼ共通の基本機能です。先ずは、この2機能をしっかり把握し、より高度なミューテックスやイベントグループなどRTOS毎に特徴があり機能も異なる対象へ発展するのが効率的でしょう。

※RTOSは、複数タスク(AzureはThread)を、優先順位に応じてリアルタイムに実行/待機/状態保存復帰の切替えを行います。タスク間同期手段がSemaphore、データ送受手段がQueueで、この2つはどのRTOSでも共通の基本機能です。

まとめ

IoT MCUクラウド市場シェアから、クラウド接続IoT MCU RTOSもPCブラウザ同様、様々な仕様併存の可能性があります。

顧客が選ぶRTOSに柔軟対応し、そのRTOS上層の様々なRTOSアプリケーションを早期開発するには、先ず、各RTOS共通機能のSemaphoreとQueueを把握し、より高度でRTOS毎に異なる個別機能へ発展する習得アプローチが効率的です。

6Eリリース予定の弊社FreeRTOSアプリケーションテンプレート(税込2000円)は、主流のAmazon FreeRTOSを用い、NXP)LPCXpresso54114(Cortex-M4/150MHz、Flash/256KB、RAM/192KB)にて動作確認済みです。

添付するRTOSプロジェクトは、各RTOS共通機能SemaphoreとQueueを利用しており、上記習得アプローチを満たすツールとして、また、全ての物をつなげる主役IoT MCU RTOS基礎固めに最適です。

MCU:マイコン,LPCマイコン,STM32マイコン,Cortex-M4コアIoTマイコン,FreeRTOS,Amazon FreeRTOS,LPCXpresso SDK,LPCXpresso54114,freertos_generic,Azure,ユーザタスク

ベアメタルサンプルソフトを活用したFreeRTOSユーザタスクの作り方を示します。先に結論を言うと、ベアメタルサンプルソフト無限ループ内に、RTOS待ち処理を挿入するだけでFreeRTOSタスク開発ができます。

図1 ベアメタル処理とFreeRTOSタスク処理並列多重
図1 ベアメタル処理とFreeRTOSタスク処理並列多重

RTOS環境のユーザタスク開発

IoT MCUをAWSやAzureなどのクラウドへ接続する時には、FreeRTOSやAzure RTOSなどのRTOSが必須です。クラウド接続用のRTOSタスク集が入ったライブラリを利用するからです。もちろん、このライブラリ内のタスク開発は必要ありません。

問題は、このIoT MCU RTOS環境で、ユーザタスクをどのように開発するかです。

RTOSの目的は、タスク独立性とリアルタイムなタスク並列多重、MCUハードウェア隠蔽です。ベアメタル開発経験者にとっては、ソフトウェア動作環境が著しく異なることが解ります。

RTOS開発障壁を下げるアプローチ

そこで、ベアメタル開発経験者は、先ずこのRTOS環境の理解に努めます。

セマフォやミューテックス、QueueなどRTOS特有の手段を理解します。弊社も各種FreeRTOS機能を説明しましたし、ウェビナー等でも同様です。但し、このアプローチAは、「RTOSの手段」理解が最初に来ますので、障壁が高いと感じる方も多いでしょう。筆者はそうでした。

そこで、お勧めするのは、RTOS手段をざっと読んだら、今度は逆に「RTOSの目的」からRTOS環境で、複数ユーザタスクを並列多重するアプローチBです。

複数ユーザタクスを、どうすればRTOSへ組込むかを検討するこの逆アプローチBは、Aよりもベアメタル開発経験者向きで、しかもRTOS手段は後回しですので障壁が低く感じられます。

ベアメタル処理のFreeRTOSタスク化と並列多重

2個のベアメタル処理をタスク化し、RTOSで並列多重処理する例で考えます。

・処理#1:緑LEDを、1秒毎にトグル点灯
・処理#2:赤LEDを、SW押下げでトグル点灯

ベアメタル開発経験者なら、どちらの処理も簡単に開発できます。処理概要は、最初図1の左側になります。

違いは判断内容で、処理#1が1秒経過、処理#2がSW割込みです。もちろん、両処理を並列に多重するのは、ベアメタル開発では工夫が必要です。処理#1と#2は、別々のプロジェクト、例えば2個のサンプルプロジェクトとして提供されるのが一般的です。

両処理をタスク化して組込むRTOSには、LPCXpresso54114のSDK付属generic_freertosプロジェクトを用います。“generic”が示すように、ハードウェアに依存しない汎用的なFreeRTOSプロジェクトです(generic_freertosの詳細は、コチラの関連投稿を参照してください)。

RTOSへ組込んだ時のタスク処理概要が、図1の右側です。ベアメタルとの違いは、タスク#1は、遅延処理vTaskDelayを無限ループに加えること、タスク#2は、割込みISRからの同期セマフォ受信を無限ループに加えることだけです。

両処理へ追加したのは、どちらも「RTOS処理待ち」です。この処理待ちを、RTOSが解除/待ちに切替えることで、複数タスクが並列に動作します。

RTOSは、複数タスクを処理待ち状態にし、処理待ちタスクの中から優先順位に応じて1個のタスクを実行状態に割当てます。RTOS(Kernel)自身が、順位判断や実行タスクの切替え、タスク実行状態の保存/リカバリのためスタックプッシュ/ポップ処理を行い、それらの処理間隔がTICK_RATEです。

リアルタイムでタスクを切替えるには、高速なKernel動作(AWSによると25MHz以上)と短期間のTICK_RATE(通常1ms)が必要で、タスク数に応じてスタック使用量(AWS RAM 64KB以上)は急増します。
※数値で示したAWS FreeRTOS必須条件の詳細は、コチラのハードウェア最小仕様要件を参照してください。

要するに、RTOSへユーザタスクを追加するには、ベアメタルでユーザ処理を開発し、その無限ループ内にRTOS処理待ちを加えさえすれば、RTOSユーザタスクになります。

ベアメタル開発経験者がデバッグし慣れた処理がそのままRTOSユーザタスク開発にも使え、RTOS処理待ちは、generic_freertosに実装済みのセマフォとQueueのRTOS手段だけでも、リアルタイムタスク並列多重のRTOSアプリケーション開発ができます。

まとめ

本稿は、IoT MCU RTOS環境でユーザタスクを開発し、FreeRTOSへ実装する方法として、ユーザ処理をベアメタルで開発し、無限ループ内へRTOS処理待ちを加えタスク化する方法を説明しました。

RTOS処理待ちは、セマフォとQueueのRTOS手段を理解していれば、プロトタイプ段階のFreeRTOSアプリケーションとしては十分です。ユーザ処理を自主開発する代わりに、ベンダ提供のベアメタルサンプルソフトを活用すれば、豊富なサンプル処理のFreeRTOSタスク化も簡単です。

タスク化処理を組込むRTOSには、NXP)LPCXpresso54114 SDK付属のgeneric_freertosプロジェクトを使います。このプロジェクトは、ハードウェア非依存の汎用FreeRTOSプロジェクトで、セマフォとQueueを実装済みです。そこで、これら2つのRTOS手段を手始めに理解すれば、RTOS開発障壁も低くなります。

あとがき

本稿で示したユーザタスク追加方法により開発したNXP)LPCXpresso54114(Cortex-M4/150MHz、Flash/256KB、RAM/192KB)で動作確認済みのFreeRTOSアプリケーションテンプレートは、6Eにリリース予定です(ADC入力とLCD出力、VCOM入出力処理も追加済み)。

FreeRTOS Application Template (NXP Version)
FreeRTOS Application Template (NXP Version)

このテンプレートには、FreeRTOSプロジェクトに加え、同じアプリケーション動作のベアメタルプロジェクトも添付します。ベアメタル処理に処理多重の工夫を加えた弊社Cortex-M0+/M3コア向けBaseboardテンプレートを、Cortex-M4コアへも適用したベアメタルプロジェクトです。

FreeRTOS開発とベアメタル開発の、Flash/RAM使用量差、開発難易度、消費電力差などCortex-M4コアMCU開発で実務上知りたい事柄を直接比較・評価することが可能です。また、どちらのプロジェクトも、基本的アプリケーションのテンプレート(=スタートプロジェクト)としても活用でき、プロトタイプ開発に最適です(FreeRTOS/ベアメタルの2プロジェクト+説明資料、税込2000円)。

また、STマイクロエレクトロニクス)STM32G4(Cortex-M4/170MHz、Flash/512KB、RAM/96KB)対応版も開発を予定しています。

FreeRTOSアプリケーションテンプレートを使ったプロトタイプ開発の次の段階としては、セマフォやQueue以外のミューテックスやイベントグループなどのより高度なRTOS手段の利用や、高速でRAM使用量も少ないタスク通知手段などのチューニング開発へとステップアップすることです。