MCUベンダAPI生成ツール比較

お知らせ

弊社サイト:マイコンRTOS習得を2020年版へ改版しました。前稿までのFreeRTOSサンプルコード(1)~(5)結果を、2017年版へ反映させた結果です。是非、ご覧ください。

MCUベンダAPI生成ツール一覧

FreeRTOSサンプルコード(1)で予告したベンダ毎に異なるAPI生成ツールやその違い、サンプルコードとの関係を説明します。本ブロブ掲載MCUベンダ5社のAPI生成ツール一覧が下表です。

MCUベンダトップシェア5社のMCU API生成ツール一覧
ベンダ API生成ツール ブログ掲載MCU API生成方法
Runesas CS+ RL78/G1x 個別ハードウェア設定
NXP SDK LPC111x/LPC8xx/Kinetis E/LPC5411x MCU設定
STM STM32CubeMX STM32Fx/STM32Gx 個別ハードウェア設定
Cypress PSoC Creator PSoC4/PSoC4 BLE/PSoC4000/PSoC6 個別ハードウェア設定
TI CCS STM432 MCU設定

IDEとは別のAPI生成ツール専用名があり、ツール単独で更新するのが、NXP)SDK、STM)STM32CubeMXです。Runesas)CS+、Cypress)PSoC Creator、TI)CCSは、IDEにAPI生成ツールが組込まれていますので、IDE名称をAPI生成ツール欄に記載しています。
※CS+のAPI生成ツールは、単独でコード生成と呼ぶこともあります。

さて、これらAPI生成ツールには、2種類のAPI生成方法があります。

  • MCU設定:利用MCUを設定し、内蔵ハードウェアAPIを一括生成…NXP)SDK、TI)CCS
  • 個別ハードウェア設定:利用内蔵ハードウェアを個別設定し、APIを生成…Runesas)CS+、STM)STM32CubeMX、Cypress)PSoC Creator

MCU設定タイプのAPI生成ツールは、全内蔵ハードウェアAPIを、ユーザ利用の有無に係わらず一括生成するため、規模が大きく、SDK(Software Development Kit)などパッケージ化してIDEへ提供されます。但し、コンパイル時に利用ハードウェアのみをリンクしてMCUへダウンロードするので、少Flashサイズでも問題はありません。

MCU設定タイプの特徴は、例えば、UART速度設定などのハードウェア動作パラメタは、APIパラメタとしてMCUソースコードにユーザが記述します。

MCU設定タイプのNXP)SDKのUART API例
MCU設定タイプのNXP)SDKのUART API例

一方、個別ハードウェア設定タイプは、UARTなどのハードウェア動作パラメタは、API生成前にGUI(Graphical User Interface)で設定し、設定後にAPIを生成します。このためユーザが、MCUソースコードのAPIに動作パラメタを追記することはありません。

個別ハードウェア設定タイプのSTM32CubeMXのUART API例
個別ハードウェア設定タイプのSTM32CubeMXのUART API例

API生成ツール比較

MCU設定タイプのAPI生成ツールは、使い方がMCU設定のみで簡単です。また、ハードウェア動作パラメタがMCUソースコード内にあるため、動作変更や修正もIDE上で行えますが、人手によるバグ混入の可能性も高まります。

個別ハードウェアタイプAPI生成ツールは、MCUソースコード内のAPI記述が簡素です。生成されたAPI内部に動作パラメタが含まれているからです。但し、ハードウェア動作変更には、IDEから一旦API生成ツールに戻り、APIの再生成が必要です。この場合でも、MCUソースコードは不変ですので、GUI設定にミスが無ければバグ混入は少ないでしょう。

どちらにも、一長一短があります。敢えて分類すると、ソフトウェア開発者向きが、MCU設定タイプ、ハードウェア開発者向きでTP:Test Program応用も容易なのが、個別ハードウェア設定タイプです。

個別ハードウェア設定タイプであっても、Cypress)PSoC Creatorなどは、通常パラメタはBasicタブ、詳細パラメタはAdvanceタブで分け、誰でも設定を容易にしたツールもあります。

MCUソフトウェアは、C言語によるMCU API制御です。MCU API生成ツールの使い勝手が、ソフトウェア生産性の半分程度を占めていると個人的には思います。

サンプルコード/サンプルソフトウェア

各社のサンプルコード/サンプルソフトウェアは、上記API生成ツールのMCUソースコード出力例です。

従って、サンプルコードには、出力例と明示的に判るよう多くのコメントが付加されています。初めてサンプルコードを見る開発者は、注意深くコメントを読んで、そのMCU開発の全体像を理解することが重要です。

全体像が理解済みであれば、より効率的な開発手法、例えば、(推薦はしませんが)個別ハードウェア設定タイプであっても、IDEからAPI生成ツールに戻らずに、直接MCUソースコードでハードウェア動作パラメタを変更するなどのトリッキーな使い方も可能です。

MCU開発とCOVID-19

新型コロナウイルス:COVID-19が世界的に流行しつつあり、工場閉鎖や物流への影響も出始めています。現状は治療薬が無いので、「個人の免疫力と体力」が生死の決め手です。

同時にMCU供給不足/停止など、開発への波及も懸念されます。これに対し「個人で第2のMCU開発力」を持つことが解決策を与えます。

本稿は、MCUベンダトップシェア5社のMCU API生成ツールを比較しました。MCUシェア評価ボード価格や入手性、個人の好みなど、是非ご自分にあった比較項目で、現在利用中のMCUに代わる第2のMCU開発力を持つことをお勧めします。

第2のMCU開発力は、現行と視点が変わり利用中MCUスキルも同時に磨くことができ、様々な開発リスクに耐力(体力)が付きます。短期で効果的な第2のMCU開発力の取得に、弊社マイコンテンプレートがお役に立てると思います。

PSoC 4000S/4100S/4100PSテンプレート発売

HappyTechサイトへCypress PSoC 4000S/4100S/4100PSテンプレートページを追加しました。
PSoC 4000S/4100S/4100PSマイコンの習得、業界標準のCypress第4世代CapSenseコンポーネントを使ったタッチユーザインタフェース(UI)開発に最適なマイコンテンプレート(1,000円税込)の発売開始です。

PSoC 4000S搭載CY8CKIT-145評価ボードで動作中のCapSenseテンプレート
PSoC 4000S搭載CY8CKIT-145評価ボードで動作中のCapSenseテンプレート

PSoC 4000S/4100S/4100PSテンプレート説明資料、ダウンロード可能

PSoC 4000S/4100S/4100PSテンプレート付属説明資料の最初の3ページが、サイトよりダウンロード可能です。

PSoCプログラミングのポイントであるコンポーネント単位ソフトウェア開発を、Cypress第4世代CapSenseコンポーネントを例に具体的に学べます。

Cypress PSoCマイコンの関連テンプレートは、2016年発売:PSoC 4/PSoC 4 BLE/PRoCテンプレートに続いて第2弾目です。前回テンプレートは、一般的なMCU開発で汎用的に使うコンポーネント:液晶表示やADC、SW、BLEなどを使いテンプレート化しました。

このテンプレートご購入者様からは、どうすれば各コンポーネント情報が得られるか、コンポーネントバージョンアップへの対処方法、開発したソフトウェアの他PSoCデバイスへ移植方法など、PSoCプログラミングに関する多くのご質問やご意見を頂きました。

CapSenseコンポーネントに絞ってテンプレート化

そこで、第2弾のPSoC 4000S/4100S/4100PSテンプレートでは、評価ボードへ追加するコンポーネントをCapSenseコンポーネントのみに絞り、よりPSoCプログラミングの要点を掴み易いようにテンプレート化しました。

つまり、CapSenseコンポーネントを利用したテンプレート応用例のPSoC 4000S評価ボードを、別のPSoCデバイス:PSoC 4100S/4100PS評価ボードへ移植する手法を使って、コンポーネント単位のPSoCソフトウェア開発要点を説明しています。
※既に第1弾のPSoC 4/PSoC 4 BLE/PRoCテンプレートをお持ちの方でも、テンプレート本体以外は被る(内容重複)ことが少なく、別視点からのCypress PSoCプログラミングの特徴をご理解頂けると思います。

第4世代CapSenseコンポーネント

PSoC 4000S/4100S/4100PSファミリ内蔵の第4世代CapSenseコンポーネントは、スマホで普及したタッチユーザインタフェース(UI)の業界標準技術です。本テンプレートでCapSenseコンポーネント利用方法を習得すれば、従来の簡単な操作パネルを、より洗練されたタッチHMI:Human Machine Interfaceで実現し、他社差別化ができます。

PSoC 4000S/4100S/4100PSテンプレートで用いた評価ボードは、トランジスタ技術2019年5月号付録基板も含まれます。トラ技5月号記事は、開発環境PSoC CreatorやPSoCデバイスの特徴は良く分かりますが、記事ソースコードがダウンロードできず、実際に付録基板を簡単には動作させられないのが残念です。

本テンプレートをご利用頂ければ、トラ技付録基板でも基板上のLED点滅動作を利用したシンプルなテンプレート応用例や、CapSense動作がご理解可能です。
※トラ技付録基板に、弊社推薦評価ボード :CY8CKIT-145のCapSenseボード部分(CapSenseテンプレート動作時)とKitProgインタフェース(シンプル/CapSenseテンプレート動作時)を別途配線することで動作します。配線は、下図のようなスルーホール間接続のジャンパーワイヤが簡単です(確かハンズマンで購入しました)。

トラ技2019年5月号付録PSoC 4100S基板で動作中のシンプルテンプレートとスルーホール間接続ジャンパーワイヤ
トラ技2019年5月号付録PSoC 4100S基板で動作中のシンプルテンプレートとスルーホール間接続ジャンパーワイヤ

ブログの関連投稿検索方法

ブログ右上の検索窓に「CapSense」か「PSoC 4000S」入力または、カテゴリでPSoC/PRoCマイコンを選択すれば、PSoC 4000S/4100S/4100PSテンプレートに関するブログの関連投稿が一覧で得られます。テンプレート説明資料と、合わせてご覧いただければ、PSoC 4000S/4100S/4100PS マイコンやCapSenseコンポーネントがより解り易くなると思います。

PSoC 4000S/4100S/4100PSテンプレートのご購入をお待ちしております。

ARM MCU変化の背景

昨今のARM MCU事情、そして今後の方向性”という記事が、2019年11月22日TechFactoryに掲載されました。詳細は記事を参照して頂き、この中で本ブログ筆者が留意しておきたい箇所を抜粋します。その結果、ARM MCU変化の背景を理解できました。

現在のARM MCUモデル

Cortex-Mコアだけでなく、周辺回路も含めた組み合わせARM MCUモデルが、端的に整理されています。

・メインストリームは、Cortex-M4コアに周辺回路搭載
・ローパワーは、Cortex-M0+に低消費電力周辺回路搭載
・ローコストは、Cortex-M0に周辺回路を絞って搭載

例えば、STマイクロエレクトロニクスの最新STM32G0xシリーズのLPUART搭載は、ローパワーモデルに一致します。各Cortex-Mコアの特徴は、コチラの投稿の5章:Cortex-M0/M0+/M3の特徴などを参照してください。

ARM MCUの新しい方向性

2019年10月時点で記事筆者:大原雄介氏が感じた今後のARM MCU方向性が、下記4項目です。

  1. ハイエンドMCU動作周波数高速化、マルチコア化
  2. RTOS普及
  3. セキュリティ対応
  4. RISC-Vとの競合

以下、各項目で本ブログ筆者が留意しておきたい箇所を抜粋します。

1.ハイエンドMCU動作周波数高速化、マルチコア化

動作周波数高速化は、NXPのi.MX RT 1170のことで、Cortex-M7が1GHzで動作。i.MX RT1170は400 MHz動作のCortex-M4も搭載しているディアルコアMCU。

これらハイエンドMCUの狙いは、性能重視の車載MCU比べ、コスト最重視の産業機器向け高度GUIやHMI:Human Machine Interface用途。従来の簡単な操作パネルから、車載のような本格的なGUIを、現状の製造プロセスで提供するには、動作周波数の高速化やマルチコア化は必然。

2.RTOS普及

普通はベアメタル開発だが、アプリケーション要件でRTOS使用となり、ポーティング例は、Amazon FreeRTOSが多い。マルチコアMCUでは、タスク間同期や通信機能実現には、ベアメタルよりもRTOS利用の方が容易。また、クラウド接続は、RTOS利用が前提となっている。

3.セキュリティ対応

PAS:Platform Security Architectureというセキュリティ要件定義があり、これが実装済みかを認証するPSA Certifiedがある。PAS Certified取得にはTrustZoneを持つATM v8-MコアCortex-M23/33が必須ではなく、Cortex-M0やM4でも取得可能。但し、全MCUで取得するかは未定で、代表的なMCUのみになる可能性あり。

4.RISC-Vとの競合

ARM CMSISからずれるCustom Instruction容認の狙いは、競合するRISC-Vコアへの対抗措置。RISC-V採用製品は、中国では既に大量にあり、2021年あたりに日本でもARMかRISC-Vかの検討が発生するかも?

ARM MCU変化背景

本ブログ対象の産業機器向けMCUの1GHz動作や、ディアルコアMCUの狙いは、ADAS(先進運転支援システム)が引っ張る車載MCU+NVIDIA社などのグラフィックボードで実現しつつある派手なGUIを、10ドル以下のBOM:Bill Of Matrixで実現するのが目的のようです。また、産業機器向のMCUのAIへの対応も気になる点です。これにら向け、各種ツールなども各ベンダから提供されつつあります。

ハイエンドMCU開発でRTOS利用が一般的になれば、下位MCUへもRTOSが利用される場面は多くなると思います。タクス分離したRTOSソフトウェア開発は、タスク自体の開発はベアメタルに比べ簡単で、移植性や再利用性も高いからです。ベアメタル開発は、RAMが少ない低コストMCUのみになるかもしれません。

RTOS MCU開発も、Windowsアプリケーション開発のようにOS知識が(無く!?)少なくても可能になるかもしれません。

MCUベンダのセキュリティ対応は、まだ明確な方針が無さそうです。RTOSと同様、IoTアプリケーション要件がポイントになるでしょう。総務省による2020年4月以降IoT機器アップデート機能義務化予定などもその要件の1つになる可能性があります。

Custom Instructionは、コチラの投稿の5章でベンダ独自のカスタム命令追加の動きとして簡単に紹介しましたが、その理由は不明でした。これが、競合RISC-Vコアへの対抗策とは、記事で初めて知りました。

本ブログ記事範囲を超えた、広い視野でのMCU記事は貴重です。

来年開発予定のベアメタルCortex-M4テンプレートへ、RTOSの同期や通信機能を簡易実装できれば、より役立ち、かつRTOS普及へも対抗できるかもしれないと考えています。クラウド接続IoT MCUは、Amazon FreeRTOSやMbed OS実装かつ専用ライブラリ利用が前提なのは、ひしひしと感じています。

MCUプロトタイプ開発のEMS対策とWDT

ノイズや静電気によるMCU誤動作に関する興味深い記事がEDN Japanに連載されました。

どのノイズ対策が最も効果的か? EMS対策を比較【準備編】、2019年10月30日
最も効果的なノイズ対策判明!  EMS対策を比較【実験編】、2019年11月29日

EMS:(ElectroMagnetic Susceptibility:電磁耐性)とは、ノイズが多い環境でも製品が正常に動作する能力です。

MCUプロトタイプ開発時にも利用すべきEMS対策が掲載されていますので、本稿でまとめます。また、ノイズや静電気によるMCU誤動作を防ぐ手段としてWDT:Watch Dog Timerも説明します。

実験方法と評価結果

記事は、インパルスノイズシュミレータで生成したノイズを、EMS対策有り/無しのMCU実験ボードに加え、LED点滅動作の異常を目視確認し、その時点のノイズレベルでEMS対策効果を評価します。

評価結果が、11月29日記事の図5に示されています。

結果から、費用対効果が最も高いEMS対策は、MCU実験ボードの入力線をなるべく短く撚線にすることです。EMS対策用のコンデンサやチョークコイルは、仕様やパーツ選定で効果が左右されると注意しています。

MCUプロトタイプ開発時のお勧めEMS対策

MCUプロトタイプ開発は、ベンダ提供のMCU評価ボードに、各種センサ・SWなどの入力、LCD・LEDなどの出力を追加し、制御ソフトウェアを開発します。入出力の追加は、Arduinoなどのコネクタ経由と配線の場合があります。言わばバラック建て評価システムなので、ノイズや静電気に対して敏感です。

このMCUプロトタイプ開発時のお勧めEMS対策が下記です。

1.配線で接続する場合は、特に入力信号/GNDのペア線を、手でねじり撚線化(Twisted pair)だけで高いEMS効果があります。

身近な例はLANケーブルで、色付き信号線と白色GNDの4組Twisted pairが束ねられています。このTwisted pairのおかげで、様々な外来ノイズを防ぎLANの信号伝達ができる訳です。

信号とGNDの4組Twisted pairを束ねノイズ対策をするLANケーブル
信号とGNDの4組Twisted pairを束ねノイズ対策をするLANケーブル

2.センサからのアナログ入力信号には、ソフトウェアによる平均化でノイズ対策ができます。

アナログ信号には、ノイズが含まれています。MCU内蔵ADCでアナログ信号をデジタル化、複数回のADC平均値を計算すればノイズ成分はキャンセルできます。平均回数やADC周期を検討する時、入力アナログ信号が撚線と平行線では、2倍以上(図5の2.54倍より)のノイズ差が生じるので重要なファクターです。従って、撚線で検討しましょう。
平均回数やADC周期は、パラメタ設定できるソフトウェア作りがお勧めです。

3.SWからの入力には、チャタリング対策が必須です。数ミリ秒周期でSW入力をスキャンし、複数回の入力一致でSW値とするなどをお勧めします。
※弊社販売中のMCUテンプレートには、上記ADCとSWのEMS対策を組込み済みです。

4.EMS対策のコンデンサやチョークコイルなどの受動部品パーツ選定には、ベンダ評価ボードの部品表(BOM:Bill Of Matrix)が役立ちます。BOMには、動作実績と信頼性がある部品メーカー名、型番、仕様が記載されています。

ベンダMCU評価ボードは、開発ノウハウ満載でMCUハードウェア開発の手本(=ソフトウェアで言えばサンプルコード)です。

特に、新発売MCUをプロトタイプ開発に使う場合や、MCU電源入力ピンとコンデンサの物理配置は、BOM利用に加え、部品配置やパターン設計も、MCU評価ボードを参考書として活用することをお勧めします。
※PCB設計に役立つ評価ボードデザイン資料は、ベンダサイトに公開されています。

MCU誤動作防止の最終手段WDT

EMS対策は、誤動作の予防対策です。EMS対策をしても残念ながら発生するノイズや静電気によるMCU誤動作は、システムレベルで防ぐ必要があります。その手段が、MCU内蔵WDTです。

WDTは、ソフトウェアで起動とリセットのみが可能な、いわば時限爆弾です。WDTを一旦起動すると、ソフトウェアで定期的にリセットしない限りハードウェアがシステムリセットを発生します。従って、ソフトウェアも再起動になります。

時限爆弾を爆発(=システムリセット)させないためには、ソフトウェアは、WDTをリセットし続ける必要があります。つまり、定期的なWDTリセットが、ソフトウェアの正常動作状態なのです。

ノイズや静電気でMCU動作停止、または処理位置が異常になった時は、この定期WDTリセットが無くなるため、時限爆弾が爆発、少なくとも異常状態継続からは復帰できます。

このようにWDTはMCU誤動作を防ぐ最後の安全対策です。重要機能ですので、プロトタイプ開発でもWDTを実装し、動作確認も行いましょう。

※デバッグ中でもWDTは動作します。デバッグ時にWDT起動を止めるのを忘れると、ブレークポイントで停止後、システムリセットが発生するのでデバッグになりません。注意しましょう!

PSoC Creatorでデバイスファミリが見つからない時の対処

Cypress PSoC Creatorで、開発デバイスファミリが見つからない時の対処方法を示します。

No Target PSoC Family
No Target PSoC Family

開発デバイスファミリがDevice familyリストに無い!?

PSoC 4100PSファミリ評価ボード:CY8CKIT-147を入手、評価ボード付属サンプルコードをPSoC Creator 4.2(以下、Creator)にインポートするためFind Code Exampleをクリックしましたが、対象MCUファミリのPSoC 4100PSがDevice familyリストに見当たりません。

このリストに対象MCUファミリが無い時は、新規プロジェクト作成やサンプルコードインポートができないため、Creatorが全く使えません。お手上げ状態です。

※CY8CKIT-147は、CapSenseテンプレート開発用にトラ技懸賞で当選した評価ボード(前回投稿参照)です。

PSoC Creator対処

CreatorのToolsタブからFind new devicesをクリックします。Device Update Installerダイアログが表示されますので、Installをクリックし完了を待ちます。

PSoC CreatorのFind new devices
PSoC CreatorのFind new devices

Creator再起動でDevice familyリストへ最新MCUファミリが追加されます。勿論、PSoC 4100PSもDevice familyリストにありますので、CreatorでCY8CKIT-147プロジェクト作成ができ開発可能となります。

例としてPSoC 4100PSファミリで説明しましたが、他のデバイスファミリがDevice familyリストに無い場合も同様に解決できます。

Update ManagerはDevice familyリスト更新ができない

Cypress Update Managerは、PSoC Creatorなども含めたインストール済みCypress MCU開発環境の更新状況をチェックし、更新や削除が簡単にできる優れたツールです。Creatorと同時にインストールされます。

Update Managerは、自動で起動し目立つのでご存じの方は多いと思います。しかし、前章で示したCreatorが扱うDevice familyリスト更新はUpdate Managerではできません。Creator 4.2を長く使っている方ほど、Find new devicesを忘れがちですので注意してください。

Creatorが扱うコンポーネントの場合は、同じことは起こりません。理由は、Creatorでプロジェクトを開いた時、右下に黄色の!アイコンが表示されるからです。この!アイコンをクリックすると、プロジェクトで使用中のコンポーネントが最新版へ更新されます。

PSoC CreatorのNew Compornents are available表示
PSoC CreatorのNew Compornents are available時の!アイコン表示

但し、コンポーネント更新は、アプリケーションに対して動作リスクが伴います。更新前プロジェクトArchive作成も忘れずに行いましょう(関連投稿:STM32CubeIDE v1.1.0更新と文字化け対策(その2)の2~3章)。

PSoCプログラミング要点

PSoCプログラミングは、デバイス内蔵コンポーネントのAPI操作です。従って、コンポーネント単位のプログラミングとその開発経験の積重ね/載せ替えが可能です。

想定アプリケーションに必要となる複数コンポーネントをパッケージしたものが、各種デバイスファミリで、Creatorインストール時の図がこれらを示しています。

PSoC Programmingのポイント
PSoC Programmingのポイントは、コンポーネント単位の開発経験の積重ね、デバイス載せ替えが可能なこと。

CreatorのGUIで、コンポーネント更新が新デバイスファミリ追加よりプライオリティが高いのも、コンポーネントプログラミングが理由だと筆者は思います。

多くのPSoCコンポーネントの中でCapSenseにハイライトしたのが開発中CapSenseテンプレートで、動作確認ファミリはPSoC 4000S/4100S/4100PSです。但し、同じ第4世代CapSenseコンポーネント内蔵のPSoC 6などへも流用や応用が簡単にできます。

PSoC Creator 4.3 Beta版リリース

2019年10月31日、新たにPSoC 4500ファミリをサポートするPSoC Creator 4.3 Bate版がリリースされました。PSoC 4500ファミリは、二つの独立したSAR ADCと5個までのOpamp/Comparatorブロックを持つアナログ周辺回路が豊富なデバイスファミリです。

Creatorが4.3へ正式更新された時には、同時にDevice familyリストも最新版へ更新されると思います。Creator 4.2が長く使われた結果、今回のようなデバイスファミリが見つからない事象が発生したと言えます。

同じファミリでも新デバイスが毎年追加されます。半年に一度程度は、CreatorのFind new devicesをクリックすることをお勧めします。

マイコン選択方法2019

MCU:マイコンは、種類が多くどれを自分の開発や製品に使うのが最適か?分りにくいと言われます。この問いに対する回答を示します。具体例として今年5月トランジスタ技術で紹介されたCypress PSoC 4シリーズのMCUを選択します。他ベンダでも同様です。

MCU選択とスマホ選択の差

毎年新機種が発表されるスマートフォン。特にAndroidスマホは、電話の基本機能は同じでも、カメラなどの付加機能やサービス、価格帯が広く、選択に迷います。それでも、何年かスマホを使っていると、どの機能が自分に必須かが分かってくるのと懐具合との兼ね合い、また、古い機種は数年でカタログから消えるので、スマホ選択幅は収束します。

ところが、MCUの場合は、発表後10年以上販売継続されます。スマホとの一番の差です。
古い選択肢も残ったまま新製品が追加され、選択幅が時間とともに広がるのがMCU選択を困難にする要因の1つです。

そこで、広い選択幅からMCUを選ぶ方法を、4段階で示します。

第1段階:適用製品による大枠選択

MCUベンダは、適用製品に合わせてMCUを大分類します。車載とインダストリアル分野では使用温度や内蔵周辺回路などの要件が異なるからです。そこで、第1段階は、この適用製品でMCUを選択します。

例えば、NXPSTマイクロエレクトロニクストップサイトの“アプリケーションタブ”がこの大枠を示します。
ルネサスエレクトロニクスCypressの場合は、“ソリューションタブ”です。

ここまでは、多くの方がご存じと思います。分かりにくくなるのは、ココカラです。

第2段階:MCU名称による中枠選択

同じインダストリアル分野のMCUでも、シリーズやファミリなど細かく名称が分かれています。名称が異なるには訳があるので、その理由を理解するのが、第2段階です。この段階では、ベンダ間の買収や合併などの歴史も知っている方が良いです。ポイントは、選択の決め手となる最新カタログの取得です。

Cypressのスマートアプリケーション分野のMCUで説明します。

スマートアプリケーション分野MCU使用例(出典:Cypressサイト)
スマートアプリケーション分野MCU使用例(出典:Cypressサイト)

PSoC 6/4/FM4などの複数MCUから構成されるスマート洗濯機です。PSoC X(X=4,6)は、元々のCypress MCUの名称で、FM4は、2014年に合併した米Spansion(実はSpansionに買収された富士通セミコンダクター)のMCU名称です。

Cypressは、Spansion合併でARM Cortex-M0+ライセンスを取得し、Cortex-M0利用のPSoC 4に適用、その結果生まれた新製品がPSoC 4Sです。PSoC 4Sは、特許取得済み静電容量式第4世代タッチセンサCapSense内蔵のPSoC 4000ファミリへと発展しました。

PSoC 4サイトトップページへ行き製品タブを見ると、さらに細かくPSoC 4000/4100/4200/4700とファミリが分類されており付加機能も異なります。この中枠の段階で製品セレクターガイドなどへ行くとMCU選択に迷ってしまします。他のベンダでも同様です。

この中枠MCU選択の重要資料:Brochureをダウンロードします。Brochureとは、製品パンフレット、カタログのことで、ほぼ毎年更新されます。

どのベンダでも、この中枠MCUを対象とした製品カタログがあります。この最新カタログを見つけるのがMCU選択での最重要事項です。

第3段階:最新カタログと評価ボードによる開発MCU選択

製品カタログには、ベンダがアピールしたい最新MCU情報が詳しく掲載されます。継続販売中の古いMCUや歴史は(紙面の都合上)無視されます。但し、これで新旧MCUを選択のふるいにかけることができます。

世間の話題にはなりにくいMCUの発展速度も、スマホやPC並みに早いのです。最新MCUは、低電力動作や処理効率に優れ、市場ニーズに即した開発が期待できます。

製品カタログには、中枠に相当するMCUファミリ一名称や概略を示す一覧図が掲載されます。

PSoC 4の場合は、下図です。ファミリ名の差(=意味)をこの図から理解すれば、開発MCU選択は、殆ど(?!)最終段階です。

PSoC 4ファミリ一覧図(出典:PSoC 4 Brochure)
PSoC 4ファミリ一覧図(出典:PSoC 4 Brochure)

殆どとは、例えば、エントリーレベル灰色の四角:PSoC 4000SファミリにもFlashやROM、内蔵周辺回路数により多くのMCUがあります。つまり、開発に適すMCUを各四角の中から選択する必要がある訳です。

これには、ファミリ毎にベンダが用意する評価ボード搭載MCUが適します。カタログにも評価ボードが記載されています。

ファミリ毎に用意される評価ボード(出典:PSoC 4 Brochure)
ファミリ毎に用意される評価ボード(出典:PSoC 4 Brochure)

評価ボード搭載MCUは、ファミリ内で最も標準的かつ応用範囲が広く、しかもサンプルコードが付いていますので、MCUを直に動作させることができます。低価格で入手性が良いのも特徴です。開発着手のMCUとしては最適です。

第4段階:プロトタイプ開発による製品MCU選択

評価ボードのMCUを基準にプロトタイプ開発を行い、製品化時のMCU選択をします。

プロトタイプMCUでFlash/RAM不足が懸念されならより大容量MCU、性能不足や周辺回路数不足が懸念されるならより高性能MCUを製品MCUとして選択するなどです。プロトタイプ開発により、製品MCU評価が高精度でできます。

以上の4段階で開発や製品に適すMCU選択ができます。プロトタイプ開発結果をどう活かすかで最適な製品MCU選択ができます。

Cypress PSoC 4 MCU選択具体例

弊社開発中のCapSenseテンプレートに用いるCypress PSoC 4 MCUを、上記の方法で選択した結果を示します。

CapSense は、PSoC 4000ファミリの他社差別化機能の1つです。そこで、このCapSenseを活かすプロトタイプ開発テンプレートを目指します。

CapSenseテンプレートに用いる3ファミリMCU:PSoC 4000S、PSoC 4100S、PSoC 4100PSの特徴を一覧で示します(縦長の図がウェブでは上手く表示できます)。

CapSenseテンプレート対象3MCUファミリ比較
CapSenseテンプレート対象3MCUファミリ比較

PSoC 4000S評価ボード:CY8CKIT-145-40XX PSoC 4000S CapSense Prototyping Kit搭載MCUは、CY8C4045AZI-S413(48ピン)です(下図左)。

PSoC 4100S評価ボード:CY8CKIT-041-41XX PSoC 4100S CapSense Pioneer Kit搭載MCUは、CY8C4146AZI-S433(48ピン)です。トラ技5月号付録PSoC 4100S基板実装のCY8C4146LQI-S433(40ピン)も同じファミリですが、ピン数のみが違います(下図中央)。

PSoC 4100PS評価ボード:CY8CKIT-147 Prototyping Kit搭載MCUは、CY8C4145LQI-PS433(48ピン)です(下図右)。

Cypressの3ファミリ評価ボードは、どれも48ピンで揃っているので、比較しやすいでのすが、弊社は、予算の都合上、PSoC 4100Sファミリは、トラ技付録PSoC 4100S基板実装MCU(40ピン)を用います。

CapSenseテンプレート評価ボードMCU(PSoC 4000S評価ボード、トラ技5月付録PSoC 4100S基板、PSoC 4100PS評価ボード)
CapSenseテンプレート評価ボードMCU(PSoC 4000S評価ボード、トラ技5月付録PSoC 4100S基板、PSoC 4100PS評価ボード)

CapSenseで最重要なタッチUIハードウェアは、PSoC 4000S評価ボードのCapSense基板を、PSoC4100S/4100PS各基板と接続してテンプレート動作確認をします。PSoC 4000S → PSoC 4100SでFlash/RAM容量増加、PSoC 4000S → PSoC 4100PSでアナログフロントエンド強化などへ発展します。

※CapSenseテンプレート完成は、計画当初は2019Q3でした。しかし、PSoC 4100PS評価ボードは、トラ技懸賞品をあてにしており、運よく当選し11月Mに当選品が入手できました。2019Eを目途にテンプレート完成の予定です。

ARM Cortex-M4プロトタイプテンプレート構想

弊社は、ARM Cortex-M4コア使用のLPC5410x(NXP)、STM32G4(STM)、PSoC 6(Cypress)、MSP432(TI)各社のMCUテンプレート開発を目指しています。本稿は、各社共通のCortex-M4プロトタイプテンプレート開発指針を示します。

MCUプロトタイプ開発ステップ

MCUプロトタイプ開発と製品化へのステップ、支援ツール
MCUプロトタイプ開発と製品化へのステップ、支援ツール

プロトタイプからMCU製品開発へのステップが上図です。

  1. IDEと評価ボードを準備、利用MCUの開発環境構築
  2. サンプルプロジェクトを利用し、MCUや内蔵周辺回路の特徴・使い方を具体的に理解
  3. 製品処理に近いサンプルプロジェクトなどを活用し、評価ボード上でプロトタイプ開発
  4. プロトタイプへ保守点検などの製品化処理を追加、製品時ベアメタルかRTOS利用かを評価
  5. ステップ04評価結果でA:ベアメタル製品開発、または、B:RTOS製品開発へ発展

更に製品化へは様々なステップも必要ですが、プロトタイプ開発に絞るとこのステップになります。

Cortex-M4プロトタイプテンプレート

弊社Cortex-M4プロトタイプテンプレートは、ステップを効率的に上るための開発支援ツールです。

販売中の弊社テンプレートと同様、複数サンプルプロジェクトや開発した処理を、RTOSを使わずに時分割で起動するマルチタスク機能を備えています。
※時分割起動マルチタスク機能:ステップ03と04の課題は、複数サンプルプロジェクトや製品化に必要となる様々な処理を、どうやって1つに組込むか(?)ということです。RTOSを利用すれば解決します。しかし、RTOS利用のためだけに別途知識や理解が必要で、RTOS活用までの階段差が非常に高いという欠点があります。弊社テンプレートは、時分割で複数処理を起動し、初心者でも仕組みが理解できる低い階段差でマルチタスク機能を実現します。詳細は、コチラなどをご覧ください。

販売中の従来テンプレートとCortex-M4プロトタイプテンプレートの違いが、以下です。

  1. ステップ05以降の製品開発へも、ステップ01で構築したプロトタイプ環境をそのまま使える
  2. 下位Cortex-M0/M0+/M3ソフトウェアに対して、Cortex-M4プロトタイプ開発資産が流用できる

Cortex-M4の高性能を、プロトタイプ開発マージン(後述)に使うとこれらの違いが生じます。

Cortex-M4コアMCUの特徴

ARM Cortex-M4は、Cortex-M0/M0+/M3とバイナリ互換です。

簡単に言うと、Cortex-Mコア開発元ARM社が推進するCMSISに則って開発したCortex-M4ソースコードやライブラリは、再コンパイルすればCortex-M0/M0+/M3へ流用・活用ができます。
※CMSIS:Cortex Microcontroller Software Interface Standard関連投稿は、コチラの2章などを参照してください。

Cortex-Mxのバイナリ互換性(出典:STM32L0(Cortex-M0+)トレーニング資料)
Cortex-Mxのバイナリ互換性(出典:STM32L0(Cortex-M0+)トレーニング資料)

図から、Cortex-M4バイナリの全ては、下位Cortex-M0/M0+/M3に含まれてはいません。従って、効率的な処理やセキュリティ対策必須の高速演算を行うには、Cortex-M4が最適なのは言うまでもありません。

Cortex-M4を使ったMCUは、Cortex-M0/M0+/M3 MCUに比べ動作クロックが高速で内蔵Flash/RAM容量も大きいため、ベアメタル利用だけでなく、RTOS利用も可能です。

Cortex-M4がプロトタイプ開発に最適な理由:大マージン

Cortex-M4のMCUでプロトタイプ開発すれば、製品化時に必要となる処理や保守点検処理などの実装も「余裕」を持ってできます。
※製品出荷テストプログラム、自動販売機待機中のLEDデモンストレーション点灯などが製品化処理具体例です。

筆者は、このような製品化処理を、おおよそプロトタイプ処理と同程度と見積もります。つまり、製品のFlash/RAM量は、プロトタイプ時の2倍必要になります。

仮に「余裕」がありすぎオーバースペックの場合には、開発したCortex-M4プロトタイプ処理(=開発ソフトウェア資産)を、そのまま下位Cortex-M0/M0+/M3コアMCUへ流用が可能です。

一方、処理が複雑で多い場合には、RTOSで解決できるか否かの評価もCortex-M4プロトタイプなら可能です。更にIoT製品では、セキュリティ関連の(先が見えない)処理や計算量増加にも対応しなければなりません。

安全側評価なら敢えて下位Cortex-Mコアを選ばずに、Cortex-M4をそのまま製品にも使えば、処理増加にも耐えらます。

つまり、プロトタイプ開発には、初めから容量や性能の足かせが無く、製品化移行時の開発リスクも少ない高速高性能・大容量のCortex-M4 MCUが最適なのです。

製品時の処理能力やFlash/RAM量を、Cortex-M4プロトタイプで見積もった後に、製品化にステップアップすれば、適正な製品制御Cortex-Mコアを選択できます。開発ソフトウェア資産の流用性、過負荷耐力、RTOS製品開発評価ができる高性能を兼ね備えたのが、Cortex-M4を使ったプロトタイプ開発です。

問題は、価格です。

各社のCortex-M4評価ボード価格は、Cortex-M0/M0+/M3評価ボードと大差ありません。STM32MCUの評価ボード:Nucleo32シリーズは、Cortex-Mコアが異なっても同額です。プロトタイプ開発マージンを考慮すると、たとえ評価ボードに多少の価格差があったとしても十分納得がいきます。

Cortex-M4デバイス単体価格は、Cortex-M0/M0+/M3よりは高価です。しかし、製品原価全体に占めるCortex-M4デバイス価格比は低いでしょう。IoT製品では、今後増大するセキュリティ対策や計算量増加などを考慮すると、Cortex-M4デバイスを使うメリットは大きいと思います。

Cortex-M4プロトタイプテンプレート開発指針(NXP、STM、Cypress、TI共通)

Cortex-M4の特徴を活かし、下位Cortex-M0/M0+/M3間での開発ソフトウェア資産流用を考慮したCortex-M4プロトタイプテンプレート開発指針です。

  1. Cortex-M0/M0+/M3/M4各コアに用いるテンプレート本体の共通化
  2. プロトタイプ開発ソフトウェア資産流用性を高めるCMSISソフトウェアでの開発
  3. 製品化時ベアメタルかRTOS利用かを評価のため、Cortex-M4最高速動作のプロトタイプ開発

現在CMSISへの対応は、各社足並みが揃っているとは言えません。もしも完全にCMSISへ対応した場合は、異なるベンダ間でも開発アプリケーション互換が実現するからです。ARMコア市場が「攻めに強く、守りに弱い」ゆえんです。そういう状況でも、各社ともCMSISへのソフトウェア対応を進行中です。
※Cortex-M33コアには、CMSISに反して、ベンダ独自のカスタム命令追加の動きも見られます。

本稿で示したCortex-M4プロトタイプテンプレートと異なり、弊社販売中のCortex-M0/M0+/M3テンプレートは、テンプレート利用コアで最適解を与えます。そのため、RTOS利用時や、製品化処理、セキュリティ対策などの処理が増えた時には、元々のコア処理性能や内蔵Flash/RAMに余裕が少ないため、適用デバイスでの製品化に対して、開発を続けにくい状況が発生することもありえます。

この点、Cortex-M4プロトタイプテンプレートなら、プロトタイプで構築した同じ開発環境で、RTOSも含めた製品開発へも余裕を持って対応できます。同時に、プロトタイプ開発資産の流用や活用により、Cortex-M0/M0+/M3ソフトウェア生産性も高めることができます(一石二鳥)。

ATM Cortex-M4テンプレートと開発資産流用性
ATM Cortex-M4テンプレートと開発資産流用性

弊社Cortex-M4プロトタイプテンプレートの発売時期、RTOSへの具体的対応方法などは、未定です。本ブログで各社毎の開発状況をお知らせする予定です。

あとがき:初心者や個人利用は、Cortex-M4テンプレートが最適

ソフトウェア開発初心者にCortex-M4プロトタイプテンプレート利用は、難しい(=階段を上るのが困難)と考える方がいるかもしれません。筆者は、全く逆、むしろ初心者、個人利用に最適だと思います。

理由は、Cortex-M0/M0+/M3/M4と上位になるほどコア設計が新しく、処理性能も上がるからです。初心者が、あまり上手くないコード記述をしても、コア性能が高いため問題なく処理できてしまいます。詳細は、ARM Communityの“An overview of the ARM Cortex-M processor family and comparison”などが参考になります。

ごく簡単に言うと、自動車エンジンが、Cortex-Mコアに相当すると考えてください。

小排気量なCortex-M0より、大排気量のCortex-M4の方が、楽に運転でき、しかも、運転に最低限必要なハンドルやアクセル、ブレーキ操作は全く同じです。車(=評価ボード)の価格が同じなら、殆どの方が、余裕のある大排気量のCortex-M4を選択するでしょう。

しかも、Cortex-M4評価ボード操作の技(=開発ソフトウェア資産)は、Cortex-M0/M0+/M3へも流用できます。経済的に厳しい個人利用のプロトタイプ開発環境としては、流用範囲の広いCortex-M4 MCUテンプレートが最適と言えます。

弊社Cortex-M4プロトタイプテンプレートは、つまずき易い階段を、楽に効率的に上るための開発支援ツールです。ご期待ください。

総務省:2020年4月以降IoT機器アップデート機能義務化予定

総務省は、電気通信事業法を改正し、2020年4月以降「IoT機器アップデート機能義務化を予定」しているそうです(日経ビジネス2019年9月6日有料会員限定記事、“モノのインターネットに死角あり 狙われるIoT機器”より)。

本稿は、普通のMCU開発者が知るべき最低限のIoT MCUセキュリティ対策をまとめてみたいと思います。

IoT MCUセキュリティ

記事には、“歴史の浅いIoT機器は、開発者とユーザ双方にセキュリティ意識が欠如している“、”開発者は、便利で魅力的な機能搭載を優先し、セキュリティ配慮は2の次”とあります。確かにそうゆう見方はあります。

しかし、サイバー攻撃やセキュリティ関連ニュースが溢れる昨今、開発者/ユーザともに無関心ではないハズです。むしろ、現状のMCU能力では、セキィリティ強化が無理な側面を十分知った上で妥協している(目を瞑っている)のが事実だと思います。

セキィリティ関連記事は、その性質上、英語の省略用語を多用し、漏れがない細かい説明が多いので、全体を把握したい普通のMCU開発者には、解りにくいと筆者は考えています。

そこで、全体把握ができるMCUセキュリティのまとめ作成にトライしたのが次章です。

サイバー攻撃対策

MCUセキュリティ機能は、サイバー攻撃を防ぐための対策です。サイバー攻撃には、以下3種類があります。

  1. ウイルス感染
  2. 通信傍受
  3. 通信データ改ざん

2)通信傍受対策には、暗号化が効果的です。暗号化処理には、データをやり取りする相手との間に鍵が必要で、共通鍵と公開鍵の2方式があります。共通鍵は、処理負荷が公開鍵に比べ小さく、公開鍵は、鍵を公開する分、処理負荷が大きくなる特徴があります。

3)通信データ改ざん検出には、ハッシュ関数(=要約関数)を使います。ハッシュ関数に送信データを与えて得た値をハッシュ(=要約値)と言います。送信データにハッシュを追加し、受信側でハッシュ再計算、送受ハッシュ一致時がデータ改ざん無しと判定します。

2)と3)は、データ通信が発生するIoT MCUセキィリティ機能です。暗号化、ハッシュ関数は、新サイバー攻撃に対し、次々に新しい防御方式が提案される鉾と盾の関係です。MCU外付けセキュリティデバイス(例えばNXPのEdgeLock SE050など)によるハードウエア策もあります。

PCやスマホのようなウイルス対策ソフト導入が困難なMCUでは、1)のウイルス感染対策に、MCUソフトウェアのアップデートで対応します。総務省は、IoT機器にアップデート機能とID、パスワード変更を促す機能を義務付ける予定です。
※開発者自身で溢れるウイルス状況を常時監視し、ソフトウェア対応するかは不明です。

従来のMCUソフトウェアアップデートは、UART経由やIDE接続で行ってきました。しかし、ネットワーク経由(OTA)やアクセス保護のしっかりしたソフトウェア書換えなどを、1)のアップデートは想定しています。

以上、ごく簡単ですが、MCUセキュリティ対策をまとめました。

総務省の「IoT機器アップデート機能義務化」が、具体的にどのようになるかは不明です。ただ、無線機器の技適規制などを考えると、技術ハードルは、かなりの高さになることが予想できます。

サイバー攻撃対策のIoT MCUセキュリティ
サイバー攻撃対策のIoT MCUセキュリティ

ディアルコアや超高性能汎用MCUの背景

簡単にまとめたMCUセキィリティ対策を、IoT機器へ実装するのは、簡単ではありません。

実現アプローチとしては2つあります。

1つ目は、ディアルコアMCU(例えばNXPのLPC54114、関連投稿:ARM Cortex-M4とM0+アプリケーションコード互換)や、超高性能な汎用MCU(例えばSTMのSTM32G4、関連投稿:STM32G0x専用テンプレート発売1章)が各ベンダから発売中です。

これら新世代MCU発売の背景は、従来MCU処理に加え、法制化の可能性もあるセキュリティ処理実装には、MCU処理能力向上が必須なためです。

ワールドワイドにIoT機器は繋がります。日本国内に限った話ではなく、地球規模のIoT MCUセキュリティ実装に対し、ディアルコアや超高性能汎用MCUなどの新世代MCUでIoT機器を実現するアプローチです。

2つ目が、セキュリティ機能が実装し易いMPU(例えばRaspberry Pi 4など)と、各種センサー処理が得意なMCU(旧世代MCUでも可能)のハイブリッド構成でIoT機器を実現するアプローチです。

IoTを狙うデュアルコアMCU

CypressのPSoC 6を中心にNXPとSTM、3社のARMディアルコアMCUを調査しました。Cortex-M4とCortex-M0+を使う個人でも低価格で入手できるディアルコアMCUです。ディアルコアMCUの狙い、アプリケーション、シングルコアMCUソフトウェア開発との違いなどを説明します。

Cortex-A7とCortex-M4を使ったもう1つの超高性能ディアルコアMCUも少しだけ登場します。

ディアルコアMCUの狙い、アプリケーション

ディアルコアMCUの狙い
ディアルコアMCUの狙い(出典:Cypress Cortex-M4 PSoC 6サイト)

CypressのCortex-M4コアPSoC 6サイトの上図がディアルコアMCUの狙いを示しています。

つまり、「IoT市場獲得には、右側アプリケーションプロセッサからと左側マイクロコントローラ:MCUからの2つのアプローチがあり、MCUアプローチのPSoC 6は、処理能力とセキュリティ強化を低コスト、低電力で実現した」ということです。

PSoC 6は、実現手段としてメインコアにCortex-M4(150MHz)、補助コアにCortex-M0+(100MHz)のディアルコアを採用しています。このCortex-M4+Cortex-M0+の2MCU構成は、NXP:LPC54102STM:STM32WB55RGでも見られます。CypressとSTMは、Cortex-M0+側にBluetooth Low Energy無線通信機能を実装済みです。

PSoC 6は、実装セキュリティに応じてPSoC 62/63シリーズと3種類のPSoC 64シリーズに別れます。PSoC 62/63は、PSoC 6のセキュリティ機能とユーザ独自セキュリティファームウェア(ソフトウェア)を使うデバイス(次章参照)、最上位プレミアムセキュリティのPSoC 64は、標準的なセキュリティ機能を全て含むデバイスです。

一方、アプリケーションプロセッサアプローチは、NXP:iMX 7アプリケーションプロセサのようにスマホやRaspberry Piでも用いられたCortex-A7(800MHz)がメインコアで、Cortex-M4(200MHz)が補助コアです。このアプローチは、ソフトウェア開発規模が大きく評価ボードも高価で個人開発向きとは言いにくいと思います。Cortex-A7自身がマルチコアでOS利用が前提なので更に複雑になります。

まとめると、低コスト低電力で処理能力とセキュリティ強化目的のCortex-M4+Cortex-M0+ディアルコアMCUの狙いは、IoTアプリケーションです。PSoC 63搭載の評価ボード:CY8CPROTO-063-BLEの価格は¥2,289(Digi-Key調べ)で、個人でも手が出せる価格帯です。

ディアルコアMCUのソフトウェア開発

PSoC 63 Line with BLE (Applications and Freatures)
PSoC 63 Line with BLE (Applications and Freatures)

Cypress Roadmap: MCU Portfolio、P25から抜き出したPSoC 63のアプリケーションとFeaturesです。具体的なIoTアプリケーションや、実装セキュリティ機能が解ります。
※ご参考までにこのMCU Portfolioには、CapSenseテンプレート開発で用いたPSoC 4000S/4100S仕様も解り易く掲載されています。

同じP25記載のPSoC 63ブロック図です。Cortex-M4とCortex-M0+がメモリ結合されています。

PSoC 63 Line with BLE (Hardware)
PSoC 63 Line with BLE (Hardware)

PSoC 6のソフトウェアは、Cortex-M4とCortex-M0+それぞれのソフトウェアが、2つ同時に別々に動作します。簡単に言うと、各シングルコアMCUソフトウェア同士が、同じデバイス内で動きます。メモリ結合なので、同一メモリアドレス同時アクセスの競合回避手段なども多分あるハズです(←調査不足😌)。

つまり、ディアルコアMCUソフトウェア開発と言っても、従来のCortex-M4やCortex-M0+シングルコアMCUソフトウェア開発の経験やスキルがそのまま活かせるのです。

一方のMCUから見ると、片方のMCUはインテリジェントな周辺回路と同じです。

例えば、Windowsソフトウェア開発なら、1つの機能を複数スレッドに分割し、処理効率を上げるなどのマルチコア対応の工夫が必要です。しかし、Cortex-M4+Cortex-M0+デュアルコアMCUの場合は、シングルコアのソフトウェア開発手法がそのまま使えます。

差分は、「2つのMCUに、どの機能を割振るか」です。

FPU内蔵のCortex-M4は、セキュリティなどの計算処理、高速GPIOアクセスのCortex-M0+は、IO処理やBLEモジュール管理、というのが定番(CypressやSTMのディアルコアMCUにみられる)割振りのようです。

まとめると、ディアルコアMCUソフトウェア開発は、シングルコアMCU開発経験がそのまま活かせます。しかも、別々動作の2コアを持つので、RTOSを使わずに処理分離と本当の並列動作ができます。

また、個人入手可能な評価ボード価格も魅力です。

評価ボード搭載のPSoC 63:CY8C6347BZI-BLD43(116-BGA)は、BGAパッケージなので基板実装は簡単ではありません。しかし、このPSoC 63とBLEアンテナをモジュール化したCYBLE-416045-02(14.0 mm x 18.5 mm x 2.0 mm、43-pad SMT with 36 GPIOs、下図)が評価ボードに実装済みで単体購入も可能です。

また、個人利用の場合には、評価ボードを丸ごと基板実装するのも効果的です。

EZ-BLE Creator Modules CYBLE-416045-02
CY8C6347BZI-BLD43搭載のEZ-BLE Creator Modules CYBLE-416045-02

ディアルコアMCUへの対処案

ディアルコアMCUの狙いは、巨大なIoT市場です。

各社がディアルコアMCUを発売する理由は、高度化するセキュリティ機能や、どの規格かが不確定な無線通信機能に対して、現状のシングルARMコアMCUでは、処理能力不足が懸念されるためです。
※近距離無線通信の有力候補が、BLEであることは確かです。

ディアルコアMCUならば、たとえ規格が変わっても、その影響を片方のMCU内に止めることもできます。つまり、ソフトウェア資産が無駄にならない訳です。

IoT市場へは、Cortex-M4+Cortex-M0+と、Cortex-A7+Cortex-M4のアプローチがあります。Cortex-M4を用いる点ではどちらも一致しています。FPU内蔵Cortex-M4ソフトウェア開発や経験が、IoT MCUプログラマの必須要件になるかもしれません。

シングルコアMCU開発経験が活かせ、しかもRTOSを使わずに高速並列処理を実現できるディアルコアMCUのソフトウェア/ハードウエア開発を、評価ボードへの僅かな投資で、IoTが爆発的に普及する前から準備・習得するのは、技術者リスク回避の点からも必要だと思います。

PSoC 4100S CapSenseの使い方(最終回)

Cypress PSoC 4 MCU内蔵タッチセンサ:第4世代CapSenseの使い方、最終回は、これまでの関連投稿全体まとめと、PSoC MCU開発時の留意点を説明します。

6月3日発表のInfineon+Cypressが成立するかは不透明です(関連投稿:InfineonがCypress買収で合意)。但し、買収が成立するとCypressのPSoC 4シリーズはよりメジャーMCUになります。このPSoC 4000S/4100S内蔵の最新第4世代CapSense使ったタッチUIテンプレート開発が関連投稿の目的です。

PSoC MCUのソフトウェア開発は、他社ARMコアMCU開発と比べると少々クセがあります。

但し、このクセさえ知っていれば、他社MCUからの移行も容易で、PSoCの特徴を活かした開発もできます。そこで、このクセに対する個人的な留意点と、開発に使用した評価ボードのTipsを初めに示します。

第1回~今回の投稿を基に、PSoC 4000S/4100S専用タッチUIテンプレート開発を進めます。開発完了とテンプレート発売は、少し時間を頂いて、2019/3Qを予定しております。

PSoC MCU開発時の留意点、評価ボードTips

用語とPSoC Creator

Cypress PSoC MCU資料で用いる用語は、他社が使う一般的な用語と異なります(対応表参照)。また、PSoC CreatorのTopDesign.cyschと呼ぶ回路図へコンポーネントを配置し、開発着手するのも他社に無い手法です。

Cypress PSoC MCU用語 他社ARMコアMCU用語
ファームウェア:Firmware ソフトウェア
コンポーネント:Component ハードウェア、周辺回路、コントローラ
コードサンプル:Code Example サンプルプロジェクト、サンプルソフトウェア
PSoC CreatorのTopDesign.cysch(論理回路図) なし

PSoC Creatorも他社同様EclipseベースIDEです。しかし、PSoC MCUの独特な設計手法(これをクセと表現しました)をサポートする強力かつ良くできたツールです。画面構成が他社Eclipse IDEと異なりますが、注意して画面を観察すると、開発中に知りたいリンクがほぼ100%あります。

Cypressは、PSoC/PRoCをMCU:マイコンというより、むしろ、プログラミングも可能なASIC(PSoCがProgrammable System-on-Chipの略から筆者推測)のように考えているため、これらのクセが生じるのだと思います。

Cypress資料

Cypress資料は、質・量・書き方ともに優れています。英語ですが、日本語版もありますので、是非資料を読むことをお勧めします。内容は整理されており、解り易いので、目次のみ見てもほぼ解ります。

筆者はせいぜい数時間しか集中できません。集中力が持続しない方にお勧めの情報把握方法が、目次のみ → 内容類推 → 内容把握です。コンポーネント習得と同様、焦らず段階的、部分的に把握していけば、そのうち全体が見えてきます。

コンポーネントUpdate

PSoC MCUのソフトウェア開発は、コンポーネントAPIのプログラミングです。想定するアプリケーション用に各種コンポーネントを組み合わせて入れた容器、これがデバイスです。

コンポーネントは、それ自身が更新されバージョンを持ちます。例えば、第4世代CapSenseコンポーネントの最新バージョンは、2019年6月現在6.0です。PSoC Creator起動時に、プロジェクト使用中コンポーネント版数を自動的に調べ、Updateがある場合には、Notice Listに通知されます。

殆どの場合、コンポーネントをUpdateしてもトラブルはありません。しかし、コンポーネントUpdateがデバイスハードウェア/ソフトウェア両方に関係するため、コンパイルNGなどになることも稀にあります。

従って、Update時にはArchivesを作成し、元に戻せるようにしましょう。Archives作成は、PSoC CreatorがUpdate時にダイアログを示しますので従ってください。

コンポーネントCode Example

コンポーネント毎にCode Exampleがあります。PSoC Creatorのコンポーネントカタログ掲載のコンポーネントは、いわば標準的なもので、Code Exampleの中には、巧みな使い方をした派生コンポーネントもあります。

CapSenseのCode Example検索方法
CapSenseのCode Example検索方法

評価ボード:KitProg2

本開発で用いた評価ボード:CY8CKIT-145-40XX PSoC 4000S CapSense Prototyping Kit のKitProg2基板は、2019年5月号トラ技第6章P103~P114のPSoC 5記事のことです。

評価ボードのKitProg2部分
評価ボードのKitProg2部分(出典:PSoC 4000S Prototyping Kit Guide)

筆者はこのPSoC 5搭載KitProg2基板を、トラ技付録基板に接続する予定です。つまり、トラ技記事では別途購入が必要であったUSBシリアル変換アダプタの代わりに、トラ技付録基板へのテンプレートプログラミングやデバッグに活用します。

もちろんKitProg2基板は、トラ技6章記事のような使い方もできます。

KitProg2基板は、「SWD(Serial Wire Debug)を使った“汎用”のPSoC MCUプログラミングインタフェースモジュール」です。

KitProg2とPSoC 6の接続例
KitProg2とPSoC 6の接続例(出典:CY8CPROTO-063-BLE Schematic)

上図はPSoC 6がターゲットMCUの例です。ターゲットMCUとSWD IO/SWD CLK+RST/GND/VTARGの5ピンで接続すれば、USB接続のKitProg2モジュール経由でPSoC Creatorプログラミング/デバッグが可能です。

また、USB ⇔ I2C/シリアル変換アダプタとして利用する場合は、KitProg2裏面掲載のターゲットMCUとの結線追加で可能です(評価ボードI2C、UARTは、基板内で配線済み)。

KitProg2裏面のターゲットUARTとI2Cの結線(中央)
KitProg2裏面のターゲットUARTとI2Cの結線(中央)

USB ⇔ I2C変換アダプタ利用時はPSoC Creator付属Bridge Control Panel、また、USB ⇔ UART変換アダプタ利用時はTera Termなどが接続ツールとして使えます。

開発するCapSense UIモジュールと外部機器、または別MCUとの接続デバッグ時に、上記KitProg2基板のUART、または、I2Cの変換アダプタ機能が活用できます。

その4で示したSCBコンポーネントの3モードのうち、UART/I2Cがこれら変換アダプタ経由でPCとの通信に使えます。従って、SCBコンポーネントを手軽に使うには、接続ツールが用意されているUART/I2Cが適しています。

評価ボード:機能分割と低価格

本開発評価ボードのブロック図です。前章KitProg2とPSoC 4000S、さらにEZ-BLE PRoCの3MCU搭載でわずか$15です。

CY8CKIT-145-40XX_PSoC 4000S_Prototyping_Kit_Block Diagram
CY8CKIT-145-40XX_PSoC 4000S_Prototyping_Kit_Block Diagram

EZ-BLE PRoCは、PSoC 4000SのEZ-I2Cコンポーネント経由で得たCapSenseボタンやスライド・バー位置を、スマホへのBluetooth無線送信する10 x 10 x 1.8mmサイズのモジュールです。スマホのアプリケーションは、Cypressサイトからダウンロードできます。

EZ-BLE PRoC用途
EZ-BLE PRoC用途

IoT MCUは、Bluetoothなどの無線通信やスマホ活用のエッジMCU制御も必要になります。

この開発に、無線機能付き高性能MCUを使って、RTOSやソフトウェア/ファームウェアを駆使し開発する選択肢もあります。が、評価ボードのようにモジュール分割し、複数の低価格MCUで組めば、わずか$15で実現できます。

しかも、機能分割した各MCUのソフトウェア開発も簡単です。EZ-BLE PRoCソースコードは、評価ボードサンプルプロジェクト内に有りますので参照してください。

評価ボードはバーゲンプライスです。しかし、その機能分割方法や評価ボードやモジュール活用のシステム開発も選択肢に入れるべきと感じる低価格と機能分割の上手さが解ります。低価格MCUでも使い方次第という好例が、本開発の評価ボードです。

PSoC 4000S/4100S内蔵、第4世代CapSenseの使い方(最終回:関連投稿)まとめ

ソフトウェア開発者向けPSoC 4000S/4100S第4世代CapSenseの使い方
項目 PSoC 4000S/4100S内蔵第4世代CapSenseの使い方(要点)
タッチUIテンプレート構想

(その1)

タッチUIモジュール
単独タッチUIモジュール利用が可能
タッチUIハードウェア

(その2)

1. タッチUIは、指をパッドに近づけた時に生じる静電容量変化で検出。確実に静電容量変化を生むPCBハードウェア:パッド設計が重要。

2. ソフトウェア開発者向けPCB設計ガイドラインの要旨を示し、評価ボードパッド形状の理由と、自己容量式(self-capacitance)、相互容量式(mutual-capacitance)差を説明。

3. 評価ボードパッド部分をトラ技付録PSoC 4100S基板とも接続。 PSoC 4100Sでもテンプレートを動作させPSoC 4000S/4100S両方対応テンプレート化を図る。

CapSense設定

(その3前半)

1. コンポーネントカタログからCapSenseを選びTopDesign.cyschへ配置。

2. コンポーネントデータシートを参照しCapSenseプロパティ設定。基本動作は、Basicタブ設定のみで十分。

3. CapSenseコンポーネント使用GPIOピン設定は、ピンエディタで実行。

CapSenseプログラミング

(その3後半)

1. 基本動作プログラミング教科書に評価ボードサンプルプロジェクトmian.cは最適。

2. 基本動作は、スキャン開始と終了の間、CPUスリープで低電力動作可能。

3. 高感度動作は、スキャン中別処理禁止のブロッキングスキャンを検討。

4. CapSenseプログラミングは、他コンポーネントとの並列処理より時分割処理の方がリスクは少ない。

5. 基本動作CapSense APIは6個。さらに多くのCapSense APIあり。

EZ_I2C(SCB

(その4)

1. EZ-I2Cは、CapSense出力のリアルタイムモニタ用。

2. リアルタイムモニタは、ユーザ開発パッドのCapSenseプロパティ設定に役立つ。

3. EZ-I2Cは、SCBコンポーネント利用法:I2C通信の1種。

4. CapSenseとEZ-I2C間のデータ送受は、RAM利用。

わずか2個コンポーネント利用の第4世代CapSenseの使い方でも、初めてのPSoC MCU開発者向けに要点をまとめると上記になります。最新CapSense動作確認と、殆ど全てのPSoC MCU開発に必要になるSCBコンポーネントの習得が、評価ボードで手軽にできるので教材としては最適だと思います。

PSoC MCUは、コンポーネント単位の開発経験積重ねができます。

一度PSoC開発を経験しておけば、新しい内容はCapSenseプログラミングだけです。今後は開発アプリケーションに応じて使用するコンポーネントを段階的に増やし、PSoC MCU開発の面白さ、奥深さを実感、習得してください。

但し、新規にプロジェクトを開発する時でも、1からコンポーネントを積重ねるのは非効率です。

PSoC Creatorには、新規プロジェクト開始時にPre-populated schematicというプリセット型プロジェクトもあります。しかし、より実務的でプロトタイプ開発に適し、時分割処理を組込んだプロジェクト、これが弊社テンプレートです。

弊社テンプレートは、プロジェクト開始時に最低限必要なコンポーネントが組込み済みで、プロトタイプ開発スピードを上げる効果があります。また、時分割処理ですので、コンポーネント単位の処理追加・削除も容易です。

関連投稿:テンプレート利用Tips

新開発のPSoC 4000S/4100SタッチUIテンプレート発売は、2019/3Q予定です。

このテンプレートをご購入頂ければ、本稿のまとめ文章だけでなく、豊富な日本語コメント付きソースコードと、開発Know Howなども記載した資料が付属します。より具体的に、しかも初心者・中級者にありがちな開発トラブルを回避した第4世代PSoC 4000S/4100S CapSenseの使い方、PSoC MCU開発が短期で効率的に習得できます。