LibreOffice最新版 6.1.4.2へ更新

2018年12月18日、LibreOffice 6系の最新版(stable)がマイナー更新され、バージョンが6.1.4.2になりました。
安定版(stable)は更新なしです。

LibreOffice版数(2018/12/20現在)
パッケージ 想定ユーザ 2018/12/18版数
最新版(stable) 技術マニア、新しいもの好き、パワーユーザ 6.1.3.2 → 6.1.4.2
安定版(stable) ビジネス組織、法人企業、慎重なユーザ 6.0.7 (変更なし)

6.1.4.2マイナー更新

マイナー更新ですので、LibreOfficeウェブサイトから最新版6.1.4をダウンロードし、実行で更新完了します。

関連投稿:LibreOffice更新のメジャー/マイナー更新方法

@libreofficeさんのツイートによると、125以上のバグ修正がなされたようです(個人的には前版でもWriter、Calc、Drawいずれもバグに遭遇していませんが…😅)。最新版ご利用中の方は、更新しておけば安心です。

年末年始の時間を利用しLibreOfficeを試そうと考えている方は、是非最新版を使ってみてください。また、弊社は、WriterとDrawに対して下記無料テンプレートを配布中です。ご活用ください。

関連投稿:LibreOffice Writerの使い方とテンプレート
関連投稿:LibreOffice Drawの使い方とテンプレート

Office 2019延長サポート終了はOffice 2016と同じ2025年

対抗ソフトウェアの状況を調べました。Microsoft Office 2019は、延長サポート期間が、従来5年から約2年に短縮されるそうです。つまり、Office 2016延長サポート終了の2025年10月と同じになるのです。

Windows10のみで動作するOffice 2019は、最後の売切りタイプのOfficeという観測もあります。Microsoftは、サブスクリプションタイプのOffice 365へ一本化したいようです。

私個人としては、クロスプラットフォーム(Windows/Mac/Unix)でローカル動作し、既存Office文書への互換性も高い無償LibreOfficeが、PC文書作成ツールとしてはお勧めです。

ブログ閲覧トラブルのお詫び

本ブログサーバーに障害が発生したため、2018年12月12日水曜午後3時頃から12月13日木曜午前10時頃までの19時間(!)、ブログ閲覧ができませんでした。期間中に訪れていただいた方々にご迷惑をおかけしたことをお詫び申し上げます🙇。

サーバー障害は現在解消しております。経緯報告と、ソフトウェア全般のメジャー更新時の対応と心構えについて示します。

ブログのみ(!?)閲覧トラブル

閲覧トラブルはHappyTechブログのみに発生し、HappyTechサイト(=マイコンテンプレートサイト)は問題なしでした。どちらも同じレンタルサーバーを利用していますが、ブログ閲覧時にブラウザで表示されたHTTPステータスコードは500番です。

ブラウザ表示のステータスコード、いわゆるエラーコードは、300番台~500番台まであります。

  • 300番台 サイト移転、ドメイン変更通知
  • 400番台 クライアント処理失敗
  • 500番台 サーバーエラー(←今回のエラーコード)

500番台サーバーエラーは、サーバー過負荷やWordPressバグなどの原因がありえます。サーバー業者の障害報告はありませんが、私は、主因がWordPress5メジャー更新だと推測します。

WordPress5へのメジャー更新

12月7日金曜からWordPress5へのメジャー更新配布が始まりました。メジャー更新の中身は、WordPressエディタの全面変更です。活版印刷の発明者といわれるGutenbergにちなんで名付けられた新エディタは、従来版とはかなり異なります。

Johannes Gutenberg(出典:Wikipedia)
Johannes Gutenberg(出典:Wikipedia)

新エディタGutenbergは、既に投稿済みの過去の投稿編集にも影響を及ぼすため、Gutenbergエディタ機能を停止するDisable Gutenbergや、代替として従来エディタが好きなブロガーのためにClassic Editorというプラグインが準備されていました。

「メジャー更新前」にこれらプラグインをインストールしておけば、問題は殆ど無かったと思います。しかし、「更新後」のインストールでは遅すぎます。過去の投稿がGutenbergで変換され、初めてエディタの違いに気づき、慌ててリカバリーするなどした結果、サーバー過負荷に至ったのだと思います。
500番台サーバーエラーが、メジャー更新配布後ではなく、数日たった12日から長時間発生したことが根拠です。

ソフトウェアのメジャー更新時の対応と心構え

このように、「メジャー更新内容の事前調査や対応」と、何か起こるかもという「心の準備」は、バックアップをとることと同じくらい重要です。

更新後に読むことが多いリリースノートですが、せめてメジャー更新がアナウンスされた時は、「更新前」に目を通し、バックアップ以外の対応・準備が万全かを想像しましょう、これが本稿で示したい対応と心構えです。

※MCU IDEは、後方互換性を重視するソフトウェアなので、今回のWordPressエディタのような互換性にインパクトがある問題は生じにくいです。

関連投稿:MCU IDEの後方互換性検証

また、2019年4月よりWordPressの動作要件にphpバージョンが5.6以上、MySQLも5.5以上が加わります。これらより下のバージョンは、セキュリティアップデートだけが提供されます。Office 2019の動作OSが、Windows 10のみというのに似ています。

WordPress推薦phpはバージョン7ですので、2019年4月以降は最新プラグイン利用や既存プラグイン更新にトラブル発生の可能性もあります。プラグイン更新時には、注意しましょう!

httpsとhttpの話

お知らせのついでに、良くあるご質問にこの場でお答えします。

ご質問:ブログもマイコンテンプレートサイトも、httpsではありません。安全ですか?

回答:httpsの目的は2つあります。1つが、サーバーとクライアント間の通信暗号化、つまり他人が通信傍受しても内容を判らなくする仕組みです。
パスワードや個人情報などの機密データを通信する場合にはhttpsは必須です。しかし、弊社ブログもマイコンテンプレートサイトも、閲覧時これら機密データの通信は発生しません。

テンプレートご購入時の銀行振込先やメール内容は、弊社サイトに無関係なhttps対応メーラー(outlook/hotmail/gmail…,etc)で通信しますので、セキュリティは万全です。

もう1つの目的が、Google検索上位を狙うSEO対策です。
Googleは、https推薦のため、httpサイトよりもhttpsサイトを検索上位に表示するそうです。これが多くのサイトがhttps化した大きな理由です。弊社も検索上位表示を望みますが、ベンダー提供以外のマイコン関連サイトは少なく、掲載の中身、つまりコンテンツで検索上位を狙うのが弊社方針です。

また、httpsサイトのドメイン取得は、httpサイトよりもコストが掛かるのも理由です。

弊社は、メンテナンスに多少手間が掛かっても、コスト重視でレンタルサーバーを選んでいます。極稀に今回のようなトラブルも発生しますが、懲りずに引き続き弊社ブログ、マイコンテンプレートサイトを今後ともよろしくお願いいたします。

STM新汎用MCU STM32G0

2018年12月4日、STマイクロエレクトロニクス(以下STM)の公式ブログで新汎用MCU STM32G0、Cortex-M0+/64MHzを発表しました。以下の特徴があります。
※汎用=メインストリームと本稿では考えます。

新汎用STM32G0、Cortex-M0+/64MHz、メインストリーム90nmの特徴

STM32メインストリームMCU
STM32メインストリームMCU:STM32FxとSTM32G0の違い(出典:STM32 Mainstream)
  • 「メインストリーム初の90nmプロセスMCU」:従来メインストリームSTM32F0は180nmプロセス
  • 「ハイブリッド」:STM32L4(90nmプロセス)の低消費電力とSTM32F0のメインストリームの両方をハイブリッド
  • 「モアIO」:64ピンパッケージSTM32F071比較でIOピン9本増加、48ピンでもIOピン7本増加
  • 「単一電源供給」:PCBパターン設計が容易
  • 「セキュリティハード内蔵/非内蔵」:128/256ビットAES、セキュアブート、乱数発生器、Memory Protection Unit (MPU)
  • 「USB-C」: IPによりUSB-Type-C可能
  • NUCLEO-G071RB board」:低価格評価ボード提供中、「STM32G081B-EVAL board」:$382
STM32G0ラインナップ (出典:STM公式ブログ)
供給中の3種製品とSTM32G0ラインナップ (出典:STM公式ブログ)
STM32G0 Product Lines(出典:STM32G0 Serie Presentation)
STM32G0 Product Linesから3種製品の違いが解る(出典:STM32G0 Series Presentation)

STM32G0オンライントレーニング

データシートよりも解りやすいSTM32G0オンライントレーニング資料が多数あります(要ログイン)。

例えば、以下のような興味深い情報が得られます。各数ページの英文スライド形式ですので、STM32G0以外のMCUを使用中の方でも、チョットした空き時間に読めます。

  • STM32G0 Series Presentation:内蔵ハードウェアによりValue/Access/Access & Encryptionの3種製品特徴
  • ARM Cortex-M0+ (Core):Cortex-M0とM0+の差、Memory Protection Unit 説明
  • Safety:安全基準とその実現方法
  • Random Number Generator (RNG):アナログノイズに基づいた32ビット乱数発生
  • STM32G0 Boards:NUCLEO-G071RB board解説

STM32CubeMX V5.0.0

STM32G0のコード生成は、STM32CubeMX V5.0.0からサポートされました。

V4までと同じSW4STM32、TrueSTUDIO、両方のIDEで使えます。STM32CubeMX V5が提供するMCUファームパッケージで、本ブログ関連を抜粋したのが下表です。

STM32CubeMX V5.0.0提供MCUファームウェア版数
対象MCU firmware(評価ボード、STM32G0ボード暫定) 最新Version
STM32F1(STM32F103RB、Cortex-M3/64MHz V1.7.0
STM32F0(STM32F072RB、Cortex-M0/48MHz V1.9.0
STM32G0(V5で新設、STM32G071RB、Cortex-M0+/64MHz V1.0.0

STM32Fxテンプレートでも使用中のHAL(Hardware Abstraction Layer)ライブラリでコード生成すれば、STM32F1、STM32F0とSTM32G0間で、流用/応用が容易なソフトウェア開発ができると思います。

まとめ

新発売のSTM32G0は、90nmプロセス初のメインストリーム汎用MCUです。一般的に製造プロセスを微細化すれば、動作クロックが高速になり電力消費も低下します。さらに、STM32G0は、Cortex-M0より性能が向上したCortex-M0+コアの採用により、Cortex-M3のSTM32F1クラスに並ぶ高性能と超低消費電力動作をハイブリッドした新汎用MCUと言えます。

周辺回路では、IoTで懸念されるセキュリティ対策をハードウェアで実施、IOピン数増加、PCB化容易、USB-Type Cインタフェース提供など、各種IoTエッジMCU要求を満たす十分な魅力を持つMCUです。

競合するライバルMCUは、Cortex-M0+のNXP S32K116/S32K118(2018/7発売)などが考えられます。

関連投稿:NXP新汎用MCU S32K1

ルネサスCS+ V8.00.00更新

2018年11月27日、ルネサスエレクトロニクス(以下ルネサス)のIDE(統合開発環境)CS+が、V7からV8.00.00にメジャー更新されました。主な変更内容は、11月27日発売の第3世代RX(RXv3)MCUへの対応です。

CS+ V8.00.00無償評価版

CS+は、RL78、RX、RH850、V850、78K0R、78K0のMCU開発に使います。無償評価版は、以下のROM容量制限があります。

無償評価版のROM容量制限
RL78、78K0R、78K0R 64Kバイト以内
RX 128Kバイト以内
RH850 256Kバイト以内

同じくルネサス無償提供EclipseベースIDEのe2 studioは、この容量制限がありません。

しかし、e2 studioにはコンパイラがパッケージされていませんので、各MCU対応のCS+と同じ無償コンパイラをインストールして使用します。その結果、コンパイルできるROM容量は、CS+無償評価版と同じになります。
※CS+もe2 studioも容量制限を外すには、コンパイラ有償ライセンスが必要です。しかし、個人レベルでの購入は、高額出費を覚悟してください。

CS+もe2 studioも機能的には同じです。Eclipse IDEを使った経験が有る方や、世界標準指向ならe2 studio、それ以外は、IDE全機能が1パッケージ提供で、チュートリアル付き、更新方法も簡単なCS+が便利です。

第3世代RXv3の第一弾はモータ制御製品

第3世代RX(RXv3)MCU
第3世代RX(RXv3)MCU(出典:ルネサスサイト)

ルネサス独自開発の32ビットRXv1/RXv2 MCUに対する命令セットの上位互換、5.8 CoreMark/MHzへの性能向上などが特徴の第3世代RXv3製品化第1弾は、モータ制御に適したRX66T(ROM256Kバイト~1Mバイト)です。

RXの性能を活かしたソフトウェアを開発するには、CS+無償評価版では128KバイトROM容量制限があるため力不足です。残念です。

ルネサス買収懸念とリスクヘッジ

11月24日のビジネスジャーナルに、ルネサスの買収に対する懸念記事が掲載されました。本ブログでも10月1日にルネサスのIDT買収の複数懸念記事は紹介しましたが、今回は、インターシル買収と現状のルネサス経営への懸念という点で異なります。

ゴーン容疑者が崖っぷちの日産を復活させたように、経営陣の舵取りは、その会社のみならずルネサスMCUの使用者(我々)の技術人生にも影響を与えます。

車のエンジン ≒ MCU、エンジンの気筒数 ≒ MCUビット数、車所有者 ≒ エンドユーザに割当てると、我々が開発するソフトウェア、ハードウェアの最終利用者は、装置を使うエンドユーザです。このエンドユーザが気にするのは、燃費(消費電力)や安全性(セキュリティ)、トータルコスト等で、どのMCUを使って開発するかを気にするエンドユーザは、殆どいないと思います。

ルネサスCS+のようにROM容量制限がある無償IDEや、MCU毎に専用デバッガが別途必要でArduinoコネクタを持たない評価ボード、これらは他のMCUベンダーのそれらと比べると少数派、日本独自仕様です。

関連投稿:MCU評価ボード2018

もちろん、多数派、世界標準に合わせた環境やMCUを提供することが最上ではありません。しかし、ルネサスの場合、本稿のような独自MCUを新開発する一方で、多数派標準と同じ土俵のARM Cortex-M系Synergy MCUなども提供中です。ルネサスの中に潤沢なリソースがあれば別ですが、これまた日本独自の働き方改革が叫ばれる時期、選択と集中ができていないと感じるのです。

技術者リスクヘッジ
技術者リスクヘッジ

ルネサスが技術的に優れていても、ガラパゴス携帯のようにならないことを祈りつつ、技術者個々人でリスクヘッジ(リスク回避)を考えることも大切だと思わせる記事内容です。

関連投稿:ルネサスの買収に対する懸念記事、技術者個人のリクス分散必要性の章

SLA (Software license Agreement)

STマイクロエレクトロニクス(以下STM)のSTM32マイコン マンスリー・アップデート2018年8月 P4のコラムに、ソースコード生成ツールSTM32CubeMXのSLA(Software license Agreement)変更が記載されています。

SLAとは

SLAは、ソフトウェア利用(または使用)許諾契約(きょだくけいやく)のことです。ウィキペディアに詳しい説明があります。

コラム記載の新しいライセンスが、SLA0048 – Rev 4 – March 2018です。この新ライセンス中にSTM32CubeMXで検索してもヒットしませんし、法律文言の英文解釈能力も持ち合わせていませんので、コラムをそのまま抜粋します。

「マイコンに書き込まれた状態であれば著作権表示などは不要だが、それ以外の状態であればソースコード、バイナリいずれも著作権表示などは必要」になりました。

STM32CubeMXでHALを使ってソースコードを生成すると、ソースコードの最上部に下記コメントや、その他の部分にも自動的にコメントが挿入されます。

STM32CubeMX生成ソースコード
STM32CubeMX生成ソースコード(STM32Fxマイコンテンプレートの例)

要するに、新SLAは、これらSTマイクロエレクトロニクス提供ツールSTM32CubeMXが自動挿入したコメントを、我々開発者は、勝手に削除してはいけない、と言っているのだと思います。

IDE付属ソースコード生成ツール

マイコンのソースコード生成ツールは、STM32CubeMX以外にも、各社のIDE(統合開発環境)に付属しており、

  • ルネサスエレクトロニクス:コード生成
  • NXPセミコンダクターズ:SDK、Processor Expert
  • サイプレス・セミコンダクター:Generate Application

などがあります(固定ページのAPI生成RADツール参照)。これらツールが自動生成するソースコードには、開発者が解りやすいように多くのコメントが付いています。

殆どのIDE付属エディタは、最上部の著作権関連コメントを畳んで表示することが可能ですし、これらコメントは、コンパイル後、つまりマイコンに書き込まれる状態では削除されますので、普段は注意を払わない開発者が殆どだと思います。

これらコメントも、STM32CubeMXと同様、各社のSLA違反になる可能性がありますので、生成ソースコードでのコメント削除はせず、オリジナル出力のまま使うことをお勧めします。

マイコンテンプレート

弊社販売中のマイコンテンプレートも、上記コード生成ツールのソースコード出力は、そのまま使っております。

マイコンテンプレートの版権は、ご購入者様個人に帰属します。但し、テンプレートそのものの転売、配布はご遠慮ください。お願いいたします。🙏

NXP新汎用MCU S32K1

NXPセミコンダクターズ(以下NXP)から車載・産業機器向けの、新しい汎用Cortex-M0+/M4 MCU S32K1ファミリが発売中です。
同社の汎用MCUと比べ、何が新しいかを調べました。

S32K1の特徴(汎用MCUとの差分)

セキュリティ強化ARMコアは、Cortex-M23/M33があります。ところが、NXPのS32K1ファミリは、従来のCortex-M0+/M4コアを使います。Cortex-M0/M0+/M3汎用MCUと比べると、差分として以下の特徴があります。

AEC-Q100グレード1規格準拠

AEC-Q100:Automotive Electronics Council、車載用電子部品信頼性の規格化団体の規格AEC-Q100は、世界標準規格で欧米の車載向け集積回路の規格。製品使用温度範囲によりグレード0~3まであり、グレード0が-40℃から+150℃で最も広範囲、グレート1は-40℃から+125℃。

セキュリティ強化ハードウェア内蔵MCU

SHE準拠Cryptographic Services Engine (CSEc) - AES128、セキュアブート、ユニークID

専用IDEのソフトウェア開発

S32 Design Studio(Processor Expert)、無償、コードサイズ制限なし

車載・産業 両方向けの汎用MCUで最低15年供給

S32K11x(Cortex-M0+):S32K116/S32K118(2018/7発売)、評価ボード$49
S32K14x(Cortex-M4):S32K142/S32K144/S32K146/S32K148(2017/12発売)、評価ボード$49/$149

S32K MCUs for Automotive and Industrial Applicationsから抜粋したS32K1ファミリの特徴が下図です。図はAEC-Q100グレード0と表記がありますが、Cortex-M0+のS32K11xは、データシートによるとグレード1です。

S32K1特徴
S32K1の特徴 (出典:S32K MCUs for Automotive and Industrial Applications)

S32K118EVB-Q064はDigiKeyで購入可能

新汎用MCUのセキュリティ強化策と専用IDE:S32 Design Studio(Processor Expert)

IoTでは汎用MCUであってもセキュリティ強化が必須です。現在、対策として3アプローチあります。

  1. 汎用コアMCUに、セキィリティ強化回路を内蔵(本稿)
  2. 汎用コアMCUに、外付けセキュリティデバイスを追加 → 関連投稿:セキュリティ強化デバイス:A71CH
  3. セキュリティ強化コアを採用 → 関連投稿:セキュリティ強化ARMコアCortex-M23/M33

1のメリットは、2と比べ部品点数が少ないこと、3と比べ従来の汎用コア開発との親和性が高く、セキュリティ関連開発が容易になる可能性があることです。

専用IDE:S32 Design StudioのAPI生成ツールは、旧FreescaleのProcessor Expertです。NXPが、なぜ既存LPCXpresso IDEでなく、専用S32 Design studioとProcessor Expertを用いたかは不思議です。が、Processor Expertという優れたAPI生成ツールのことを知っている開発者にとっては朗報になるかもしれません。

S32K1の魅力:車載・産業機器・IoT全共用

現在のS32K1ファミリ想定アプリケーションは下記です。車載・産業向けに別々のS32K1が有るわけではなく共用です。

S32Kアプリケーション
S32Kアプリケーション(出典:車載・産業機器向け Arm® Cortex®ベース S32Kマイクロコントローラ (REV 3.1))

2017~2018年に供給が始まり、最低15年の供給保障、全てに評価ボードもあります。Cortex-M0+とCortex-M4間の接続は、次世代車載ネットワークCAN FDです。

S32K14x(Cortex-M4)がNode MCU化しIoT無線通信機能を実装すれば、S32K11x(Cortex-M0+)をEdge MCUとして利用可能で、S32K1が「車載・産業機器・IoT全てを狙える新しい汎用MCU」に大化けする可能性はあると思います。

関連投稿:Node MCUとEdge MCU、気になる点2の章参照

そのほか、FlexIO、FlexTimerなどの新しい周辺回路も実装されていますので、S32K1を引き続き調査する予定です。

LibreOffice更新

2020年10月サポート終了のOffice 2010代替アプリケーションとして評価中のLibreOffice。このLibreOfficeは、十分に使えると結論しました。本稿は、LibreOfficeの更新を示します。

関連投稿:カテゴリー:LibreOffice参照

LibreOffice更新

LibreOfficeの更新は、MicrosoftのOfficeやWindowsの更新方法とは異なります。

2018年11月5日のLibreOfficeマイナー更新で、セキュリティ更新や不具合修正後の版数が下表です。

LibreOffice版数(2018/11/10現在)
パッケージ 想定ユーザ 2018/11/5版数
最新版(stable 技術マニア、新しいもの好き、パワーユーザ 6.1.3.2
安定版(stable ビジネス組織、法人企業、慎重なユーザ 6.0.7

最新版とは、文字通り最新機能を盛り込んだstable=安定リリース版、安定版は、機能更新を最小限にし、より安定志向のstable=安定リリース版です。どちらも64ビット版(x64)と32ビット版(x86)がありますので、合計4種類のパッケージがコチラから無償ダウンロードできます。

全てstableであり、WindowsのFast/Slowリングのように不具合を含む可能性があるリリース版ではないので安心です。

メジャー/マイナー更新

注意が必要なのは、既にLibreOfficeをインストール済みでも、ヘルプ(H)>更新のチェック(C)でチェックされるのが、メジャー更新時だけという点です。11月5日更新は、マイナー更新ですので、更新チェックしても下記のように「LibreOfficeは最新版です」と表示されるだけです。

LibreOfficeの更新のチェック(C)
メジャー更新のみ確認するLibreOfficeの更新のチェック(C)

マイナー更新を確認するには、ヘルプ(H)>LibreOfficeについて(A)で表示されるダイアログでウェブブサイト(W)をクリックし、LibreOfficeサイトでのバージョン版数の目視確認が必要です。

マイナー更新確認
マイナー更新確認にはウェブサイトで現行版とのバージョン目視確認が必要

このマイナー更新の確認→手動更新が手間と感じるか、または、OfficeやWindowsのように勝手に自動更新される方が良いと感じるかは、意見の分かれるところです。

LibreOfficeや本ブログ読者がMCU開発で使う統合開発環境(IDE)の更新方法は、更新の確認後、その更新をインストールするか否かは、ユーザ自身が決定します。一方、OfficeやWindowsの更新方法は、更新インストールが自動です。

万一、自動でインストールした更新版に不具合がある場合には、更新前の貴重な既存開発データが壊れる可能性があります。IDE更新を自動にしない理由は、この重大リスクを避けるためです。
※Windows 10 1809では、Documentsデータが壊れる不具合が発生し、更新一時停止の経緯があるのは周知の事実です。

不具合更新>セキュリティ更新>機能更新

重要度に応じた更新方法が必要です。

重要度が高いセキュリティや不具合の更新は、ユーザへの更新通知と「自動更新インストールでも良い」と思います。しかし、重要度が低い機能更新や新機能追加は、「ユーザ自身が更新可否を判断」すべきです。

重要度判定が困難な場合やユーザに依存する場合には、安全側対策としてLibreOfficeやMCU IDEのように「ユーザの主体性に任せる方が良い」と私は思います。

Office、Windows 10 1809更新

コチラの記事によると、Officeのリボンが、Windows 10 1809更新に伴って、機能は変わらずに見た目が変わったそうです。
※弊社Office 2010リボンは変化なしなので、2010以降のOfficeのことだと思います。

Officeリボン(出典:記事)
Windows 10 1809に伴って変更されたOfficeリボン(出典:記事)

見た目の変更で生産性がどれ程上がるかは不明ですが、ユーザへの告知不足では、混乱のみが生じるでしょう。OfficeやWindows 10 1809は、機能的に過飽和状態なので見た目を変えたがる傾向にあります。

例えば、1809新機能のスマホ同期は、同様の無償アプリケーションが既にあり、わざわざ新機能を使わなくても十分です。WSL(Windows Subsystem for Linux)のように機能有効/無効のスイッチがあれば、それでも良いのですが、スイッチが無い場合には、新機能追加はトラブルの原因です。

Windows 10 1809のDocumentsデータ消失の発生率は、0.01%だそうです。もし、セキュリティ更新と新機能追加を分離して配布していたら、今秋から今も続く1809トラブルは発生したのでしょうか?

技術者、開発者、研究者の更新

最後に、アップデート:更新繋がりで、興味深い記事を見つけたので紹介します。我々も、自ら更新が必要かもしれません。

STM32のStep-by-Step Guide

STマイクロエレクトロニクス(以下STM)公式ブログのカテゴリ:TutorialsからSTM32開発環境を構築する方に最適な投稿を見つけたので、紹介と気になる点を示します。

Step-by-Step Guide

STM32 step-by-step learning program
STM32 step-by-step learning program

2018年10月8日が投稿日のこの記事は、STM32の開発環境(IDE)構築から評価ボード、UART接続、IoT評価ボードとスマホ接続などを5つのStepで示しています。内容は、前後半の2つに大別できます。

前半は、Step1(45分)で開発環境を構築し、Step2(30分)でSTM32CubeMXとHAL説明、Step3(34分)で評価ボード(NUCLEO-L476RG)とUART利用のPC通信を紹介するなど、内容は、弊社昨年のブログ投稿の最新版と言えます。

後半は、Step4(60分)でIoT評価ボードDiscovery kit IoT node (B-L475E-IOT01A)(DigiKeyにて¥6,370販売中)の使い方、Step5(30分)でAndroidスマホと同評価ボードをBLEで直結し、IoTシステムを構築しています。

IoT評価ボードは、Cortex-M4(915MHzまたは868MHz)を使い、Arduinoコネクタ、モーション、ジェスチャ、環境センサなどが実装済みなので、スマホで取得センサデータを視覚化できます。さらにAWS(アマゾン ウェブ サービス)経由でも接続できるので、本格的なIoTノード開発・評価にも使えそうです。AWSとの接続方法は、コチラの動画(11分12秒)に解説されています。
※動画閲覧にはログインが必要です。

関連投稿:Amazon、IoTマイコンへFreeRTOS提供

気になる点1:TrueSTUDIO

STMは、2017年12月に統合開発環境TrueSTUDIO開発元のAtollic社を買収しました。その結果、無償IDEのラインナップは従来と同じですが、開発会社の説明が変化しました。

関連投稿:2018マイコンベンダ最新ニュースのSTM章参照

STM32ソフトウェア開発スイート(要ログイン)のページで説明します。License typeでフィルタすると、無償版IDEラインナップが表示されます。SW4STM32欄のShow more…をクリックすると下段に“This product is supplied by a third party NOT affiliated to ST”の記述があります。これが気になる点です。

IDE License type Free検索結果
IDE License type Free検索結果。SW4STM32には、”not affiliated to ST”の記述がある。

この記述は、TrueSTUDIO欄には無く、代わりにProduct Imageに“ST acquires Atollic”と記載され、STとAtollicのロゴが表示されます。つまり、STMの無償IDEは、TrueSTUDIOが標準?の感じです。

TrueSTUDIOのProduct Image
TrueSTUDIOのProduct Imageは、STとAtollicのロゴが表示

従って、新たにSTM開発環境を構築される方は、TrueSTUDIOを選ぶと良いかもしれません。これを裏付けるのが、Step1紹介のIDEがTrueSTUDIOだということです。TrueSTUDIOがSW4STM32とほぼ同様に操作できるのは、コチラの動画(9分42秒)で解ります。

弊社2017年9月発売のSTM32FxテンプレートもSW4STM32を使っていますが、これもTrueSTUDIOに変えた方が良いかもしれません。但し、TrueSTUDIOには、SW4STM32プロジェクトをそのままインポートする機能が備わっていますので、二手間のOKクリックが増えますがしのげそうです(Step4のP8、Appendix Porting an AC6 example to TrueSTUDIO参照)。

Porting SW4STM32 project to TrueSTUDIO(出典:Step4)
Porting SW4STM32 project to TrueSTUDIO(出典:Step4)。OK2回クリックでSW4STM32プロジェクトをTrueSTUDIOへインポートできる。

IDEポーティングは、MCUベンダーが、古いIDEから新しいIDEへ替える時に良く使う方法で、NXP(Kinetis Design Studio→NXP Expresso)、ルネサス(Hew→CS+)などでもおなじみです。SW4STM32→TrueSTUDIOがあるのも、STMがTrueSTUDIOを推薦しつつある証と言えるでしょう。

気になる点2:Edge MCUとNode MCU

Step-by-Step Guide資料が前後半で使用MCUと評価ボードが2つに別れたように、前半のEdge MCUと後半のNode MCUの2つの機能に分かれてIoT MCUが発展する気がします。

  • Edge MCU:低消費電力でIoTデータ取得(アナログフロントエンド)機能を備えたMCU。従来のベアメタル開発の延長・発展形。
  • Node MCU:AWSなどIoTネットワーク出入口の無線、高度なセキュリティ機能を備えたMCU(Edge MCUを包含する場合あり、例:Discovery kit IoT node)。FreeRTOSなどのOS実装は必須で、従来MCUより高機能・高性能、1GHzにせまる高速動作。

※ベアメタル開発:OSなどを使わないMCU開発

Edge MCUとNode MCUの違いは、端的に言えば、ベアメタルソフトウェア開発かRTOSソフトウェア開発かです。MCUソフトウェア開発者も、ベアメタルとRTOSの2つに分かれるかもしれない、というのが第2の気になる点です。

Edge MCUだけではIoTに接続すらできません。Node MCUがIoT接続に必須になりつつある気がします。

Cortex-M0/M0+/M3比較とコア選択

デバイスが多く選択に迷う方も多いマイコン:MCU。周辺ハードウェアも異なるので、最初のMCUコア選択を誤ると、最悪の場合、開発のし直しなどに繋がることもあります。

本稿は、STマイクロエレクトロニクスのSTM32マイコンマンスリー・アップデート10月号P8のトレーニング資料、STM32L0(Cortex-M0+)掲載のARM Cortex-M0/M0+/M3の比較資料を使ってMCUコア選択方法についての私案を示します。

STM32L0(Cortex-M0+)トレーニング資料

各種STM32MCU(Cortex-Mx)毎の非常に良くできた日本語のテクニカルスライド資料が入手できます。例えばSTM32L0(Cortex-M0+)は194ページあり、1ページ3分で説明したとしても、約10時間かかる量です。他のMCU(Cortex-Mx)資料も同様です。

開発に使うMCUが決まっている場合には、当該資料に目を通しておくと、データシート読むよりも解りやすいと思います。しかし、Cortex-Mxコア差を理解していない場合や、開発機器の将来的な機能拡張や横展開等を考慮すると、どのMCU(Cortex-Mx)を現状開発に使うかは重要検討項目です。

ここで紹介するSTM32L0(Cortex-M0+)トレーニング資料には、Cortex-M0+特徴説明のため、通常データシートには記載が無いCortex-M0やCortex-M3との違いも記載されています。

そこで、STMマイコンのみでなく一般的なARMコアのMCU選択に重要な情報としても使えるこの重要情報ページを資料から抜き出しました。

Cortex-M0/M0+/M3比較

バイナリ上位互換性

Cortex-Mxのバイナリ互換性(出典:STM32L0(Cortex-M0+)トレーニング資料)
Cortex-Mxのバイナリ互換性(出典:STM32L0(Cortex-M0+)トレーニング資料)

先ず、P22のCortex-Mプロセッサのバイナリ互換性です。この図は、Cortex-Mxコアの命令セットが、xが大きくなる方向には、上位互換であることを示しています(ただし再コンパイル推薦)。逆に、xが小さくなる方向は、再コーディングが必要です。

つまり、Cortex-M0ソースコードは、M0+/M3/M4へも使えるのです。Cortex-Mxで拡張された命令セットの特徴を一言で示したのが、四角で囲まれた文章です(Cortex-M3なら、“高度なデータ処理、ビットフィールドマニピュレーション”)。
さらに、STM32MCU内臓周辺ハードウェアは、各シリーズで完全互換なので、同じ周辺ハードウェア制御ソースコードはそのまま使えます。

もちろんxが大きくなるにつれコア性能も向上します。しかし、よりCortex-Mx(x=+/3/4)らしい性能を引き出するなら、この四角文章のコーディングに力点を置けば、それに即した命令が用意されているので筋が良い性能向上が期待できる訳です。

超低電力動作Cortex-M0+、39%高性能Cortex-M3

P22ではCortex-M0とM0+の違いが解りません。そこで、P19のCortex-M0/0+/3機能セット比較を見るとCortex-M0+が、Cortex-M0とCortex-M3の良いとこ取り、中間的なことが解ります。また、Cortex-M3が、M0比39%高性能だということも解ります。

Cortex-M0_M0+_M3セット比較(出典:STM32L0(Cortex-M0+)トレーニング資料)
Cortex-M0_M0+_M3セット比較(出典:STM32L0(Cortex-M0+)トレーニング資料)

具体的なCortex-M0+とCortex-M0との差は、P20が解りやすいです。Cortex-M0+は、性能向上より30%もの低消費動作を重視しています。また、1サイクルの高速GPIOも特徴です。Cortex-M0+は、M0の性能を活かしつつより既存8/16ビットMCU市場の置換えにチューニングしたからです。

Cortex-M0とCortex-M0+の比較(出典:STM32L0(Cortex-M0+)トレーニング資料)
Cortex-M0とCortex-M0+の比較(出典:STM32L0(Cortex-M0+)トレーニング資料)

さらにP21には、低電力化に寄与した2段になったパイプラインも示されています。Cortex-M0/M0+は、今年初めから話題になっている投機的実行機能の脆弱性もありません。

Cortex-M0とCortex-M0+のブランチ動作(出典:STM32L0(Cortex-M0+)トレーニング資料)
Cortex-M0とCortex-M0+のブランチ動作(出典:STM32L0(Cortex-M0+)トレーニング資料)

関連投稿:Cortex-Mシリーズは、投機的実行機能の脆弱性はセーフ

共通動作モード:Sleep

Cortex-M0とCortex-M0+の低消費電力モード(出典:STM32L0(Cortex-M0+)トレーニング資料)
Cortex-M0とCortex-M0+の低消費電力モード(出典:STM32L0(Cortex-M0+)トレーニング資料)

低電力化は、Cortex-M0+で追加された様々な動作モードで実現します。この一覧がP70です。つまり、Cortex-M0+らしさは、M0にない動作モード、LP RUNやLP sleep (Regulator in LP mode)で実現できるのです。

逆に、SleepやSTANBYの動作モードは、Cortex-M0/M0+で共通です。さらに、Cortex-M3でも、アーキテクチャが異なるので数値は異なりますが、SleepとSTANBY動作モードはM0/M0+と共通です。

ここまでのまとめ:Cortex-M0/M0+/M3の特徴

Cortex-M0/M0+/M3の特徴・違いを一言で示したのが、下表です(関連投稿より抜粋)。

各コアの特徴は、MCUアーキテクチャや命令セットから生じます。但し、M0/M0+/M3でバイナリ上位互換性があるので、全コアで共通の動作モードがあることも理解できたと思います。

ARM Cortex-Mx機種 一言で表すと…
Cortex-M0+

超低消費電力ハイパフォーマンスマイコン

Cortex-M0

低消費電力マイコン

Cortex-M3

汎用マイコン

Cortex-M4

デジタル信号制御アプリケーション用マイコン

関連投稿:ARMコア利用メリットの評価

MCUコア選択方法

  1. Cortex-M0またはCortex-M0+コアでプロトタイプ開発を行い、性能不足が懸念されるならCortex-M3コア、さらなる消費電力低下を狙うならCortex-M0+コアを実開発で選択。
    プロトタイプ開発に用いるソースコードは、そのまま実開発にも使えるように、全コアで共通の動作モードで開発。
  2. 早期にプロトタイプ開発を実開発に近い形で作成するために、弊社マイコンテンプレートを利用。

1.は、本稿で示した内容を基に示したMCUコア選択指針です。低消費電力がトレンドですので、プロトタイプ開発の段階から超低消費電力のCortex-M0+を使うのも良いと思います。しかし、初めから超低消費動作モードを使うのでなく、全コアで共通動作モードでの開発をお勧めします。

理由は、万一Cortex-M0+で性能不足が懸念される時にCortex-M3へも使えるソースコードにするためです。プロトタイプ開発の段階では、ソースコードの実開発流用性と実開発の評価を目的にすべきです。チューニングは、実開発段階で行えばリクスも少なくなるでしょう。

2.は、プロトタイプ開発実現手段の提案です。マイコンテンプレートは、複数のサンプルソフトを結合して1つにできます。実開発に使える(近い)サンプルソフトさえ見つけられれば、それらをバラック的にまとめて動作確認できるのです。これにより、当該コアのプロトタイプ評価が早期にできます。

また、マイコンテンプレートで使用したSTM32評価ボードは、ボードレベルでピンコンパチなのでCortex-M0/M0+/M3への変更も簡単です。

関連投稿:マイコンテンプレートを使ったアプリケーション開発手順

MCUコア選択の注意事項:重要度評価

ARMコア向けの弊社マイコンテンプレートは、全てCortex-M0/M0+/M3共通の動作モードで開発しています。
その理由は、テンプレートという性質・性格もありますが、本稿で示した他のARMコアへのソースコード流用性が高いからです。試しに開発したソースコードであっても、無駄にはならないのです。

最後に、P184、P185に示されたCortex-M0(STM32F0)とCortex-M3(STM32L1)、Cortex-M0+(STM32L0)のADCの差分を示します。

Cortex-M0/M0+/M3のADC比較1(出典:STM32L0(Cortex-M0+)トレーニング資料)
Cortex-M0/M0+/M3のADC比較1(出典:STM32L0(Cortex-M0+)トレーニング資料)
Cortex-M0/M0+/M3のADC比較2(出典:STM32L0(Cortex-M0+)トレーニング資料)
Cortex-M0/M0+/M3のADC比較2(出典:STM32L0(Cortex-M0+)トレーニング資料)

STM32MCU内臓周辺ハードウェアは、各シリーズで完全互換と先に言いましたが、スペックを細かく見るとこのように異なります。

このハードウェア差を吸収するのが、STM32CubeMXで提供されるHAL(Hardware Abstraction Layer)です。つまり、STMマイコンを使うには、コア選択も重要ですが、STM32CubeMX活用も同じように重要だということです。もちろん、STM32FxマイコンテンプレートもSTM32CubeMXを使っています。

ARMコアは、バイナリ上位互換ができる優れたMCUコアです。MCUベンダーは、同じARMコアを採用していますが、自社のMCU周辺ハードウェアレベルにまで上位互換やその高性能を発揮できるような様々な工夫・ツールを提供しています。

開発MCUを選択する時には、コア選択以外にも多くの選択肢があり迷うこともあるでしょう。多くの場合、Core-M0/M0+/M3などの汎用MCUコアでプロトタイプ開発を行えば、各選択肢の重要度評価もできます。スペックだけで闇雲に選択するよりも、実務的・工学的な方法だと思います。

STM32MCUのアンチ・タンパ機能

STマイクロエレクトロニクス(以下STM)のSTM32MCUマンスリー・アップデート最新10月号から、アンチ・タンパ機能を紹介します。

関連投稿:「日本語マイコン関連情報」のSTM32マイコン マンスリー・アップデート

タンパとは

タンパ:tamperとは、(許可なく)いじくることです。例えば、MCUパッケージをこじ開けるなどの行為(=タンパイベント)を検出した場合、内部バックアップ・レジスタを全消去し、重要データが盗まれるのを防ぐのがアンチ・タンパ機能です。MCUハードウエアによるセキュリティの一種です。

※マンスリー・アップデート10月号、P13の“STM32のココが便利”、今月のテーマ:~その2~参照

セキュリティの重要性がユーザで認識されつつあるので、開発者としては、「タンパ保護」、「アンチ・タンパ」、「RTCレジスタ保護」、「GPIO設定ロック」などのキーワードは覚えておくと良いでしょう。基本機能実装後にセキュリティを追加する時や、他社差別化に役立つからです。

STM32MCUのセキュリティ機能

マンスリー・アップデート9月号、P12今月のテーマにもセキュリティ機能がありますが、これはSTM32MCU独自というより、ARM Cortex-MコアMCU全てに実装の機能です。STM32MCUと他社の差別化には使いにくいと思います。

差別化に適すのは、ARM Cortex-Mコア以外の周辺回路です。そこで、RTCとGPIOについて、本ブログ掲載中の評価ボード実装MCU、STM32F072RB(Cortex-M0)とSTM32F103RB(Cortex-M3)のタンパ機能設定方法をデータシートで調べました。

出典:STM32F071x8 STM32F071xBデータシート 2017/1版
出典:STM32F103x8 STM32F103xBデータシート 2015/8版

関連投稿:STM32マイコンの評価ボード選定

RTC

MCUで処理実時刻を記録する場合などには、RTCが便利です。

RTCのアンチ・タンパ機能は、アラーム・タイムスタンプとRTCレジスタ保護の2つがあります。RTCレジスタ保護は、RTCレジスタへのアクセス手順のことです。RTC利用時、通常レジスタと異なる面倒な手順でRTCレジスタを設定しているのをサンプルソフトで見た記憶があります。

アラーム・タイムスタンプは、タンパイベント発生時のカレンダーを記録する機能です。但し、データシート内の説明は少なく、実際にソフトウェアでどのように設定すれば機能するかは不明です。

試しにSTM32CubeMXでSTM32F072RBのRTCを設定すると、Tamper 2のみ設定可能です。ヘルプ資料UM1718の説明も少なく、やはり詳細は不明です。
但し、将来アンチ・タンパ機能を実装するなら、Tamper 2に連動してアクティブ化するPA0ピンは、リザーブした方が良さそうです。

STM32F072RBのTamper 2とPA0
STM32F072RBのTamper 2に連動してアクティブ化するPA0ピン

同じ理由で、STM32F103RBならPA13ピンをアンチ・タンパ機能用にリザーブできると良いでしょう。

GPIO設定ロック

GPIO機能を固定するGPIO設定ロックについては、データシート内をTamperで検索してもヒットせず記述もありません。

まとめ

STM32MCUのアンチ・タンパ機能を、STM32マイコン マンスリー・アップデートから抜粋、解説しました。

ユーザがMCUセキュリティを重視しつつあるので、STM32MCUハードウエアが提供するセキュリティの一種であるアンチ・タンパは、他社差別化機能として役立つと思います。

そこで、STM32F072RBとSTM32F103RBのRTC/GPIOソフトウェアでのアンチ・タンパ設定方法をデータシートで調査しましたが、具体的情報は得られませんでした。

対策として、RTC/GPIOサンプルソフトから設定を得る方法があります。但し、ソースコードには、アンチ・タンパ機能の目的や、なぜ面倒な設定手順が必要かについての記述は無いので、マンスリー・アップデートのアンチ・タンパ、RTCレジスタ保護やGPIO設定ロックの理解が、サンプルソフト解読に必要だと思います。