MCU:マイコン,STM32マイコン,Cortex-M4コアIoTマイコン,FreeRTOS,STM32CubeMX,セキュリティ,STM32CubeIDE,NUCLEO-G474RE,STM32G4,STM32G4テンプレート,CMSIS RTOS,アプリケーションテンプレート,NUCLEO評価ボード

販売中のNXP版FreeRTOSアプリケーションテンプレートに続いて、STマイクロエレクトロニクス版CMSIS-RTOSアプリケーションテンプレート構想を示します。

IoT MCU開発者にRTOS開発経験とスキルが必須であること、短期で効率的にRTOSスキルを磨けるSTマイクロエレクトロニクス版CMSIS-RTOSアプリケーションテンプレート構想を示し、汎用性、セキュリティ、広い流用性を持つSTM32G4をターゲットMCUにした理由を示します。

IoT MCU開発者スキル

IoT MCU開発者スキルの階層構造
IoT MCU開発者スキルの階層構造

IoT MCU開発者は、ベアメタルMCU開発スキルの上に、FreeRTOSやAzure RTOSなど接続するクラウドに応じたRTOSスキルが必要です。クラウド接続後、顧客要求のIoTサービスを実装しますが、実装時には、競合他社より早い開発スピードなどの差別化スキルも要求されます。

更に、IoTセキュリティや、より高性能なデュアルコアMCUへの流用、顧客横展開など、発展性への配慮も必要です。これらは、図示したようにベアメタルMCU開発スキルを基礎とする階層構造です。
※スキルとは、開発経験に基づいた手腕、技量のことです。

RTOS開発経験とスキル

全てのモノをネットワークへ繋ぐ時代は、従来のMCUからIoT MCUへの変革が必要です。IoT MCU開発者にとってRTOS開発経験とスキルは、近い将来必須になります。理由が下記です。

・RTOSライブラリ利用がクラウド接続に必須  👉①IoT MCU急増への備え
・大規模MCU開発にRTOSが便利(≒必須)   👉②開発規模拡大への備え
・ベアメタル開発よりもRTOS開発が効率的   👉③ソフトウェア資産への備え(補足参照)

つまり、過去何度も提言されたMCUソフトウェア資産化・部品化を、RTOSが実現するからです。逆に、IoT MCU開発では、このソフトウェア資産化・部品化(ライブラリ活用)無しには、実現できない規模・技術背景になります。
※例えば、IoTセキュリティだけでも専門家が対応すべき領域・規模・技術背景になりそうです。

IoT MCU開発の成功には、様々な専門家技術が活用できる土台のRTOSは必須です。IoT MCU開発専門家の一員となるには、RTOS開発経験とスキルは必須と言えるでしょう。

効率的RTOSスキル習得

ベアメタル開発経験者の効率的なRTOS基礎固め、スキル取得を弊社STM版CMSIS-RTOSアプリケーションテンプレートの目的とします。

この目的は、NXP版FreeRTOSアプリケーションテンプレートと同じです。違いは、NXP版がFreeRTOSを用い、STM版は、コード生成ツール:STM32CubeMXが出力するCMSIS-RTOSを用いる点です。

現時点のSTM版CMSIS-RTOS APIは、FreeRTOS APIをラップ(wrapper)したもので、中身はFreeRTOSそのものです。※CMSIS-RTOS詳細は、コチラの関連投稿を参照してください。

ベアメタル開発経験者のRTOS基礎固め・スキル獲得を、短期・効果的に達成するには、

・基本的RTOS待ち手段(タスク同期:セマフォとタスク間通信:Queue)理解
・RTOSプロトタイプ開発にも使える弊社テンプレートプロジェクト活用

が適しています。

既に持っているベアメタル開発経験を活かし、例えば、単独RTOSサンプルプロジェクトでは得られない複数タスク優先順位を変えた時の各タスク挙動や、RTOSセマフォ送受失敗時の挙動などスキルアップに役立つ事柄を、自ら評価・判断できるからです。この評価を助けるために、同じ動作のベアメタルプロジェクトもテンプレートに添付します。

効率的にRTOS開発スキルを習得する方法として、自己のベアメタル開発経験を使ってRTOS習得・スキルアップする本手法は、Betterな方法だと思います。

コチラにFreeRTOS習得に役立つ情報をまとめています。ポイントとなる点をざっと掴んで、実際の開発環境で試し、参考書やマニュアルなどの内容を開発者自ら考える、これにより新技術やスキルを、身に付けることができると思います。

STM版CMSIS-RTOSアプリケーションテンプレート構想

STM版CMSIS-RTOSアプリケーションテンプレートも、NXP版同様、同一動作のベアメタルプロジェクトを添付します。

RTOS/ベアメタルどちらのプロジェクトも、ADC入力、LCD出力、SWチャタリング対策入力、LED出力、VCOM入出力の動作確認済みで、プロトタイプ開発着手時のスタートプロジェクトとしても利用可能です。

付属説明資料には、ベアメタル視点からのCMSIS-RTOS説明を加えます。また、テンプレート利用CMSIS-RTOS APIとFreeRTOS APIの対応表も添付する予定です。

CMSIS-RTOSアプリケーションテンプレートをご購入後、ベアメタル開発経験者が、RTOSプロジェクトとベアメタルプロジェクトの比較・評価がスグに始められる構成です。※比較・評価は、ご購入者ご自身で行ってください。

STM32メインストリームMCU比較(出展:STマイクロエレクトロニクスに加筆)
STM32メインストリームMCU比較(出展:STマイクロエレクトロニクスに加筆)

CMSIS-RTOSアプリケーションテンプレート動作環境は、メインストリームMCUのSTM32G4評価ボード:NUCLEO-G474RE(Cortex-M4/170MHz、Flash/512KB、RAM/96KB)とHAL APIを用います。

STM32G4は、高性能で汎用性とIoT MCU基本的セキュティ機能を備え、RTOSテンプレートのターゲットIoT MCUとして最適です。

STM32G4のセキュリティ機能を示したのが下図です。

STM32G0とG4のセキュリティ対応(出展:STM32 Security対応表に加筆)
STM32G0とG4のセキュリティ対応(出展:STM32 Security対応表に加筆)

また、STM32G4の汎用性、他MCUへの開発ソフトウェア流用性の広さを示したのが下図です(詳細は、コチラの関連投稿3章を参照してください)。

NUCLEO-G474RE搭載のSTM32G474RETx Compatible MCU List。2021年8月時点で98MCU!
NUCLEO-G474RE搭載のSTM32G474RETx Compatible MCU List。2021年8月時点で98MCU!

NUCLEO-G474RE評価ボードの他には、ArduinoプロトタイプシールドとBaseboardを用います。

つまり、販売中のNXP版FreeRTOSアプリケーションテンプレート評価ボード:LPCXpresso54114が、STマイクロエレクトロニクスNUCLEO-G474REにのみ変化した構成です。

CMSIS-RTOS動作もNXP版と同様、Hardware Independent FreeRTOS Exampleを基としますので、(両テンプレートをご購入頂ければ)STMとNXPのRTOSアプリケーション開発の直接比較なども可能です。

STM版CMSIS-RTOSアプリケーションテンプレートのリリースは、今秋のWindows 10 21H2更新後(Windows 11リリース後かも?)を予定しております。時間的に少し余裕がありますので、Cypress版PSoC 6ディアルコア対応FreeRTOSアプリケーションテンプレートも同時リリースできればBestだと考えています。

補足:③ソフトウェア資産への備え

ベアメタル開発でもソフトウェア規模が大きくなると、開発者が悩む点は、複数処理の待ち合わせ/制御順序です。対策は、処理を細かく分割し、優先度を考慮しつつ順次処理を行うのが常套手段です。

ところが、RTOSを使うと、この面倒な待ち処理や制御順序を、RTOSがタスク優先順位に応じて処理します。しかも、処理分割も、RTOSがTICK_RATE_HZ単位で勝手(!?)に行ってくれます😀。

RTOSにより、タスク数やTICK_RATE_HZ、最大優先順位に応じたスタックを大量に利用しますのでRAM使用量の増加、RTOS自身のオーバーヘッドなど副作用も生じますが、「タスク記述は、超簡単」になります。

初期設定と無限ループ、ループ内のRTOS待ち手段、優先順位を検討すれば、文字通り単一処理タスクを開発し、マルチタスク化はRTOSに任せます。

※ベアメタル開発経験者は、セマフォ、Queue、Mutex、イベントグループなどのRTOS待ち手段を、上記実現のためのAPIと捉えると、RTOS理解が早くなります。
※上記手法を使うと、ベアメタルサンプルプログラムもそのままRTOSへ組込めます。
※最も難しそうなのが優先順位検討ですが、ソース上で簡単に変更できます。
※RTOSマルチタスク処理を100%信頼した上での筆者感想です。

Cortex-M4コアでRTOSが使えMCUのFlash/RAMに余裕があれば、ベアメタル開発よりもRTOS開発の方が効率的に開発できると思います。また、この環境で開発したソフトウェアは、資産として別のRTOS開発へも使えるので個人ソフトウェア資産化も可能です。

上記は、RTOSの筆者感想です。弊社RTOSアプリケーションテンプレートをご購入頂き、各開発者でRTOSに対する独自感想を抱き、短期で効率的にRTOS開発経験とスキルを磨いて頂ければ幸いです。

MCU:マイコン,STM32マイコン,Cortex-M0+コア,Cortex-M23コア,Cortex-M4コアIoTマイコン,STM32CubeMX,セキュリティ,STM32CubeIDE,STM32G071RB,HAL API,STM32G474RE,STM32RTOS

2021年7月19日、STマイクロエレクトロニクスのMCU統合開発環境が、STM32CubeIDE v1.7.0とSTM32CubeMX v6.3.0へ更新されました。Major releaseです。開発済みMCUのSTM32CubeMX設定を、簡単に別ターゲットMCUへ移植する機能を解説します。

Major Release

STM32CubeIDE(以下、CubeIDE)は、ベースのEclipse IDE 更新に追随し年数回更新があります。今回のCubeIDE v1.7.0更新内容に、特に気になる点はありません。

一方CubeIDE付属コード生成ツール:STM32CubeMX v6.3.0(以下、CubeMX)には、開発済みMCUのCubeMX設定を、別MCUや別シリーズMCUへ簡単に移植する機能があります。移植性の高いHAL(Hardware Abstraction Layer)APIと併用すると、開発済みソフトウェアの再利用が簡単で強力なAPI生成ツールになりました。

STM32CubeMX設定移植機能

CubeMXには詳細な英語ユーザマニュアルUM1718 Rev35(全368ページ)があり、p1に主要機能説明があります。本ブログでもCubeMXコード生成機能の使い方やその重要性、STM32F0からF1へのソフトウェア移植方法などを何度か紹介してきました(検索窓に「STM32CubeMX」と入力すると関連投稿がピックアップされます)。

従来投稿は、MCUのCubeMX設定を、ターゲットMCUへ各項目を見ながら手動移植する方法でした。この方法は、予めターゲットMCUとの互換性が解っている場合や、移植周辺回路が少ない場合には有効です。

しかし、MCUの種類が増え、別シリーズMCUへ、または多くの周辺回路設定を個別に移植したい場合は、事前チェックは面倒です。そんな時に役立つ2機能が、UM1718 p1太文字記載の下記です。

  • Easy switching to another microcontroller
  • Easy exporting of current configuration to a compatible MCU

どちらもCubeMX画面のPinout & Configurationタブ選択、Pinoutプルダウンメニュー>List Pinout Compatible MCUs (Alt-L)をクリックすると、Full Compatible/Need Hardware change MCUが一覧表で表示されます。

List pinout compatible MCUs
List pinout compatible MCUs

STM32G0xテンプレート例

販売中STM32G0xテンプレートで使用中の汎用MCU:STM32G071RB(Cortex-M0+/64MHz、Flash/128KB、RAM/36KB)の例を示します。これは、評価ボードNUCLEO-G071RB搭載MCUです。

STM32G071RB Full and Partial match MCU List
STM32G071RB Full and Partial match MCU List

評価ボード搭載のLQFP64パッケージでフィルタ設定すると、青色:完全互換の汎用STM32G0シリーズMCUが12アイテム、黄色:一部ハードウェア変更が必要な低電力STM32L0シリーズMCUが17アイテムリストアップされます。

例えば、FlashやRAMを増量したい場合には、STM32G0B1RBへ開発ソフトウェアがそのまま移植できることが解ります。また、より低電力化したい場合には、STM32L071RBへも移植可能です。あとは、ターゲットMCUを選択し、STM32G0xテンプレートのCubeMXプロジェクト設定を全て移植するか、または一部周辺回路のみを移植するかの選択も可能です。

つまり、開発済みソフトウェアを別MCUへ移植する際に、容易性(完全互換/一部HW変更)と方向性(大容量化/低電力化など他MCUシリーズ適用)を評価でき、かつ、ターゲットMCU選択後は、ダイアログに従って操作すれば、CubeMX設定全て、または周辺回路毎にターゲットMCUへ自動移植ができる訳です。

CubeMX設定の移植後は、ターゲットMCU上で通常のようにコード生成を実行すれば、周辺回路初期設定や動作に必要となる関数群の枠組みが作成されます。その枠組みへ、STM32G0xテンプレートのHAL API開発済みソフトウェアをコピー&ペーストし、ターゲットMCUへのソフトウェア移植が完了です。

汎用MCUとHAL APIプロトタイプ開発

最新メインストリーム(汎用)プロトタイプ開発イメージ
最新メインストリーム(汎用)プロトタイプ開発イメージ

CubeMX設定の自動移植が簡単なことは、前章まででご理解頂けたと思います。

前例STM32G0xテンプレート開発ソフトウェアの移植可能なMCU数が12+17=29と大きいのは、汎用MCUとHAL APIを使ったソフトウェア資産だからです。

最新IoT MCU開発でも、STM32G0/G4シリーズなどの移植性が高い汎用MCU(=メインストリームMCU)とHAL APIを使って主要機能をプロトタイプ開発し、CubeMX移植機能を使ってターゲットIoT MCUへ移植すれば、最新IoT MCUの差分機能開発に集中できます。

つまり、「汎用MCUとHAL API利用のプロトタイプ開発は、他MCUへの移植性が高く、汎用との差分開発に集中できる高い生産性」をもたらす訳です。

※STM32G0/G4シリーズは、新プロセスで従来汎用STM32F0/F1/F3シリーズを高速・低電力化・セキュリティ強化した新しい汎用MCUです。コチラの関連投稿や、STM32U5発表と最新IoT MCU動向を参照してください。

STM32G0とG4のセキュリティ対応(出展:STM32 Security対応表に加筆)
STM32G0とG4のセキュリティ対応(出展:STM32 Security対応表に加筆)

まとめ

STマイクロMCU統合開発環境が、STM32CubeIDE v1.7.0とSTM32CubeMX v6.3.0へMajor Releaseされました。

開発済みMCUのCubeMX設定を、別MCUへ簡単に移植する機能があり、移植性が高い汎用(メインストリーム)MCUとHAL APIによるプロトタイプ開発ソフトウェア資産を、効率的に他MCUへ再活用できる統合開発環境になりました。

補足:NUCLEO評価ボードのユーザLED不足対策

汎用MCUとHAL APIプロトタイプ開発には、低価格で入手性も良いNUCLEO評価ボードが適しています。

但し、NUCLEO評価ボードのユーザ緑LED(LD2)とSW(B1)が、各1個と少ない点が残念です。CubeIDEサンプルプログラムは、単機能サンプル動作なので各1個でもOKですが、少し複雑な例えばRTOS並列動作確認などには、特にLEDが不足します。

お勧めは、赤LED 2個、SW 1個が実装済みのArduinoプロトタイプシールドです。残念ながらNUCLEO評価ボードSW(B1)は操作できないのでシールドSWで代用します。評価ボードArduinoピンとの配線や、付属ブレッドボードへの回路追加も簡単です。ST以外の様々なMCUベンダのArduinoコネクタ付き評価ボードでも使えます。

NUCLEO評価ボードLED不足対策のArduinoプロトタイプシールド。付属ブレッドボードに回路追加も容易。
NUCLEO評価ボードLED不足対策のArduinoプロトタイプシールド。付属ブレッドボードに回路追加も容易。

NUCLEO-G474REとArduinoプロトタイプシールドの使用例を示します。ArduinoプロトタイプシールドのLED1は、Lpuart受信、LED2は、SW操作、評価ボードのLD2は、1s/500ms/40ms点滅の動作確認に使っています。

STM版RTOSアプリケーションテンプレート構想もこの環境で検討中です(関連投稿:STM32RTOS開発3注意点(前編)、(後編))。

MCU:マイコン,STM32マイコン,Cortex-M4コアARMマイコン,FreeRTOS,STM32CubeMX,STM32G071,STM32G4,Azure RTOS,CMSIS RTOS,CMSIS-V1

STM32MCUでRTOS開発を行う時の3注意点、前編のSTM32CubeMX、HALに続き、本稿後編でCMSIS-RTOS関連を示します。

※木曜からの東京オリンピック4連休のため、通常金曜を本日水曜日に先行して投稿します。

前編は、STM32RTOS開発実例として、NUCLEO-G474RE FreeRTOS_QueuesサンプルプロジェクトのSTM32CubeMX(以下CubeMX)コード出力を使い、HALタイムベース変更の必要性を示しました。後編は、前編と同じ実例を使ってCMSIS-RTOSの注意点を示します。

FreeRTOS_Queues STM32CubeMXファイルのTasks and Queues

NUCLEO-G474RE FreeRTOS_QueuesサンプルプロジェクトのCubeMX構成ファイル:FreeRTOS_Queues.icoを開き、Middleware>FREERTOSのTasks and Queuesタブをクリックしたのが下図です。

FreeRTOS_QueuesのSTM32CubeMXファイルTasks and Queues
FreeRTOS_QueuesのSTM32CubeMXファイルTasks and Queues

2つのタスク:MessageQueuePro(Qプロデューサ:送信タスク)とMessageQueueCon(Qコンシューマ:受信タスク)と、1つのQ:osQueue(深さ1:ワード)を、CubeMXで自動生成するパラメタが設定済みです。関連投稿:NXP版FreeRTOSのQueueデータ送受信と同じです。

全て黒文字パラメタですので、変更も可能ですが、このままソースコードを自動生成(Alt+K)してください。

CMSIS-RTOS APIからFreeRTOS API変換(wrapper)

CMSIS-RTOS APIからFreeRTOS API変換
CMSIS-RTOS APIからFreeRTOS API変換

main.cのL125に、osQueueを生成するAPI:osMessageCreateが自動生成済みです。また、L134とL138に、MessageQueueProとMessageQueueConのタスク(Thread)を生成するAPI:osThreadCreateも自動生成済みなのが判ります。

ここで、API先頭にosが付くのは、CMSIS-RTOSのAPIだからです(L145のosKernelStartも同様)。詳細は、次章で説明します。

さて、L125のosMessageCreateへカーソル移動し、F3をクリックすると、cmsis-os.cのL1040へジャンプし、CMSIS-RTOS APIのosMessageCreateの中身が見えます。その中身が、L1055のxQueueCreateで、これはFreeRTOSのAPIです。

つまり、CubeMXが自動生成したのは、CMSIS-RTOS APIですが、その実体は、FreeRTOS APIであることが判ります。
この例のように、CubeMXが生成したCMSIS-RTOS APIは、cmsis_os.cで全てFreeRTOS APIへ変換されます。

CMSIS-RTOS

CMSIS-RTOSは、Cortex-Mコア開発元ARM社が定めたRTOS APIの規格です。
※CMSIS:Cortex Microcontroller Software Interface Standard

Cortex-Mコアには、FreeRTOS/Azure RTOS/mbed OSなど様々なRTOSが使えます。下層のRTOSが変わるとAPIも変わりますが、そのAPIを変換し、上層アプリケーションへ共通なRTOS APIを提供する、これにより、

  1. RTOSが異なっても、同じ開発アプリケーションが使えること
  2. Cortex-Mコアが異なっても、開発アプリケーション移植を容易にすること

これらがCMSIS-RTOSの目的です。

これをラップ(wrap=…を包む)と呼ぶことがあります。ラップ関数(wrapper)とは、下層API差を隠蔽し、上層アプリケーションへ同一APIを提供する関数のことです。STM32RTOS開発でのCubeMXの役目の1つは、使用するRTOSに応じたwrapperを提供することです。

現在、STM32RTOS開発のCubeMXがラップしているのは、FreeRTOSだけです。今後、FreeRTOSがAzure RTOSなどへ変わっても、開発アプリケーションをそのまま活用するために、今の時点からCMSIS-RTOS APIを使っている訳です。

Cortex-M0/M0+/M3/M4/M7コア向けの共通RTOS APIがCMSIS V1、Cortex-A5/A7/A9と全Cortex-Mコア向けの共通RTOS APIがCMSIS V2です。STM32RTOS開発では、CMSIS V1を用います。

CMSIS-RTOS とFreeRTOSのAPI

UM1722にCMSIS-RTOS APIとFreeRTOS APIの一覧が示されています。抜粋したのが下表です。

FreeRTOSとCMSIS-RTOSのAPI
FreeRTOSとCMSIS-RTOSのAPI

接頭語にx/vなどが付くのがFreeRTOS API、osが付くのがCMSIS-RTOS APIです。

CubeMXが生成するコードは、常にCMSIS-RTOS APIですが、実体はFreeRTOS APIです。FreeRTOSが別のRTOSへ変わっても、CMSIS-RTOS APIは同じです。CMSIS-RTOS APIとFreeRTOS APIのwrapper分のオーバーヘッドは生じますが、下層RTOSに依存しない点は、先進的で優れています。

なおUM1722 Rev3には、単にAPI列記とwrapper、RTOSサンプルプロジェクトの簡単な説明が記載されているだけです。

まとめ

STM32MCUでRTOS開発を行う時の3注意点(前編:STM32CubeMX、HAL)に続き、本稿後編で3つ目のCMSIS-RTOSを示しました。

STM32RTOS開発のSTM32CubeMXが扱うRTOSは、現在FreeRTOSだけです。FreeRTOSが別のRTOSへ変わっても、CubeMXは、開発アプリケーション流用性を高めるためにFreeRTOS APIの代わりにRTOS共通CMSIS-RTOS APIを出力します。

CMSIS-RTOS APIには、Cortex-M0/M0+/M3/M4/M7コア間で開発アプリケーション移植性が高いCMSIS V1を使います。

CMSIS-RTOS API変換オーバーヘッドがありますが、流用性、移植性に優れたRTOSアプリケーション開発ができる点は、優れています。

あとがき

残念ながらCMSIS-RTOS情報は、シェア1位AWSのFreeRTOSに比べ少なく、この少ない情報を使ってSTM32RTOS開発を行うのは、大変です。
※2位がAzureのAzure RTOS、3位がGCP(Google Cloud Platform)のmbed OS。関連投稿はコチラ

例えば、最初の図:CubeMXのTasks and QueuesのGUI設定パラメタが多いにもかかわらず、UM1722サンプルプロジェクト説明が少ない点などです。

RTOSは、複数タスク(CMSIS-RTOSではThread)間の優先順位差とRTOS自身の動作により、開発タスク処理状態が変わります。ベアメタル視点に加え、RTOS視点でのタスク開発と経験が求められます。QueueなどRTOS単独手段理解が目的のサンプルプロジェクトだけでは、RTOS開発経験は積めません。

弊社はこれらの対策として、効率的なRTOS基礎固め、STM32RTOSアプリケーションのプロトタイプ開発早期着手を目的としたSTM版RTOSアプリケーションテンプレート(仮名)を検討中です。その構想は、固まり次第、別稿にて示す予定です。

なお、NXP版FreeRTOSアプリケーションテンプレートは、コチラで販売中です。

MCU:マイコン,STM32マイコン,Cortex-M0+コア,Cortex-M4コアARMマイコン,IoTマイコン,FreeRTOS,STM32CubeMX,HAL,NUCLEO-G071RB,NUCLEO-G474RE,API生成ツール,CMSIS RTOS

STマイクロエレクトロニクス)STM32MCUを使ってRTOS開発時のSTM32CubeMX、HAL、CMSIS RTOSの3注意点について示します。前編が、STM32CubeMXとHALについてです。CMSIS RTOSは、別途後編で示します。

STM32CubeMXとHAL の注意点を解説した後、サンプルプロジェクトで実例を示すという順番で説明します。

ソースコード生成ツール:STM32CubeMX

STマイクロのソースコード生成ツール:STM32CubeMX(以下CubeMX)は、MCU内蔵周辺回路の初期設定やAPIを、GUIベースで自動生成する非常に便利なツールです。

※MCUベンダのAPI生成ツールを比較した関連投稿は、コチラをご覧ください。

CubeMX生成APIは、ハードウェアを抽象化し、STM32MCU間で最大限の高いソフトウェア移植性を狙ったHAL (Hardware Abstraction Layer)と、よりハードウェアに近くHALよりも高速・軽量なエキスパート向けLL(Low-layer)の2種類から選択可能です。

HALとLL比較(出典:STM32 Embedded Software Overvire)
HALとLL比較(※説明のため着色しています。出典:STM32 Embedded Software Overvire)

一般的に、HAL APIが好まれます。というのは、このLL APIを利用し開発した2019年6月発売のSTM32G0xテンプレートV1の売上げはゼロでした。対策に、LL APIからHAL APIに変更し再開発した2020年6月発売のSTM32G0xテンプレートV2は、人気があるからです。

これらCubeMXの各種GUI設定や選択APIは、CubeMXファイル(.ico)に構成ファイルとして纏められます。

STM32MCU新規プロジェクト開発時に、この既成CubeMXファイル(.ico)を利用すると、ゼロから着手するのに比べ、効率的かつ間違いなく周辺回路や初期設定ができるため、利用価値の高いファイルです。

特に、ベアメタル比、さらに多くのCubeMX設定が必要となるRTOS開発では、既成CubeMXファイルを再利用するメリットがより高まります。同時に、生成コードの意味も理解しておく必要があります。

HALタイムベース

HALには、他ベンダにない便利なAPI:HAL_Delayがあります。

例えば、10msの待ち処理を行う場合、他ベンダなら、MCUコア速度に応じて適当にループ回数を調整したループ処理で10ms相当の遅延を自作します。しかし、HAL APIならば、HAL_Delay(10)の記述だけで、MCUコア速度に依存しない正確な10ms遅延が実現できます。

これは、HAL自身が、MCU内蔵タイマ:SysTickの利用を前提に設計されているからです。遅延処理を例に説明しましたが、STM32のHAL APIsは、SysTickと強く結びついています。

もちろん、HAL APIをベアメタル開発で利用する場合は、この結びつきに何ら問題はありません。

RTOSタイムベース

FreeRTOSも、タスク(スレッド)状態遷移タイムベースに、SysTickを使います。

これは、FreeRTOSだけでなく他のRTOSでも同じです。SysTickは、その名称が示すようにMCUシステムレベルのタイムベース専用タイマです。

従って、STM32MCUでRTOS開発を行い、かつHAL APIを利用する場合には、RTOS側でSysTickを使うのが、名称に基づいた本来の使い方です。

HALタイムベース変更

そこで、STM32RTOS開発でHAL利用の場合は、HALのタイムベースを、デフォルト使用のSysTickから別のタイマへ変更する必要が生じます。この変更に伴う手動設定も当然必要となります。

*  *  *

ここまでが、STM32RTOS開発におけるSTM32CubeMXとHALに関する注意点です。
これらの注意点が解っていると、次章で示すRTOSサンプルプロジェクトのCubeMXファイルの意味と生成コードが理解できます。

STM32RTOS開発実例

STM32RTOS開発実例に、評価ボード:NUCLEO-G474RE(Cortex-M4/170MHz、Flash/512KB、RAM/96KB)でRTOS開発する場合を示します。

NUCLEO-G071RB(Cortex-M0+/64MHz、Flash/128KB、RAM/32KB)でRTOS開発する時でも同様です。しかも、RTOSサンプルプロジェクトは、STM32G071RBの方が(発売が古いためか?)多いので、NUCLEO-G071RBをお持ちの方は、是非ご自身で試してみてください。

FreeRTOS Example Selector

STM32CubeIDEのFile>STM32 Projectで、新規プロジェクト作成パネルを表示します(最新情報更新のため、表示に少し時間がかかる場合があります)。Example Selectorタブを選択、Middleware>FreeRTOSにチェックを入れ、NUCLEO-G474REのFreeRTOS_Queuesを選択したのが下図です。

NUCLEO-G474REのFreeRTOS_Queues
NUCLEO-G474REのFreeRTOS_Queues

右上欄、Noteの内容が、前半までに示した注意点のことです。参照先UM1722 Rev3は、CMSIS RTOSとFreeRTOSの関係があるのみです。このCMSIS RTOSについては、別途後編で説明します。

Nextをクリックし、FreeRTOS_Queuesサンプルプロジェクトを新規作成します。

さて、FreeRTOS Examples Listが318アイテム(STM32CubeIDE v1.6.1時)もあるので、Exportをクリックし、出力されたExcelファイルをBoardでフィルタリング、NUCLEO-G071RBとNUCLEO-G474REを抽出したのが下図です。

FreeRTOS Example List
FreeRTOS Example List

緑に色付けしたNUCLEO-G071RBの方が、FreeRTOSサンプルプロジェクト数が多いことが判ります。開発予定のSTM版FreeRTOSアプリケーションテンプレートは、Cortex-M4コアが対象ですので、本稿ではNUCLEO-G474REのFreeRTOS_Queuesを実例として使いました。

FreeRTOS_QueuesのSTM32CubeMXファイル

FreeRTOS_QueuesサンプルプロジェクトのCubeMX構成ファイル:FreeRTOS_Queues.icoが下図です。グレー文字は変更不可、黒文字は変更可能を示します。

FreeRTOS_Queues.ico
FreeRTOS_Queues.ico

TIM6がグレーなのは、HALタイムベース変更先がTIM6だからです。Kernel settings CPU CLOCK HZのSystemCoreClockがグレーなのは、RTOSタイムベースがSysTickだからです。つまり、本来の名称に基づいたSysTickがRTOS側で使われ、HALの新タイムベースにTIM6が割当済みであることが解ります。

FreeRTOS APIは、変更不可のグレーCMSIS V1です。ここは、後編で説明します。

デフォルトDisabledのUSE IDEL HOOKを、Enabledに変更し、ソースコード自動生成のGenerate Code(Alt+K)を実行してください。

HALタイムベースTIM6変更結果

FreeRTOS_QueseのTIM6とHook関数
FreeRTOS_QueseのTIM6とHook関数

app_freertos.cのL62に、Hook関数:vApplicationIdleHoolのひな型が自動生成済みです。ここへWFIを追記すれば、FreeRTOSアイドル時に低電力動作ができます。コチラのNXP版関連投稿Step5: FreeRTOS低電力動作追記と同じです。

main.cのL289は、TIM6満了時動作です。HAL_IncTick()が自動生成済みです。ベアメタル開発のSysTickからTIM6へHALタイムベースが変更されたことが解ります。

そのTIM6は、stm32g4xx_hal_timebase_tim.cで、1MHz=1ms満了に初期設定済みです。

つまり、STM32RTOS開発でHAL利用時に必要となる変更が、「全てCubeMXで自動生成済み」なのが解ります。

※上図は、USE_TICK_HOOKもEnabledへ変更した例です。Disabledへ戻すなどして、CubeMX自動生成ファイルが変化することを確かめてください。

この実例のように、CubeMX付属RTOSサンプルプロジェクトのCubeMXファイル(*.ico)を再利用すれば、周辺回路や初期設定ミスを防ぎ、RTOS新規アプリケーション開発が容易になることが解ります。

まとめ

STM32MCUでRTOS開発を行う時の3注意点、STM32CubeMX、HAL、CMSIS RTOSのうち、前編としてSTM32CubeMX、HALの2注意点とサンプルプロジェクトを使ってその実例を示しました。

RTOS開発では、既成STM32CubeMXファイル再利用価値が高まること、HALタイムベース変更の必要性がご理解頂けたと思います。3つ目のCMSIS RTOS関連は後編で示します。

あとがき

ベアメタル開発経験者であっても、STM32RTOS開発時、CubeMXのNoteを読むだけで、ベアメタル開発では何の問題も無かったHAL タイムベース変更理由が解り、その結果生じるCubeMXファイルや自動生成ソースコードの中身が理解できる方は、少ないと思います。本稿は、この変更理由と生成コードに説明を加えました。

STM32CubeMXは、STM32MCU開発に必須で強力なAPI生成ツールです。が、時々、説明不足を感じます。問題は、どのレベル読者を相手にするかです。エキスパートなら説明不要ですが、初心者ならゼロから説明しても解らないかもしれません。文章による組込み技術説明が、難しいのが根本原因でしょう😂。

そんな組込み開発ですが、文章だけでなく、「実際に評価ボードと手足を使って慣れてくると、案外すんなり簡単に理解、習得できる方が多いのも組込み開発」です。

販売中のNXP版FreeRTOSアプリケーションテンプレートにも、本稿同様、詳しいFreeRTOS解説を付けています(一部ダウンロード可能)。FreeRTOS開発を手軽に試せ、習得を支援するツールです。

MCU:マイコン,STM32マイコン,Cortex-M0+コア,Cortex-M0コア,Cortex-M3コア,Cortex-M4コアIoTマイコン,STM32CubeMX,stm32,STM32CubeIDE,マンスリー・アップデート,HTML

図1 PDF版からHTML版へ変わったSTM32マイコン マンスリー・アップデート
図1 PDF版からHTML版へ変わったSTM32マイコン マンスリー・アップデート

STマイクロエレクトロニクスのSTM32マイコン マンスリー・アップデートがPDF版からHTML版に変わって3ヶ月経過しました。新しいHTML版の掲載フォーマットもほぼ固まったと思いますので、両者の比較結果を示します。

PDF版は、紙(Book)の置換えであるため、掲載文書内容と全体との関係、掲載ページも解りやすかったのに対し、ハイパーリンクのHTML版では、モバイルデバイスへ最適化したため、「コンテンツ重視の掲載へ変わった」、これが結論です。HTML版で見逃しがちな全体像との関係を明らかにするため、リンク集を別途作成しました。

※STマイクロエレクトロニクスの日本語MCU技術資料は、弊社ブログ掲載MCUベンダ中、最も優れています。STM以外のMCU開発中の方にも役立つ情報が、リンク集から得られると思います。

HTML版STM32マイコン マンスリー・アップデートの大項目タイトル

PDF版からHTML版へ変わったSTM32マイコン マンスリー・アップデートのタイトル比較
PDF版からHTML版へ変わったSTM32マイコン マンスリー・アップデートのタイトル比較

HTML版とPDF版のSTM32マイコン マンスリー・アップデート大項目タイトル(図1の赤囲いこみ部分)を比較すると、HTML版はPDF版よりも具体的内容を示すタイトルに変わっています。

実は、PDF版も大項目以下の中項目、小項目タイトルは、HTML版と同じでした。PCで読む(見る)ことが前提のPDF版は、一度に読めるページや範囲もスマホに比べ広く、目的記事への移動も簡単なため、更新内容の構造(大項目>中項目>小項目)が解りやすい掲載が可能でした。

一方、スマホで読む(見る)ことが前提のHTML版は、構造よりもそのタイトルを一目見ただけで読んでもらえる工夫が必要なうえ、表示はスマホの縦長連続ページのため移動に制約があり、コンテンツ重視のタイトル掲載に変わったのだと思います。

HTML版はコンテンツフィルタリングに適す

移動中やチョットした空き時間にスマホで情報をチェックすることは、COVID-19以前はよくありました。膨大なアップデート情報コンテンツが有用か無用かを瞬時に判断し、後で有用情報のみにアクセスすることで能率は向上します。

これは、コンテンツフィルタリングです。

HTML版は、フィルタリングに適す構成を簡単に作成可能です。要不要判断に最低限必須なタイトルとその概要を掲載し、「詳細はコチラ」でリンク先へジャンプする形式です。

フィルタリング結果をスマホへ上手く覚えさせておけば、より効率的です。

PDF版はスマホで操作しにくい

PDF版の内容の一部切取り(コンテンツ加工)や広範囲なコピー(コンテンツ抽出)は、スマホでは操作しにくく、結局全部保存か、または捨てる結果となります。PCならば、必要情報のみの加工・抽出・保存は簡単なのですが…😥。

つまり、スマホなどのモバイルデバイスとの相性が良いのがHTML版、PCと相性が良いPDF版とは掲載内容表現のしかたが異なる訳です。

従来の月刊PDF版は、その月の変更情報のみを抽出掲載し、しかも全体へもリンク表示するなど、読者(情報の受け手)寄りの手間がかかる編集でした。HTML版は、STマイクロエレクトロニクス(情報の送り手)が強調したいコンテンツに重きを置いた編集となっています。

HTML版の全体像リンク集

在宅勤務の増加に伴い、モバイルとPCの両デバイスを併用して能率を上げたいところですが、現状のHTML版では、難しいと思います。※全体像が判る従来のPDF相当が参照できるリンクが追加されれば別ですが、これには編集に二度手間がかかります。

そこで、月刊HTML版で見逃しがちな全体像との関係を明らかにするリンク集を、お節介ながら作成しました😅。

リンク内容 補足
マンスリー・アップデートバックナンバー HTML版:2020年6月号以降
PDF版:2017年1月号~2020年5月号
日本語MCU技術ノート Cortex-Mコア横断的な周辺回路Tips
日本語MCU開発のヒント
日本語トレーニング資料 Cortex-Mコア毎のセミナープレゼン資料
STM32マイコン開発環境 STM32CubeIDE/MXなどのダウンロードリンク
STM32マイコンファームウェア Cortex-Mコア毎のファームウェアダウンロードリンク
セミナー・イベント・キャンペーン セミナー開催予定/終了、キャンペーン一覧
Q&Aで学ぶマイコン講座 初心者向けMCU技術解説記事

あとがき

STM32マイコン マンスリー・アップデートに限らず殆どのアップデート情報は、モバイルファーストへ向けた「コンテンツタイトル+数行の概要+詳細はコチラ」の形式です。

全体像も見つつHTML版が強調する詳細コンテンツを理解・整理・記憶したい方には、多少効率が落ちるかもしれませんが本稿リンク集が役立つと思います。

繰返しになりますが、STマイクロエレクトロニクスの日本語MCU資料は、他社MCU開発中の方でも参考になる情報満載で、質・量ともに優れています。開発に行き詰まりが生じた時など、ベンダの壁を越えて参照すると、打開策が見つかるかもしれません。

アフターCOVID-19では、MCU開発のしかたも変わりそうです。丁度、ADAS(Advanced Driver Assistance System:先進運転支援システム)で自動車ソフトウェア開発が激変したように、エッジMCU開発も、IoTセキュリティ絡みで、より効率的で複雑な処理をこなせるように変化すると思います。

MCU開発の情報収集と生産性向上、両方にお役に立てば幸いです。

MCU:マイコン,STM32マイコン,Cortex-M0+コア,Cortex-M0コア,Cortex-M3コアテンプレート,STM32F1x,STM32F072RB,STM32F103RB,STM32CubeMX,STM32F0x,STM32CubeIDE

STマイクロエレクトロニクス統合開発環境STM32CubeIDEのHAL APIを利用し開発したSTM32FxテンプレートVersion2を発売します。

上記サイトよりテンプレート説明資料P1~P3が無料ダウンロードできますので、ご検討ください。本稿は、この「ダウンロード以外」の資料項目を簡単に示します。

全ツールビルトインSTM32CubeIDE

STM32CubeIDEは、従来は別ツールとして提供してきたSTM32CubeMXがビルトイン済みです。しかも開発ツール全てが自動的に最新版へ更新します。もちろんHelp>Check for Updatesで手動更新も可能です。

2020年5月15日現在のブログ関連STM32MCUに関係するSTM32CubeIDE状況が下図です。

STM32CubeIDE状況(2020年5月15日現在)
STM32CubeIDE状況(2020年5月15日現在)

STM32FxテンプレートV2は、HAL(Hardware Abstraction Layer)API利用アプリケーション開発用テンプレートですので、MCU性能過不足時、他のSTM32MCUコアへも開発アプリケーションが流用可能で、プロトタイプ開発に最適です。

STM32FxテンプレートV2ダウンロード説明資料以外の概略

以下、単語の頭に付くSTM32は省略して記述します。また、付属説明資料も同様にSTM32を省略記述していますので、ご注意ください。

AN記載CubeMXプロジェクトが読めない時の対策

アプリケーション開発の出発点となるビルトインツール:CubeMXが最新版へ自動更新されるのは、次々に発売される最新STデバイスを直ぐに開発できるメリットがあります。しかし、逆に開発者が参照するアプリケーションノート(AN)記載のCubeMXプロジェクトとの版数差が大きくなるデメリットもあります。

この版数差が大きくなると、AN記載CubeMXプロジェクトが、ビルトインCubeMXで読めない場合があります。特にF0/F1シリーズなど古くから提供されてきたデバイスのANに顕著です。STM32FxテンプレートV2付属説明資料で、この対策を示しています。

CubeIDE新規プロジェクト作成(1)/(2)/(3)の違い

STM32CubeIDEの3新規プロジェクト作成の差
STM32CubeIDEの3新規プロジェクト作成の差

CubeIDEユーザマニュアル:UM2553には、本日時点で新規プロジェクト作成説明は(1)/(3)のみです。未説明の最新版新規プロジェクト作成(1)/(2)/(3)の違いなど、開発をスムースに進める様々なTipsも説明資料に加えています。

CubeMX変更箇所、別資料化

STM32FxテンプレートVersion1では、CubeMX周辺回路の設定をテンプレート説明資料内に記載しておりました。ご購入者様からのご質問も、このCubeMX設定に関するものが多く、このツールの重要性が判ります。

そこでVersion2は、このCubeMX設定をCubeMX変更箇所.pdfとして別資料化し、CubeIDEプロジェクト内に添付しました。CubeMXプロジェクト編集時に、同時参照ができます。

STM32CubeIDEプロジェクト内添付のSTM32CubeMX変更箇所説明資料
STM32CubeIDEプロジェクト内添付のSTM32CubeMX変更箇所説明資料

例えば、ベースボードテンプレートのLCD接続に利用したSTM32F0評価ボード:Nucleo-F072RBのGPIOピン設定方針なども記載しています。CubeMXピン配置は、MCUパッケージで選択しますので、評価ボード利用のCubeMX使用ピン設定時に、下図は便利だと思います。

ベースボードと評価ボード接続時のSTM32CubeMX使用ピン設定方針
ベースボードと評価ボード接続時のSTM32CubeMX使用ピン設定方針

STM32FxテンプレートV2と添付説明資料を使うと、STM32汎用MCU開発をスムースに進められます。

STM32FxテンプレートV2のご購入、お待ちしております。

MCU:マイコン,STM32マイコン,Cortex-M0+コア,Cortex-M0コア,Cortex-M3コアテンプレート,STM32F1x,STM32F072RB,STM32F103RB,STM32CubeMX,STM32F0x,STM32G071,STM32G0x,STM32CubeIDE

サードパーティ仏)AC6社の統合開発環境SW4STM32で開発したSTM32FxテンプレートとSTM32G0xテンプレートを、新しいSTマイクロエレクトロニクス純正STM32CubeIDE対応のVersion2:V2へ更新し販売開始します(STM32Fxテンプレートは2020/05/15、STM32G0xテンプレートは2020/05/30)。

V2では、V1ご購入者様から頂いたご意見ご感想を反映し、新しいSTM32CubeIDEやビルトインSTM32CubeMX使い方説明に工夫を加え、開発トラブル回避、既存アプリケーション資産活用方法などの新たなTipsも添付解説資料に加えました。

テンプレートと合わせてスムースなSTM32MCUアプリケーション開発にお役に立てると思います。

本稿は、説明を工夫したSTM32CubeIDEビルトインSTM32CubeMX使い方の一部を紹介します。

STM32CubeMX使い方:コツ

※以下、用語の頭に付く「STM32」は省略して記述します。

MCU周辺回路の初期化コードを自動生成するCubeIDEビルトインCubeMXも、以前投稿したスタンドアロンCubeMXの使い方と同じです。

CubeMXはSTM32MCU開発の出発点となるツールですので、十分理解した上で着手したいものです。テンプレートV2では、ビルトインCubeMXが生成するファイルに着目し、説明に以下の「使い方のコツ」と「簡単な順位」を追加しました。

CubeMXは、生成するファイル数が多い上に、使用するMCU周辺回路が増えると、生成コード量も多くなり、初めての方には少し解りにくいツールです。弊社テンプレートV1も、このCubeMXに関する質問を多く頂きました。それでも、コツを知っていれば十分使いこなせます。

そのコツとは、以下2点です。
・チェックが必要な自動生成ファイルは、main.hのみ
・main.cに自動追加される周辺回路ハンドラと、初期化コードが分かれば使える

F1シリーズSTM32F103RBの評価ボード:Nucleo-F103RBに弊社テンプレートを応用した例で説明します。

STM32CubeMX生成のF1BaseboardTemplateファイル構成
STM32CubeMX生成のF1BaseboardTemplateファイル構成

CubeMXが自動生成するファイルが、赤:CubeMX生成欄の9個です。このうち注目すべきは、太字赤☑で表示したmain.hとmain.cです。

main.hは、CubeMXで設定したユーザラベル、評価ボードならばB1[Blue PushButton]やUSART_TX/RX、LD2[GreenLed]などを定義した生成ファイルです(※[ ]内は、自動生成時に削除されますので覚え書きなどに使えます)。

main.hのコメント:Private definesの後にこれらの定義が生成されます。これら定義をチェックしておくと、「CubeMX自動生成コードを読むときに役立ち」ます。

main.cは、CubeMXが生成するメイン処理で、評価ボードのCubeMXデフォルトでコード生成:(Alt+K)した場合には、main.cのコメント:Private variablesの後にUSARTハンドラ:huart2と、コメント:Private function prototypesの後にUSART2の初期化コード:MX_USART2_UART_Init()と、その「初期化コード本体がmain.cソースの後ろの方に自動生成」されます。

その他の7個ファイルは、当面無視しても構いません。CubeMXデフォルトのHAL (Hardware Abstraction Layer)APIを利用し、割込みを使わない限り、ユーザコードには無関係だからです(※7個ファイルを知りたい方は、関連投稿:STM32CubeMX生成ファイルのユーザ処理追記箇所を参照してください)。

CubeMXが周辺回路:USART2初期化コードとそれに使う定義を自動生成済みなので、後は、main.cの無限ループ内の指定区間:USER CODE BEGIN xyz~USER CODE END xyzに、Usart2やLD2を使ったHAL APIユーザコードを追記すれば、アプリケーションが完成します。

追記したユーザコードは、再度CubeMXでコード生成しても、指定区間のまま引き継がれます。

ちなみに、アプリケーションで使用可能なHAL APIは、Ctrl+Spaceでリスト表示されます(Content Assist)。そのリストから使用するHAL APIを選択すれば、効率的なユーザコード追記が可能です。
※Content Assistの賢いところは、「ソースコード記述の周辺回路ハンドラを使ってHAL APIをリスト化」するところです。記述なしハンドラのAPIはリスト化されません。

つまり、CubeMXのPinout & Configurationタブで周辺回路を設定後コード生成しさえすれば、直ぐにユーザコードを追記できるファイルが全て自動的に準備され、これらファイルの指定区間へユーザコードを追記すれば、アプリケーションが完成する、これがCubeMXの使い方です。

このCubeMX使い方理解に最低限必要なファイルが、簡単順位:0のmain.hとmain.cの2個です。CubeMX生成ファイル数は9個ありますが、先ずはこの2個だけを理解していれば十分です。

LD2を点滅させるアプリケーションなどを指定区間へ自作すると、具体的に理解が進みます。

STM32CubeMX使い方:周辺回路のファイル分離

評価ボードのCubeMXプロジェクトファイル(*.ioc)は、デフォルトでB1[Blue PushBotton]とUSART2、LD2[GreenLed]を使っています。これらは、評価ボード実装済み周辺回路です。

これら評価ボード実装済み周辺回路へ、弊社テンプレートを適用したのが、シンプルテンプレートです(表:シンプル追加の欄)。

例えば、B1スイッチ押下げ状態をSW_PUSH、USART送信タイムアウトをUSART2_SEND_TIMEOUTなどソースコードを読みやすくする定義の追加は、CubeMX生成main.hの指定区間へ追記することでもちろん可能です。

しかし、他MCUコアへの移植性や変更のし易さを狙って、あえて別ファイル:UserDefine.hへこれらを記述しています。

同じ狙いで、LD2とB1、USART2のユーザ追記制御部分を、Led.cとSw.c、Usart2.cへファイル分離しています。ファイル分離により、HAL API利用のためMCUコア依存性が無くなり、例えば別コアのF0やG0評価ボードで同じ周辺回路を使う場合は、そのファイルのまま流用可能になります。

これらファイル分離した周辺回路の追記制御部分を、main.cの無限ループと同様に起動するのが、Launcher.cです。

つまり、シンプルテンプレートは、評価ボード実装済み周辺回路に、何も追加せずに弊社テンプレートを適用したシンプルな応用例です。その理解に必要なファイルが、緑:シンプル追加欄の☑で、簡単な順に1~5の番号を付けています。

CubeMXのそのままの使い方で周辺回路を追加すると、生成ファイル数は、赤:9個のままですが生成コード量が増えます。周辺回路の初期設定コード増加は当然ですが、この部分はCubeMX自動生成のためミス発生はありません。

しかし、ユーザコード指定区間へ、追加した周辺回路の制御コードを追記するのは、ユーザ自身です。様々な周辺回路制御が混在し追記量が増えてくると、バグやケアレスミスの元になります。

この対策に、周辺回路毎にファイルを分割し、この分割したファイルへ制御コードを記述するのが、シンプルテンプレートです。1周辺回路の制御コードが1ファイル化されていますので、簡単順位1~5の内容は、どれもとても簡単です。

さらに、ADC制御やLCD制御など、殆どの組込アプリケーションで必要になる周辺回路を追加し、Baseboardと評価ボードを結線、デバッグ済みのアプリケーションがベースボードテンプレートです(橙:ベースボード追加欄の3個)。

ユーザ追加ファイルは、全てMCUコア依存性がありません。CubeMXのHAL APIコード生成を行えば、コアに依存する部分は、CubeMX生成ファイル内に閉じ込められるからです。つまり、ユーザ追加ファイルは、全てのSTM32MCUへ流用できる訳です。

これらシンプルテンプレート、ベースボードテンプレートから新たなSTM32MCUアプリケーション開発を着手すれば、新規にアプリケーションをゼロから開発するよりも初期立上げの手間を省け、さらに機能追加や削除も容易です。

STM32CubeMX使い方:周辺回路プロパティ、既存AN利用法

CubeMXへ追加した周辺回路のプロパティ設定値やその理由、更に、既存アプリケーションノート利用方法など、新しいSTM32CubeIDE開発トラブルを回避し、スムースに開発着手できる様々なTipsをテンプレート添付説明資料へ加えています。

マイコンテンプレートサイトでSTM32Fxテンプレートは2020/05/15、STM32G0xテンプレートは2020/05/30発売開始です。ご購入をお待ちしております。
※STM32Fx/G0xテンプレートV1ご購入後1年以内の方は、後日V2を自動配布致しますのでお待ちください。

MCU:マイコン,STM32マイコン,Cortex-M0+コア,Cortex-M0コア,Cortex-M3コア,Cortex-M4コアSTM32CubeMX,STM32CubeIDE,Root of Trust,STM32CubeProgrammer,STM32CubeMonitor,ADAS

STマイクロエレクトロニクスのSTM32MCU純正開発環境STM32Cubeツールファミリに新に追加されたSTM32CubeMonitorを解説します。

STM32CubeMonitor特徴1:変数リアルタイムモニタ

STM32MCUアプリケーション開発フローと、純正開発環境STM32Cubeツールファミリ:STM32CubeMX、STM32CubeIDE、STM32CubeProgrammer、 STM32CubeMonitorの機能配分が下図です(以下、各ツールの頭に付くSTM32は省略して記述します)。

STM純正 4 Software Development Toolsと機能(出典:STMサイト)
STM純正 4 Software Development Toolsと機能(出典:STMサイト)

この1~4段階の開発フローを繰返すことでアプリケーション完成度が上がります。CubeMX、CubeIDE、CubeProgrammerの機能には重複部分がありますが、Monitoring機能を持つのは、CubeMonitorだけです。

通常のMCU開発は、CubeMXがビルトインされた4段階全てをカバーする統合開発環境:CubeIDEを使えば事足ります(CubeMXビルトインCubeIDEの詳細は、関連投稿の3章をご覧ください)。

CubeProgrammerは、MCUオプションバイト設定などCubeIDEではできないBinary Programmingの+α機能を提供します。例えば、STM32G0/G4のRoot of Trust(3)の投稿で示したSBSFU書込みや消去などがこの機能に相当します。

CubeIDEでも、デバッガ上でアプリケーションの変数モニタは可能です。しかし、あくまでDebugging MCUの(開発者向け)変数モニタです。CubeMonitorは、アプリケーションを通常動作させたまま、変数をリアルタイム(ライブ)モニタができる点が、CubeIDEとは異なるMonitoring機能です。

STM32CubeMonitor特徴2:データ可視化

リアルタイムで取得したデータは、下図のようにPCダッシュボードに予め準備済みのChartや円グラフにして可視化することができます。しかも、これら表示が、PCだけでなく、スマホやタブレットへも出力可能です。

STM32CubeMonitorのデータ可視化(出典:DB4151)
STM32CubeMonitorのデータ可視化(出典:DB4151)

つまり、CubeMonitorを使えば、開発したアプリケーションのライブ動作を、あまり手間をかけずにビジュアル化し、エンドユーザの顧客が解るように見せることができる訳です。これが、一押しの特徴です。

文章で説明するよりも、コチラの動画を見ていただくと一目瞭然です。

組込みアプリケーションのビジュアル化

組込みアプリケーション開発も、自動車のADAS(Advanced Driver-Assistance Systems:先進運転支援システム)のおかげでビジュアル化がトレンドです。

組込みアプリケーションのビジュアル化
組込みアプリケーションのビジュアル化

もちろん、超高性能MCUやデュアルコアMCUで実現するアプローチが本流です。が、本稿で示した2020年3月発表のCubeMonitorを使えば、産業用MCUでも案外簡単にビジュアル表示出力が可能になりそうです。

組込みアプリケーションは、MCUで結構大変な処理を行っていても、外(顧客)からは単にMCUデバイスしか見えません。CubeMonitorで処理データを可視化するだけでも、複雑さや大変さを顧客へ示すツールにもなります。

MCU:マイコン,STM32マイコン,Cortex-M0+コア,Cortex-M0コア,Cortex-M3コアテンプレート,SW4STM32,STM32CubeMX,STM32MCU,STM32Fx,STM32G0x,STM32CubeIDE

STマイクロエレクトロニクス(以下STM)MCUの統合開発環境(IDE)を、従来のSW4STM32から新しいSTM32CubeIDEへ移設するのは簡単です。STM32CubeIDE初期画面に、SW4STM32からSTM32CubeIDEへのプロジェクト変換機能があるからです。

しかし、本稿はSTM社自身による新しいSTM32CubeIDE発表を、STM32MCU純正開発ツールラインナップの完成ととらえ、SW4STM32で開発したSTM32FxテンプレートSTM32G0xテンプレートを、STM32CubeMX起点のSTM32CubeIDE移設方法とそのメリットを示します。

SW4STM32/TrueSTUDIOからSTM32CubeIDE移設背景

IDE開発元の買収&消滅、C/C++コンパイラ改版、Eclipse改版、WindowsなどのOS改版等々、IDE移設が生じる原因は、様々です。IDEは、MCU開発者と最も長い付合いをするツールで、しかも顧客先で稼働中ソフトウェアの変更手段ですので、IDE移設はできれば避けたい出来事です。

SW4STM32は、STM32MCU向けコードサイズ制限なしの無償IDEで、サードパーティAC6社が提供してきました。また、サードパーティAtollic社のTrueSTUDIOも同じくSTM32MCU向け無償IDEとして人気がありましたが、Atollic社をSTMが買収し、TrueSTUDIOはDiscontinue、代わりにSTM自社開発のSTM32CubeIDE無償提供を始めました(Atollic社買収の目的は、STM32CubeIDE開発だと思います)。

STM32 Software Development Tools(出典:STMサイト)
STM32 Software Development Tools(出典:STMサイト)

ポイントは、従来サードパーティが提供してきたコードサイズ制限なし無償IDEを、STM自らSTM32CubeIDEで提供し、「STM32CubeMX/IDE/Programmer/Monitorから構成されるSTM純正のSTM32MCU開発ツールラインナップが完成」したことです(上図)。

このうち、STM32CubeMoniterは、比較的新しいデバッガで、本ブログで紹介を予定しています。

STM32CubeIDEフォルダ構成

STM32CubeIDEは、SW4STM32やTrueSTUDIOよりも後発IDEですので、SW4STM32/TrueSTUDIO開発プロジェクトを、STM32CubeIDEプロジェクトへ変換し取込む機能があります。この機能の使用結果が下図左側です。

STM32CubeIDE変換機能移設プロジェクト(左)とSTM32CubeIDE新規プロジェクト(右)のフォルダ構成比較
STM32CubeIDE変換機能移設プロジェクト(左)とSTM32CubeIDE新規プロジェクト(右)のフォルダ構成比較

左側は、弊社がSW4STM32で開発したSTM32G0x SimpleTemplateプロジェクトを、STM32CubeIDEの変換機能を使ってSTM32CubeIDEプロジェクトへ移設後のProject Explorer、一方、右側は、STM32CubeIDEで新規にSTM32G0プロジェクトを作成した時のProject Explorerです。

左右でプロジェクトのフォルダ構成が異なっていることが判ります。

左:変換機能利用の移設プロジェクトは、従来のSW4STM32フォルダ構成がそのままSTM32CubeIDEで再現されます。

右:STM32CubeIDE新規プロジェクトのフォルダ構成は、Coreフォルダ内にIncフォルダとSrcフォルダがまとめられています。これがSTM32CubeIDE本来のフォルダ構成です。
※ここでのCoreは、下図Application code層を示します。

STM32CubeIDE本来のフォルダ構成は、MCUがCortex-M4のSTM32G4などへ代わっても、Core>Inc/Src構成は不変で、Driversフォルダの中身がSTM32G4対応へ変わるのみです。つまり、よりCMSIS対応のアプリケーション開発に向いた構成です。

CMSIS Structure(出典:Keil CMSIS Version 5.6.0 Generalサイト)
CMSIS Structure(出典:Keil CMSIS Version 5.6.0 Generalサイト)

※CMSIS対応は、関連投稿:mbed OS 5.4.0のLチカ動作、LPCXpresso824-MAXで確認の3章 CMSISを参照してください。

このようにSTM32CubeIDEは、開発者が「本来のアプリケーション開発に集中し易い、つまりIncとSrcのコード作成に集中できるMCU非依存のフォルダ構成」です。

さらに、他の「STM32MCU純正開発ツールとの相性良さや、新発売MCUデバイスへの素早い対応」も期待できます。

これらは、サードパーティIDEになかったSTM自社開発STM32CubeIDEの大きなメリットです。

STM32CubeMX起点のSTM32CubeIDE移設

STM32Fx/G0xテンプレートは、SW4STM32で開発しました。STM32CubeIDEプロジェクト変換機能を使って、従来SW4STM32フォルダ構成のままSTM32CubeIDEへの移設は簡単です。しかし、前章のSTM32CubeIDE本来のフォルダ構成の方が、より大きなメリットが期待できます。

そこで、本来のSTM32CubeIDEプロジェクトフォルダ構成へ、SW4STM32プロジェクトを移設します。

これには、STM32Fx/G0xテンプレート開発時に自作したSTM32CubeMXプロジェクトファイル(前章の左側:SimpleTemplate.ioc)を使います。

STM32CubeMXは、STM32MCUソフトウェア開発の起点となるコード生成ツールです。このSTM32CubeMXから移設を始めれば、次段のSTM32CubeIDEも本来の新規プロジェクト構成で自動生成されます。

さらに、開発アプリケーションで使うLL API/HAL APIの選択や変更も、STM32CubeMXで行います。従って、LL APIが「主」で開発したSTM32G0xテンプレートを、HAL APIへ変えるのも容易です。
※LL API「主」からHAL APIへも「主」へ変更する理由は、STM32G0シリーズがRoot of Trust対応メインストリーム(汎用)MCUだからです。STM32G0専用のLL APIアプリケーションよりも、汎用HAL APIアプリケーションの方が、Root of Trust実現には向いています。詳しくは、関連投稿:STM32G0/G4のRoot of Trust(2)を参照してください。

SW4STM32のSTM32CubeMXプロジェクトファイル(SimpleTemplate.ioc)を起点としてSTM32CubeIDEへ移設したProject Explorerが下図です。前章の右側:STM32CubeIDE新規プロジェクトと同じフォルダ構成で移設されていることが判ります。

STM32CubeMXプロジェクトファイル起点でSTM32CubeIDEへ移設
STM32CubeMXプロジェクトファイル起点でSTM32CubeIDEへ移設

但しこの方法では、SW4STM32でユーザ(筆者)が追加作成したファイル、前章左側:Launcher.c/Led.c/Lpuart.c/UserDefine.hは、手動で移設する必要があります。

まとめ

STM32CubeIDEの提供で、STM32MCU純正開発ツールラインナップが完成しました。
※STM32CubeIDE v1.3.0に残っていた日本語文字化けは、コチラの投稿方法で解決しました。

SW4STM32/TrueSTUDIOなどの従来IDEからSTM32CubeIDE 移設のメリットは、他のSTM純正開発ツール(STM32CubeMX/Programmer/Monitor)との好相性や新発売MCUデバイスへの早い対応です。

従来IDEプロジェクトの移設は、STM32CubeIDEプロジェクト変換機能を使うと簡単です。しかし、移設メリットを活かすには、旧IDEフォルダ構成から、STM32CubeIDE本来の構成となるSTM32CubeMXプロジェクト起点の移設を、弊社STM32Fx/G0xテンプレートへ適用します。

STM32CubeIDE対応の各テンプレート改版完成は、本ブログで発表します。

MCU:マイコン,STM32マイコン,Cortex-M0+コア,Cortex-M4コアARMマイコン,IoTマイコン,STM32CubeMX,STM32G0,STM32CubeIDE,STM32G4,Root of Trust,X-CUBE-SBSFU,セキュア・ブート,セキュア・ファームウェア更新

2020年3月号STM32マンスリー・アップデートのP4に、STM32マイコンでRoot of Trustを実現するセキュリティ・ソフトウェア・パッケージ:X-CUBE-SBSFUが紹介されています。

セキュア・ブート、セキュア・ファームウェア更新、Root of Trust…などIoT MCUセキュリティ用語満載で、投稿:総務省によるIoT機器アップデート機能義務化に関連しそうな内容です。

解りにくいこれらセキュリティ関連の用語解説と、本ブログ対象STマイクロエレクトロニクスのSTM32G0/G4シリーズのRoot of Trust実現方法を、今回から数回に分けて投稿します。

Root of Trust とX-CUBE-SBSFU、STM32G0/G4

マンスリー・アップデートの説明は、エッセンスのみを抽出した代物なので、リーフレットを使って説明します。

一言で言うと、「Root of Trust実現には、X-CUBE-SBSFUが必要で、対応中STM32MCUが下表」です。

Root of Trust対応中のSTM32マイコン一覧(出典:FLXCUBESBSFU0819J)
Root of Trust対応中のSTM32マイコン一覧(出典:FLXCUBESBSFU0819J)

つまり、Root of Trustは全てのSTM32MCUで実現できる訳ではなく、表中のMCU、メインストリーム(汎用)・マイコンの場合は、STM32G0とSTM32G4がセキュア・ブート(SB)とセキュア・ファームウェア更新(SFB)に対応しておりRoot of Trustを実現しています。

X-CUBE-SBSFUの下線部SBはセキュア・ブート、SFUはセキュアFW更新を示します。X-CUBEは、STM純正ソフトウェアツールの総称です。

信頼性を実現するハードウェア/ソフトウェアの根幹部分を、Root of Trustと呼びます。

汎用MCUでRoot of Trustの実現には、ハードウェア/ソフトウェア両方に相応の能力が必要で、従来からある汎用STM32Fxシリーズではなく、新しい汎用STM32G0/G4にSBとSFUが実装されたのだと思います。

ということは、総務省のIoT機器アップデート機能義務化が実施されると、IoTエッジで使う汎用MCUは、必然的にSTM32G0/G4シリーズになるかもしれません。
※X-CUBE-SBSFUは、移植性の高いHAL API利用のため、従来汎用STM32Fxへも流用可能かもしれません。しかし、現時点では、表記STM32G0/G4のみ対応と解釈しています。

STM32汎用MCUラインナップ
STM32汎用MCUラインナップ(出典:STM32 Mainsterm MCUsに加筆)

用語を説明したのみですが、Root of Trust とX-CUBE-SBSFU、汎用マイコンSTM32G0/G4の関係が、マンスリー・アップデートエッセンスより見えてきたと思いますがいかがでしょう。

さらに、一歩踏み込んで、STM32G0/G4のセキュア・ブート、セキュア・ファームウェア更新方法やセキュリティの背景などの詳細は、次回以降説明します。

X-CUBE-SBSFUユーザマニュアル:UM2262

次回以降の説明は、X-CUBE-SBSFUユーザマニュアル日本語版(2019 年 11 月14日):UM2262を基に行います。

UM2262は、X-CUBE-SBSFU対応中の全てのSTM32マイコン(ハイパフォーマンス/超低消費電力/メインストリーム(汎用)/ワイヤレス)が併記されています。

そこで、STM32G0とSTM32G4関連のみを抜粋し、特にセキュア・ブート(SB)とセキュア・ファームウェア更新(SFU)の設定方法と背景を中心に説明します。販売中のSTM32G0xテンプレートと、開発予定のSTM32G4テンプレートに関連するからです。

本稿で示したRoot of Trustを、STM32G4テンプレートに実装するかは未定です。しかし、IoTエッジマイコンのSTM32G4らしさを出すには、Root of Trust実現は必須だと思います。

また、STM32G0xテンプレートは、まずVersion 2改版で新統合環境:STM32CubeIDE v1.3.0への対応を予定しております(現行版は、SW4STM32開発のVersion 1)。
※STM32G0関連の投稿は、本ブログ右上のSearch窓へ、“STM32G0”と入力すると、効率よく投稿が集まります。新汎用STM32G0の特徴、STM32G0xテンプレートのことが解ります。

STM32G0へのRoot of Trust実装も未定ですが、対応する場合でもVersion 2より後にするつもりです。

従って、具体的なRoot of Trust実現方法は、STM32G4シリーズで先行、その後にSTM32G0シリーズが続くという順番になります。

TrustZone対応STM32マイコン体験セミナー(セキュリティ編)

5月22日(品川)と7月31日(大阪)に、2020年2月発売STM32L5マイコン(Cortex-M33/110MHz)を使ったSTM主催、定員30名、4時間半のTrustZone対応STMマイコン体験セミナー(セキュリティ編)が開催されます。

STM32L5は、PSA Certifiedレベル2認証を取得済みのTrustZoneマイコンです。PSA認証は、関連投稿:ARM MCU変化の背景の2章の3:セキュリティ対応をご覧ください。STM32L5のTrustZone実現は、専用のSTM32Cube拡張パッケージ:STM32CubeL5を使っています。

セミナー概要の冒頭に、「IoTセキュリティに関する法令やガイドラインの整備が進んでいます」とあり、具体的にIoTセキュリティ機能のSTM32L5への実装と必要性が解ると思います。セミナーに参加し、エキスパートから色々な情報を仕入れたいのですが、COVIC-19の影響で出張ができるか?…、Webinarなら嬉しいのですがね😅。

評価ボード付き無料セミナーです。ご興味がある方は、参加してはいかがでしょう。

STM32G0/G4のRoot of Trust(1)まとめ

  • Root of Trust実現に、STM32Cube拡張パッケージ:X-CUBE-SBSFUが必要。Root of Trust対応中の汎用マイコンは、STM32G0/G4シリーズ。
  • 信頼性実現のハードウェア/ソフトウェア根幹部分をRoot of Trustと呼ぶ。
  • IoT機器アップデート機能義務化なら、IoTエッジ汎用MCUは、STM32G0/G4シリーズになる可能性あり。
  • STM32G0/G4シリーズのRoot of Trust実現方法、SB(セキュア・ブート)とSFU(セキュア・ファームウェア更新)は、UM2262を使い次回以降説明。

ここまでは、比較的簡単にRoot of Trust、X-CUBE-SBSFU、STM32G0/G4が説明できたと思います。ここからが、セキュリティの難解なところで、SBだけでも次回上手く説明できるか自信がありません。結果は、次回のブログ更新で判ります。