STM32のStep-by-Step Guide

STマイクロエレクトロニクス(以下STM)公式ブログのカテゴリ:TutorialsからSTM32開発環境を構築する方に最適な投稿を見つけたので、紹介と気になる点を示します。

Step-by-Step Guide

STM32 step-by-step learning program
STM32 step-by-step learning program

2018年10月8日が投稿日のこの記事は、STM32の開発環境(IDE)構築から評価ボード、UART接続、IoT評価ボードとスマホ接続などを5つのStepで示しています。内容は、前後半の2つに大別できます。

前半は、Step1(45分)で開発環境を構築し、Step2(30分)でSTM32CubeMXとHAL説明、Step3(34分)で評価ボード(NUCLEO-L476RG)とUART利用のPC通信を紹介するなど、内容は、弊社昨年のブログ投稿の最新版と言えます。

後半は、Step4(60分)でIoT評価ボードDiscovery kit IoT node (B-L475E-IOT01A)(DigiKeyにて¥6,370販売中)の使い方、Step5(30分)でAndroidスマホと同評価ボードをBLEで直結し、IoTシステムを構築しています。

IoT評価ボードは、Cortex-M4(915MHzまたは868MHz)を使い、Arduinoコネクタ、モーション、ジェスチャ、環境センサなどが実装済みなので、スマホで取得センサデータを視覚化できます。さらにAWS(アマゾン ウェブ サービス)経由でも接続できるので、本格的なIoTノード開発・評価にも使えそうです。AWSとの接続方法は、コチラの動画(11分12秒)に解説されています。
※動画閲覧にはログインが必要です。

関連投稿:Amazon、IoTマイコンへFreeRTOS提供

気になる点1:TrueSTUDIO

STMは、2017年12月に統合開発環境TrueSTUDIO開発元のAtollic社を買収しました。その結果、無償IDEのラインナップは従来と同じですが、開発会社の説明が変化しました。

関連投稿:2018マイコンベンダ最新ニュースのSTM章参照

STM32ソフトウェア開発スイート(要ログイン)のページで説明します。License typeでフィルタすると、無償版IDEラインナップが表示されます。SW4STM32欄のShow more…をクリックすると下段に“This product is supplied by a third party NOT affiliated to ST”の記述があります。これが気になる点です。

IDE License type Free検索結果
IDE License type Free検索結果。SW4STM32には、”not affiliated to ST”の記述がある。

この記述は、TrueSTUDIO欄には無く、代わりにProduct Imageに“ST acquires Atollic”と記載され、STとAtollicのロゴが表示されます。つまり、STMの無償IDEは、TrueSTUDIOが標準?の感じです。

TrueSTUDIOのProduct Image
TrueSTUDIOのProduct Imageは、STとAtollicのロゴが表示

従って、新たにSTM開発環境を構築される方は、TrueSTUDIOを選ぶと良いかもしれません。これを裏付けるのが、Step1紹介のIDEがTrueSTUDIOだということです。TrueSTUDIOがSW4STM32とほぼ同様に操作できるのは、コチラの動画(9分42秒)で解ります。

弊社2017年9月発売のSTM32FxテンプレートもSW4STM32を使っていますが、これもTrueSTUDIOに変えた方が良いかもしれません。但し、TrueSTUDIOには、SW4STM32プロジェクトをそのままインポートする機能が備わっていますので、二手間のOKクリックが増えますがしのげそうです(Step4のP8、Appendix Porting an AC6 example to TrueSTUDIO参照)。

Porting SW4STM32 project to TrueSTUDIO(出典:Step4)
Porting SW4STM32 project to TrueSTUDIO(出典:Step4)。OK2回クリックでSW4STM32プロジェクトをTrueSTUDIOへインポートできる。

IDEポーティングは、MCUベンダーが、古いIDEから新しいIDEへ替える時に良く使う方法で、NXP(Kinetis Design Studio→NXP Expresso)、ルネサス(Hew→CS+)などでもおなじみです。SW4STM32→TrueSTUDIOがあるのも、STMがTrueSTUDIOを推薦しつつある証と言えるでしょう。

気になる点2:Edge MCUとNode MCU

Step-by-Step Guide資料が前後半で使用MCUと評価ボードが2つに別れたように、前半のEdge MCUと後半のNode MCUの2つの機能に分かれてIoT MCUが発展する気がします。

  • Edge MCU:低消費電力でIoTデータ取得(アナログフロントエンド)機能を備えたMCU。従来のベアメタル開発の延長・発展形。
  • Node MCU:AWSなどIoTネットワーク出入口の無線、高度なセキュリティ機能を備えたMCU(Edge MCUを包含する場合あり、例:Discovery kit IoT node)。FreeRTOSなどのOS実装は必須で、従来MCUより高機能・高性能、1GHzにせまる高速動作。

※ベアメタル開発:OSなどを使わないMCU開発

Edge MCUとNode MCUの違いは、端的に言えば、ベアメタルソフトウェア開発かRTOSソフトウェア開発かです。MCUソフトウェア開発者も、ベアメタルとRTOSの2つに分かれるかもしれない、というのが第2の気になる点です。

Edge MCUだけではIoTに接続すらできません。Node MCUがIoT接続に必須になりつつある気がします。

Cortex-M0/M0+/M3比較とコア選択

デバイスが多く選択に迷う方も多いマイコン:MCU。周辺ハードウェアも異なるので、最初のMCUコア選択を誤ると、最悪の場合、開発のし直しなどに繋がることもあります。

本稿は、STマイクロエレクトロニクスのSTM32マイコンマンスリー・アップデート10月号P8のトレーニング資料、STM32L0(Cortex-M0+)掲載のARM Cortex-M0/M0+/M3の比較資料を使ってMCUコア選択方法についての私案を示します。

STM32L0(Cortex-M0+)トレーニング資料

各種STM32MCU(Cortex-Mx)毎の非常に良くできた日本語のテクニカルスライド資料が入手できます。例えばSTM32L0(Cortex-M0+)は194ページあり、1ページ3分で説明したとしても、約10時間かかる量です。他のMCU(Cortex-Mx)資料も同様です。

開発に使うMCUが決まっている場合には、当該資料に目を通しておくと、データシート読むよりも解りやすいと思います。しかし、Cortex-Mxコア差を理解していない場合や、開発機器の将来的な機能拡張や横展開等を考慮すると、どのMCU(Cortex-Mx)を現状開発に使うかは重要検討項目です。

ここで紹介するSTM32L0(Cortex-M0+)トレーニング資料には、Cortex-M0+特徴説明のため、通常データシートには記載が無いCortex-M0やCortex-M3との違いも記載されています。

そこで、STMマイコンのみでなく一般的なARMコアのMCU選択に重要な情報としても使えるこの重要情報ページを資料から抜き出しました。

Cortex-M0/M0+/M3比較

バイナリ上位互換性

Cortex-Mxのバイナリ互換性(出典:STM32L0(Cortex-M0+)トレーニング資料)
Cortex-Mxのバイナリ互換性(出典:STM32L0(Cortex-M0+)トレーニング資料)

先ず、P22のCortex-Mプロセッサのバイナリ互換性です。この図は、Cortex-Mxコアの命令セットが、xが大きくなる方向には、上位互換であることを示しています(ただし再コンパイル推薦)。逆に、xが小さくなる方向は、再コーディングが必要です。

つまり、Cortex-M0ソースコードは、M0+/M3/M4へも使えるのです。Cortex-Mxで拡張された命令セットの特徴を一言で示したのが、四角で囲まれた文章です(Cortex-M3なら、“高度なデータ処理、ビットフィールドマニピュレーション”)。
さらに、STM32MCU内臓周辺ハードウェアは、各シリーズで完全互換なので、同じ周辺ハードウェア制御ソースコードはそのまま使えます。

もちろんxが大きくなるにつれコア性能も向上します。しかし、よりCortex-Mx(x=+/3/4)らしい性能を引き出するなら、この四角文章のコーディングに力点を置けば、それに即した命令が用意されているので筋が良い性能向上が期待できる訳です。

超低電力動作Cortex-M0+、39%高性能Cortex-M3

P22ではCortex-M0とM0+の違いが解りません。そこで、P19のCortex-M0/0+/3機能セット比較を見るとCortex-M0+が、Cortex-M0とCortex-M3の良いとこ取り、中間的なことが解ります。また、Cortex-M3が、M0比39%高性能だということも解ります。

Cortex-M0_M0+_M3セット比較(出典:STM32L0(Cortex-M0+)トレーニング資料)
Cortex-M0_M0+_M3セット比較(出典:STM32L0(Cortex-M0+)トレーニング資料)

具体的なCortex-M0+とCortex-M0との差は、P20が解りやすいです。Cortex-M0+は、性能向上より30%もの低消費動作を重視しています。また、1サイクルの高速GPIOも特徴です。Cortex-M0+は、M0の性能を活かしつつより既存8/16ビットMCU市場の置換えにチューニングしたからです。

Cortex-M0とCortex-M0+の比較(出典:STM32L0(Cortex-M0+)トレーニング資料)
Cortex-M0とCortex-M0+の比較(出典:STM32L0(Cortex-M0+)トレーニング資料)

さらにP21には、低電力化に寄与した2段になったパイプラインも示されています。Cortex-M0/M0+は、今年初めから話題になっている投機的実行機能の脆弱性もありません。

Cortex-M0とCortex-M0+のブランチ動作(出典:STM32L0(Cortex-M0+)トレーニング資料)
Cortex-M0とCortex-M0+のブランチ動作(出典:STM32L0(Cortex-M0+)トレーニング資料)

関連投稿:Cortex-Mシリーズは、投機的実行機能の脆弱性はセーフ

共通動作モード:Sleep

Cortex-M0とCortex-M0+の低消費電力モード(出典:STM32L0(Cortex-M0+)トレーニング資料)
Cortex-M0とCortex-M0+の低消費電力モード(出典:STM32L0(Cortex-M0+)トレーニング資料)

低電力化は、Cortex-M0+で追加された様々な動作モードで実現します。この一覧がP70です。つまり、Cortex-M0+らしさは、M0にない動作モード、LP RUNやLP sleep (Regulator in LP mode)で実現できるのです。

逆に、SleepやSTANBYの動作モードは、Cortex-M0/M0+で共通です。さらに、Cortex-M3でも、アーキテクチャが異なるので数値は異なりますが、SleepとSTANBY動作モードはM0/M0+と共通です。

ここまでのまとめ:Cortex-M0/M0+/M3の特徴

Cortex-M0/M0+/M3の特徴・違いを一言で示したのが、下表です(関連投稿より抜粋)。

各コアの特徴は、MCUアーキテクチャや命令セットから生じます。但し、M0/M0+/M3でバイナリ上位互換性があるので、全コアで共通の動作モードがあることも理解できたと思います。

ARM Cortex-Mx機種 一言で表すと…
Cortex-M0+

超低消費電力ハイパフォーマンスマイコン

Cortex-M0

低消費電力マイコン

Cortex-M3

汎用マイコン

Cortex-M4

デジタル信号制御アプリケーション用マイコン

関連投稿:ARMコア利用メリットの評価

MCUコア選択方法

  1. Cortex-M0またはCortex-M0+コアでプロトタイプ開発を行い、性能不足が懸念されるならCortex-M3コア、さらなる消費電力低下を狙うならCortex-M0+コアを実開発で選択。
    プロトタイプ開発に用いるソースコードは、そのまま実開発にも使えるように、全コアで共通の動作モードで開発。
  2. 早期にプロトタイプ開発を実開発に近い形で作成するために、弊社マイコンテンプレートを利用。

1.は、本稿で示した内容を基に示したMCUコア選択指針です。低消費電力がトレンドですので、プロトタイプ開発の段階から超低消費電力のCortex-M0+を使うのも良いと思います。しかし、初めから超低消費動作モードを使うのでなく、全コアで共通動作モードでの開発をお勧めします。

理由は、万一Cortex-M0+で性能不足が懸念される時にCortex-M3へも使えるソースコードにするためです。プロトタイプ開発の段階では、ソースコードの実開発流用性と実開発の評価を目的にすべきです。チューニングは、実開発段階で行えばリクスも少なくなるでしょう。

2.は、プロトタイプ開発実現手段の提案です。マイコンテンプレートは、複数のサンプルソフトを結合して1つにできます。実開発に使える(近い)サンプルソフトさえ見つけられれば、それらをバラック的にまとめて動作確認できるのです。これにより、当該コアのプロトタイプ評価が早期にできます。

また、マイコンテンプレートで使用したSTM32評価ボードは、ボードレベルでピンコンパチなのでCortex-M0/M0+/M3への変更も簡単です。

関連投稿:マイコンテンプレートを使ったアプリケーション開発手順

MCUコア選択の注意事項:重要度評価

ARMコア向けの弊社マイコンテンプレートは、全てCortex-M0/M0+/M3共通の動作モードで開発しています。
その理由は、テンプレートという性質・性格もありますが、本稿で示した他のARMコアへのソースコード流用性が高いからです。試しに開発したソースコードであっても、無駄にはならないのです。

最後に、P184、P185に示されたCortex-M0(STM32F0)とCortex-M3(STM32L1)、Cortex-M0+(STM32L0)のADCの差分を示します。

Cortex-M0/M0+/M3のADC比較1(出典:STM32L0(Cortex-M0+)トレーニング資料)
Cortex-M0/M0+/M3のADC比較1(出典:STM32L0(Cortex-M0+)トレーニング資料)
Cortex-M0/M0+/M3のADC比較2(出典:STM32L0(Cortex-M0+)トレーニング資料)
Cortex-M0/M0+/M3のADC比較2(出典:STM32L0(Cortex-M0+)トレーニング資料)

STM32MCU内臓周辺ハードウェアは、各シリーズで完全互換と先に言いましたが、スペックを細かく見るとこのように異なります。

このハードウェア差を吸収するのが、STM32CubeMXで提供されるHAL(Hardware Abstraction Layer)です。つまり、STMマイコンを使うには、コア選択も重要ですが、STM32CubeMX活用も同じように重要だということです。もちろん、STM32FxマイコンテンプレートもSTM32CubeMXを使っています。

ARMコアは、バイナリ上位互換ができる優れたMCUコアです。MCUベンダーは、同じARMコアを採用していますが、自社のMCU周辺ハードウェアレベルにまで上位互換やその高性能を発揮できるような様々な工夫・ツールを提供しています。

開発MCUを選択する時には、コア選択以外にも多くの選択肢があり迷うこともあるでしょう。多くの場合、Core-M0/M0+/M3などの汎用MCUコアでプロトタイプ開発を行えば、各選択肢の重要度評価もできます。スペックだけで闇雲に選択するよりも、実務的・工学的な方法だと思います。

STM32MCUのアンチ・タンパ機能

STマイクロエレクトロニクス(以下STM)のSTM32MCUマンスリー・アップデート最新10月号から、アンチ・タンパ機能を紹介します。

関連投稿:「日本語マイコン関連情報」のSTM32マイコン マンスリー・アップデート

タンパとは

タンパ:tamperとは、(許可なく)いじくることです。例えば、MCUパッケージをこじ開けるなどの行為(=タンパイベント)を検出した場合、内部バックアップ・レジスタを全消去し、重要データが盗まれるのを防ぐのがアンチ・タンパ機能です。MCUハードウエアによるセキュリティの一種です。

※マンスリー・アップデート10月号、P13の“STM32のココが便利”、今月のテーマ:~その2~参照

セキュリティの重要性がユーザで認識されつつあるので、開発者としては、「タンパ保護」、「アンチ・タンパ」、「RTCレジスタ保護」、「GPIO設定ロック」などのキーワードは覚えておくと良いでしょう。基本機能実装後にセキュリティを追加する時や、他社差別化に役立つからです。

STM32MCUのセキュリティ機能

マンスリー・アップデート9月号、P12今月のテーマにもセキュリティ機能がありますが、これはSTM32MCU独自というより、ARM Cortex-MコアMCU全てに実装の機能です。STM32MCUと他社の差別化には使いにくいと思います。

差別化に適すのは、ARM Cortex-Mコア以外の周辺回路です。そこで、RTCとGPIOについて、本ブログ掲載中の評価ボード実装MCU、STM32F072RB(Cortex-M0)とSTM32F103RB(Cortex-M3)のタンパ機能設定方法をデータシートで調べました。

出典:STM32F071x8 STM32F071xBデータシート 2017/1版
出典:STM32F103x8 STM32F103xBデータシート 2015/8版

関連投稿:STM32マイコンの評価ボード選定

RTC

MCUで処理実時刻を記録する場合などには、RTCが便利です。

RTCのアンチ・タンパ機能は、アラーム・タイムスタンプとRTCレジスタ保護の2つがあります。RTCレジスタ保護は、RTCレジスタへのアクセス手順のことです。RTC利用時、通常レジスタと異なる面倒な手順でRTCレジスタを設定しているのをサンプルソフトで見た記憶があります。

アラーム・タイムスタンプは、タンパイベント発生時のカレンダーを記録する機能です。但し、データシート内の説明は少なく、実際にソフトウェアでどのように設定すれば機能するかは不明です。

試しにSTM32CubeMXでSTM32F072RBのRTCを設定すると、Tamper 2のみ設定可能です。ヘルプ資料UM1718の説明も少なく、やはり詳細は不明です。
但し、将来アンチ・タンパ機能を実装するなら、Tamper 2に連動してアクティブ化するPA0ピンは、リザーブした方が良さそうです。

STM32F072RBのTamper 2とPA0
STM32F072RBのTamper 2に連動してアクティブ化するPA0ピン

同じ理由で、STM32F103RBならPA13ピンをアンチ・タンパ機能用にリザーブできると良いでしょう。

GPIO設定ロック

GPIO機能を固定するGPIO設定ロックについては、データシート内をTamperで検索してもヒットせず記述もありません。

まとめ

STM32MCUのアンチ・タンパ機能を、STM32マイコン マンスリー・アップデートから抜粋、解説しました。

ユーザがMCUセキュリティを重視しつつあるので、STM32MCUハードウエアが提供するセキュリティの一種であるアンチ・タンパは、他社差別化機能として役立つと思います。

そこで、STM32F072RBとSTM32F103RBのRTC/GPIOソフトウェアでのアンチ・タンパ設定方法をデータシートで調査しましたが、具体的情報は得られませんでした。

対策として、RTC/GPIOサンプルソフトから設定を得る方法があります。但し、ソースコードには、アンチ・タンパ機能の目的や、なぜ面倒な設定手順が必要かについての記述は無いので、マンスリー・アップデートのアンチ・タンパ、RTCレジスタ保護やGPIO設定ロックの理解が、サンプルソフト解読に必要だと思います。

投稿記事の表示、検索方法

本ブログは、マイコン:MCU関連情報をWordPressというソフトウェアを使って投稿しています。今回は、WordPressブログ投稿記事を効率的に表示、検索する方法を3つ示します。

※WordPressは、ブログサイト制作時に便利なツール。機能追加が容易なプラグインや、外観を簡単に変更できるテーマが多数あるので、カスタマイズも容易で、運営者が投稿のみに専念できる。

カテゴリ選択

各投稿の下には、カテゴリとタグ(キーワード)が表示されています。

投稿カテゴリーとタグ
各投稿の下に表示されるカテゴリーとタグ

カテゴリ選択は、1つのMCU投稿をピックアップして表示する最も簡単な方法です。

例えば、カテゴリのRL78マイコンをクリックすると、日付の新しい順にRL78関連投稿のみが表示されます。PCなどの大画面表示の時は、左端にカテゴリ一覧が表示されるので選択が簡単になります。

PCのカテゴリ表示
MCU毎の投稿を簡単にピックアップできるPCのカテゴリ表示

カテゴリ選択でブログを表示すると、興味のあるMCU投稿がまとまるので便利です。投稿数が多い時は、複数ページに渡りピックアップされます。表示ページ一番下に複数ページへのリンクが表示されます。

複数ページのリンク
カテゴリ投稿数が多い時に表示される複数ページのリンク

ページ番号が大きい、つまり日付の古い投稿は、そのMCUの選択理由や、IDE:統合開発環境インストール方法など最も基本的でMCU開発初期に必要となる情報が記載されています。古い順に読むとより容易にMCU理解が進むかもしれません。

タグ選択

カテゴリとは別に、投稿下にタグと呼ばれる、いわゆるキーワードが示されています。

投稿のタグ(キーワード)
各投稿の下に表示されるタグ(キーワード)

投稿内容で興味が湧いたキーワード(例:リアルタイムOS)がこのタグ内にある場合は、タグをクリックすると、キーワードにより投稿記事がまとめられます。タグ検索は、複数カテゴリに跨った横断的な検索方法です。

自分の興味があるMCUと他社MCU比較などに使うと便利です。

検索窓

ブログ右上にあるSearch:検索窓を使っても投稿の検索ができます。

検索窓
検索窓による投稿記事検索

タグに無いキーワードや、2018年4月など時期を検索窓に入力してクリックすると関連投稿が表示されます。

まとめ

ブログ投稿記事を効率的に表示、検索する方法を3つ示しました。

  1. カテゴリ選択:MCU毎の投稿まとめに最適
  2. タグ選択:キーワードでの横断的な複数MCU比較や理解に適す
  3. 検索窓:タグ以外のキーワードや、投稿時期での検索に適す

本プログは、複数MCUの内容を、時系列で投稿するので、興味ある対象が様々な雑音で読みにくくなる可能性はあります。この場合には、上記3方法で投稿をまとめると読み易くなると思います。

また、手動で関連する投稿を添付する場合もあります(関連投稿を自動選択するWordPressプラグインもありますが使っていません)。

但し、技術者リスク分散の点からは、雑音も耳に入れておくのも良いと思います。どの投稿もチョットした空き時間で読めるように、A4で1~2ページの文章量です。本ブログをご活用いただき、MCU情報整理やプロトタイプ開発に役立つマイコンテンプレートに興味を持っていただければ幸いです。

関連投稿:ルネサスのIDE買収とリスク分散:技術者個人のリスク分散必要性の章参照

Windows 10更新中断、μT-Kernal、IoTマイコン

Windows 10 1809更新によりユーザファイルが消失するトラブルが発生しています。このためMicrosoftは、Windows 10 1809への更新を一時中断しました。

Windows 10更新でマイドキュメントフォルダ消失!

消失フォルダは、よりによってC:\User\[user name]\Documentsだそうです。マイコンIDEのプロジェクトファイルをマイドキュメントフォルダへ設定している方(私がそうです)は、1809更新を待った方が良いかもしれません。

幸い私の3台のPCは、全て問題なく1809更新に成功し、Documentsフォルダも無事でした。

よく言われる最悪を避けるには、個人データのバックアップです。しかし、Windows機能更新時に、最も守るべきユーザデータを壊す/消すという不具合は、OSとしては許されません。Fast/Slow リングで検証できなかったのでしょうか?

μT-Kernal

OSと言えば、マイコン向けのリアルタイムOS:μT-Kernalの解説がトランジスタ技術2018年10月号の組込みOS入門という別冊にあり、第2章~第6章にリアルタイムOS(RTOS)の説明があります。

また、トロンフォーラムへの登録が必要ですがルネサスRL78/G14向けにポーティングしたμT-Kernalを無料でダウンロードできます。

※μT-Kernalは、ITRONベースに2003年公開の32ビットマイコン向けオープン・ソースRTOS。

本ブログではこれまでRTOSとしてFreeRTOSを紹介してきました。μT-Kernalと比較するとより理解が進むと思います。

関連投稿:マイコンRTOS習得

IoTマイコンとRTOS

IoTマイコンにRTOSを使うと、今回のWindows 10のようなトラブルを招く可能性が生じます。ただIoT通信手段が何になるにせよ、高度なセキュリティや公共リソース利用のための通信処理をマイコンで行うには、RTOSが必要になると思います。

この状況ならいっそのことIoTマイコンには、Cortex-M4(または同等クラス)とCortex-M0/M0+マルチコアを導入し、Cortex-M4でIoT関連処理、Cortex-M0/M0+で従来のMCU処理に2分割、さらにIoT関連処理はMCUベンダーが全て無償提供してくれればIoT MCUの爆発的普及が進むと思います。

つまり、Cortex-M4のIoT関連処理がWindows 10に相当する訳です。これならIoT通信手段やセキュリティが変わってもCortex-M4部分のソフトウェアをOTA(Over The Air)で変えれば対応できます。我々開発者は、本来のマイコン処理に集中できます。
理想的な空想ですがね…。

関連投稿:OTAについてIoT端末の脆弱性対応はOTA:Over The Air更新が必須の章参照

Windows 10 1809更新とマイコンIDE

Windows 10 1809更新

Windows 10のRed Stone最後の大型更新RS5 、Windows 10バージョン1809配布が始まりました。

1809更新2方法

Windows Updateで更新

Windows Update更新プログラムのチェックで1809への更新が開始されます。
但し、これは運が良ければの話で、PCの更新準備が整っていても「最新の状態です」が表示され更新を待たされる場合があります。

手動で更新

Windows 10 October 2018 Updateの今すぐアップデートをクリックし、アップデートツールをダウンロードすると、手動で1809更新開始ができます。

1809更新時間と操作

どちらの方法でも、1809プログラムのダウンロードとインストールに1時間、その後、再起動して新しいWindows 10 1809の自動設定に1時間、合計約2時間程度かかります(PCや通信リンク速度によって異なりますので目安です)。

ダウンロードとインストール中は、通常のPC操作やソフトウェア開発は可能です。再起動は、自動的に始まります。
つまり、何らかの操作を行っている場合は、再起動前に終了しなければなりません。

新Windows 10自動設定中は、PC操作はできませんし、操作不要で設定完了します。
つまり、再起動したら1時間は待つしかありません。

Windows 10 1809の各社マイコンIDE動作

ブログ掲載中マイコンIDE(ルネサス:CS+、NXP:LPCXpresso、Cypress:PSoC Creator、STM:SW4STM32)は、私のWindows 10 1809では正常に動作しました。

ルネサスのIDT買収とリスク分散

ルネサスエレクトロニクス(以下ルネサス)が米)IDT買収を発表したことは9月13日投稿済みです。
この買収にはいろいろな憶測が報じられています。これらをまとめ、技術者個人でのリスク分散を考えます。

ルネサスのIDT買収関連記事(2018年9月28日現在)

どの記事もルネサスのIDT買収を、社長兼CEO呉文精氏コメントのように肯定的には捉えていません。むしろリスクの方が大きく、買収が成功するかを危ぶむ声さえあります。

IDT技術のルネサス車載MCUへの応用/流用よりも、むしろNVIDAやインテルなど大手半導体メーカーの自動車半導体市場介入に対する衝突回避/防衛が真の買収目的だ、が各記事の主張です。

私は記事内容から、なぜ回避や防衛ができるのかはイマイチ理解できません。ただ巨大な買収額が、経営的な足かせとなる可能性があることは解ります。半導体業界の巨額買収は、ルネサスに限った話ではありません。

かなり昔、デバイス間通信にIDTの2ポートRAMを使った経験があり便利でした。IDT買収の日の丸MCUメーカー最後の生き残り:ルネサスエレクトロニクスには頑張ってほしいと思います。

技術者個人のリクス分散必要性

動きの激しいMCU半導体製品を使う技術者個人が生き残るには、リスク分散が必要だと思います。

例えば、業務で扱うMCU以外の開発経験を持つのはいかがでしょう。万一の際にも通用する技術を個人で準備しておくのです。その際には、手軽で安価、しかも実践応用もできることが重要です。

弊社マイコンテンプレートは、下記大手4メーカー6品種の汎用MCUに対応中です(各1000円税込)。

  • ルネサス)RL78/G1xテンプレート
  • NXPセミコンダクターズ)LPC8xxテンプレート
  • NXPセミコンダクターズ)LPC111xテンプレート
  • NXPセミコンダクターズ)Kinetis Eテンプレート
  • サイプレス・セミコンダクター)PSoC 4/PSoC 4 BLE/PRoCテンプレート
  • STマイクロエレクトロニクス)STM32Fxテンプレート
    ※各テンプレートに紹介ページあり

テンプレートを使うと新しいMCU開発を実践、習得できます。経験が有るのと無いのとでは雲泥の差です。
リクス分散の1方法としてご検討ください。

STM32マイコン マンスリー・アップデート

STマイクロエレクトロニクス(以下STM)の「日本語マイコン関連情報」、STM32マイコン マンスリー・アップデートを紹介します。

STM32マイコン マンスリー・アップデート
STM32マイコン マンスリー・アップデート。2018年バックナンバーも示す(出典:STマイクロエレクトロニクス)。

無料の登録制です。

  1. MCU最新トピックス(コラム、半ページ技術解説含む)
  2. MCU資料:更新/新規追加の一覧
  3. 開発環境(IDE)更新情報、日本語資料(トレーニング資料含む)

その他、開発に役立つ情報が、丁寧に整理されています。

特に、1最後の”今月のコラムと技術解説”は、A4:1ページに纏まっていて、チョットした空き時間に目を通しておくと、後々役立つ情報になると思います。

また、2と3のMCU資料更新や新規追加、IDE更新情報は、リンク一覧で当該場所が判る優れたハイパーテキストです。

STM32開発者以外のARM Cortex-M開発者にも有用

STM32開発者に限らずARM Cortex-M開発者なら一読の価値がある月刊誌でお勧めです。

MCU市場予測:2018年出荷数306億個、2022年438億個予測

米)市場調査会社IC InsightsのMCU市場予測記事、“マイコン市場、IoTを追い風に安定成長”が、EE Times Japanに掲載されました(2018年9月19日)。

MCU市場予測(出典:IC Insighs、EE Times Japan記事)
MCU市場予測(出典:IC Insighs、EE Times Japan記事)

2022年までの5年間世界MCU市場は、販売額は年平均成長率7.2%続伸、出荷数は年平均成長率11.1%続伸、平均価格は年平均成長率3.5%下落と予測しています。センサー普及やIoT台頭で安定成長の見込みとの結論です。

我々MCU開発者は、ますます忙しくなるでしょう (^^♪。

MCU販売額予測(Markets)

2018年販売額は、前年比11%増加で過去最高186億米ドルと見込み、2019年は9%増で204億米ドルと予測。
今後5年間、年平均成長率7.2%で続伸し、2022年は239憶米ドルと予測。

MCU出荷数予測(Units)

2018年出荷数は、前年比18%増加の306億個の見込み。
今後5年間、年平均成長率11.1%で続伸し、2022年は438億個と予測。

MCU平均価格予測(ASP)

2017年に過去最低に落ち込み、2018年も同じペースで下落するが、過去5年間の年間下落率は、その前の10年間に比べ緩やかになったと分析。
2017年から2022年は、年平均成長率3.5%で下落と予測。

※1$以下のMCU平均価格内訳を知りたいところです。下記、過去関連投稿内容ともほぼ合致しています。

関連投稿:2018年IoT市場予測
関連投稿:IoTマイコン市場規模予測

ルネサスエレクトロニクス、IDT買収

2018年9月11日、ルネサスエレクトロニクス(ルネサス)が米)Integrated Device Technology(IDT)を買収すると発表しました。
約67億ドル買収完了見込みの2019年前半には、IDTはルネサス完全子会社になります。

ルネサス、IDT買収の狙い

・補完性が高い製品獲得によるソリューション提供力の強化
・事業成長機会の拡大

ルネサスは、RFや各種アナログ・ミックスドシグナル機能を持つIDT製品を獲得し、これらをマイコンやパワーマネジメントICと組み合わせ、アナログフロントエンドを強化、これによりIoTや産業、自動車分野の事業領域拡大を狙うと発表しました。

2017年2月に32億1900万ドルで買収したアナログ半導体メーカの米)Inersilと今回のIDTとの事業重複は無く、ルネサス+IDT+Intersilでエンドポイントのインテリジェンスを抑え勝つ(=優勝を狙う)とルネサス)社長兼CEOの呉文精氏はコメントしています。

System on a chip(SoC)でルネサスMCUに強力なアナログ機能が実装される可能性が高まったと思います。

MicrochipのインテリジェントADC(ADCC)

同様の動向として、アナログフロントエンドに計算機能を備えたインテリジェントADCを使いAD変換結果に含まれるノイズを除去、MCU処理電力を低減するADCCデバイスをMicrochipが発表しました。

2018年9月19日水曜14時~15時に、「センサノードの低コスト設定:ADCC」と題して日本語Webinarsが予定されています。登録は必要ですが、どなたでも無料で視聴できオンライン質問にも回答してくれるそうです。興味ある方は、参加してはいかがでしょう。

QualcommのNXP買収断念とルネサスのIDT買収

Qualcomm による約470億ドルNXPセミコンダクターズ(NXP)買収は、断念という結果になりました。“NXP買収を断念したQualcommの誤算(前・後編)”によると、半導体業界はこの騒動からいろいろな教訓を学ぶべきだそうです。
また、同記事でNXP CEOのRick Clemmer氏は、

「QualcommとNXPの合併により、さらなるスマート化に向けたセキュアな接続を実現するというわれわれのビジョンに必要な、あらゆる技術を統合できる。これによって、最先端のコンピューティングやユビキタス接続を、セキュリティや、マイクロコントローラなどの高性能ミックスドシグナルソリューションと組み合わせることが可能になる。両社が協業することで、さらに完成度の高いソリューションを提供できるようになるだろう。特に、自動車やコンシューマー、産業用IoT、デバイスレベルのセキュリティなどの分野において、リーダー的地位をさらに強化し、幅広い顧客基盤との間で既に構築している強固な協業関係を、さらに拡大していくことが可能になる」

と語っています。

上記は、買収を免れたNXPにとっては実現しなかった訳です。コメント内容は、ルネサスのIDT買収狙いと重なる部分が多く、IDT買収がルネサスにとって重要であることの証拠と言えると思います。

企業買収は、巨大な初期投資が必要な半導体業界での生き残りと主要技術確保のための戦略です。
ルネサスとNXPのIoT、産業、自動車分野のMCU競争は、ますます激しくなるでしょう。