STM32G0xテンプレートV2発売

STマイクロエレクトロニクス統合開発環境STM32CubeIDEのHAL APIを利用し開発したSTM32G0xテンプレートVersion2を、6月1日から発売します。

上記弊社サイトよりテンプレート付属説明資料P1~P3が無料ダウンロードできますので、ご検討ください。

STM32G0xテンプレートV2内容

従来よりも高性能で低消費電力動作の新汎用MCU:STM32G0シリーズのアプリケーション開発を、初心者でも簡単に始められ、しかも、処理能力やセキュリティ要求が変化した場合でも、開発資産を活かしたままMCU変更が可能なHAL APIプログラミングに重点を置きました。

そこでVersion2では、LL APIからHALAPI利用アプリケーション開発用テンプレートへの変更、統合開発環境SW4STM32から、STM32CubeIDEへの変更に対応しました。

STM32G0xのもう一つの特徴であるセキュアブート、セキュアファームウェア更新機能を活用する機能は、G0xテンプレートV2以降で対応します。

これらセキュリティ機能は、関連投稿:STM32G0/G4のRoot of Trust(1)~(3)で示したように、IoT MCUでは必須です。これら実装のメインストリーム(=汎用)・マイコンは、現在G0/G4シリーズです。

Root of Trust対応中のSTM32マイコン一覧(出典:FLXCUBESBSFU0819J)
Root of Trust対応中のSTM32マイコン一覧(出典:FLXCUBESBSFU0819J)

汎用性とセキュリティの両方を持つSTM32マイコンをご検討中の方は、先ずはSTM32G0xテンプレートV2で汎用性の部分をマスターできます。

STM32G0xテンプレートV2のご購入、お待ちしております。

Windows 10 May 2020 Update(バージョン2004)対策

5月28日、Windows 10の新バージョン2004の配布が始まりました。残念ながら、早くも複数の大型更新トラブルが発生中です(10件の更新トラブル情報)。

Fast/Slow リングの目的、月一Windows 10 Updateでの多くのトラブル、一般PC利用者への悪影響…等々、このところのMicrosoftは、何か変だと思わずにはいられません。

バージョン2004への更新を暫く避けようと考えている方は、Pro/Homeともに、コチラの方法が参考になります。

STM32マンスリー・アップデートHTML化

STマイクロエレクトロニクスのSTM32マンスリー・アップデートが、6月からスマホ閲覧に好適なHTML配信に変わります。2020年5月号が最後のメール配信でした。HTML配信はブラウザで「絵的」に見るのには確かに適していますが、「字的」な記憶や記録に残りにくい気がするので、個人的には残念です。

そこで、これまでのメール配信版の全マンスリー・アップデートから、5月30日発売のSTM32G0xテンプレートVersion2対象STM32G0シリーズ関連部分を忘れないようピックアップしました。

STM32G0シリーズ特徴

STM32G0シリーズ(出典:マンスリー・アップデート2019年10月)
STM32G0シリーズ(出典:マンスリー・アップデート2019年10月)
Dead Battery機能デフォルト有効(出典:マンスリー・アップデート2019年7月)
Dead Battery機能デフォルト有効(出典:マンスリー・アップデート2019年7月)

※テンプレートで使うNucleo-G071RBは、USB Power Delivery機能(Dead Battery機能)が「デフォルト無効」となっています。

STM32G042/G031/G030新登場(出典:マンスリー・アップデート2020年1月)
STM32G042/G031/G030新登場(出典:マンスリー・アップデート2020年1月)
STM32マイコンでRoot of Trust実現のX-CUBE-SBSFU(出典:マンスリー・アップデート2020年3月)
STM32マイコンでRoot of Trust実現のX-CUBE-SBSFU(出典:マンスリー・アップデート2020年3月)
SBSFU機能(出典:STM32_Security-Introduction)
SBSFU機能(出典:STM32_Security-Introduction)

報告は、A4で1枚以内にまとめろとOJTで学びました。今風に言うと、Twitterのような短文で報告せよということです。記事に、70nm新製造プロセス、64ピンパッケージでも1ペア電源ピン説明が無いのは、少し不満ですが、少ない文字量でSTM32G0特徴をまとめる良い見本になりました。

これは、読者にソフトウェア開発者が多いからでしょうか🤨? 黄色ハイライトは筆者加筆です。

STM32G0xテンプレートV2変更内容

さて、このSTM32G0シリーズ向けSTM32G0xテンプレートV2は、下記3項目がV1からの変更内容です。

  • IoT必須セキュアブート、セキュアFWアップデート実装STM32G0特徴を活用(詳細は、コチラの関連投稿を参照してください。V1は、この特徴を活かしきれていませんでした😂)
  • 高性能専用LL API利用から、汎用HAL API利用アプリケーション開発用テンプレートへ変更
  • SW4STM32統合開発環境から、STM32CubeIDEへ変更

項目2と3をVersion2で対応します。余裕があれば項目1にも対応するかもしれません。

STM32CubeMX使い方刷新STM32Fx/G0xテンプレートV2発売5/15、5/30

サードパーティ仏)AC6社の統合開発環境SW4STM32で開発したSTM32FxテンプレートとSTM32G0xテンプレートを、新しいSTマイクロエレクトロニクス純正STM32CubeIDE対応のVersion2:V2へ更新し販売開始します(STM32Fxテンプレートは2020/05/15、STM32G0xテンプレートは2020/05/30)。

V2では、V1ご購入者様から頂いたご意見ご感想を反映し、新しいSTM32CubeIDEやビルトインSTM32CubeMX使い方説明に工夫を加え、開発トラブル回避、既存アプリケーション資産活用方法などの新たなTipsも添付解説資料に加えました。

テンプレートと合わせてスムースなSTM32MCUアプリケーション開発にお役に立てると思います。

本稿は、説明を工夫したSTM32CubeIDEビルトインSTM32CubeMX使い方の一部を紹介します。

STM32CubeMX使い方:コツ

※以下、用語の頭に付く「STM32」は省略して記述します。

MCU周辺回路の初期化コードを自動生成するCubeIDEビルトインCubeMXも、以前投稿したスタンドアロンCubeMXの使い方と同じです。

CubeMXはSTM32MCU開発の出発点となるツールですので、十分理解した上で着手したいものです。テンプレートV2では、ビルトインCubeMXが生成するファイルに着目し、説明に以下の「使い方のコツ」と「簡単な順位」を追加しました。

CubeMXは、生成するファイル数が多い上に、使用するMCU周辺回路が増えると、生成コード量も多くなり、初めての方には少し解りにくいツールです。弊社テンプレートV1も、このCubeMXに関する質問を多く頂きました。それでも、コツを知っていれば十分使いこなせます。

そのコツとは、以下2点です。
・チェックが必要な自動生成ファイルは、main.hのみ
・main.cに自動追加される周辺回路ハンドラと、初期化コードが分かれば使える

F1シリーズSTM32F103RBの評価ボード:Nucleo-F103RBに弊社テンプレートを応用した例で説明します。

STM32CubeMX生成のF1BaseboardTemplateファイル構成
STM32CubeMX生成のF1BaseboardTemplateファイル構成

CubeMXが自動生成するファイルが、赤:CubeMX生成欄の9個です。このうち注目すべきは、太字赤☑で表示したmain.hとmain.cです。

main.hは、CubeMXで設定したユーザラベル、評価ボードならばB1[Blue PushButton]やUSART_TX/RX、LD2[GreenLed]などを定義した生成ファイルです(※[ ]内は、自動生成時に削除されますので覚え書きなどに使えます)。

main.hのコメント:Private definesの後にこれらの定義が生成されます。これら定義をチェックしておくと、「CubeMX自動生成コードを読むときに役立ち」ます。

main.cは、CubeMXが生成するメイン処理で、評価ボードのCubeMXデフォルトでコード生成:(Alt+K)した場合には、main.cのコメント:Private variablesの後にUSARTハンドラ:huart2と、コメント:Private function prototypesの後にUSART2の初期化コード:MX_USART2_UART_Init()と、その「初期化コード本体がmain.cソースの後ろの方に自動生成」されます。

その他の7個ファイルは、当面無視しても構いません。CubeMXデフォルトのHAL (Hardware Abstraction Layer)APIを利用し、割込みを使わない限り、ユーザコードには無関係だからです(※7個ファイルを知りたい方は、関連投稿:STM32CubeMX生成ファイルのユーザ処理追記箇所を参照してください)。

CubeMXが周辺回路:USART2初期化コードとそれに使う定義を自動生成済みなので、後は、main.cの無限ループ内の指定区間:USER CODE BEGIN xyz~USER CODE END xyzに、Usart2やLD2を使ったHAL APIユーザコードを追記すれば、アプリケーションが完成します。

追記したユーザコードは、再度CubeMXでコード生成しても、指定区間のまま引き継がれます。

ちなみに、アプリケーションで使用可能なHAL APIは、Ctrl+Spaceでリスト表示されます(Content Assist)。そのリストから使用するHAL APIを選択すれば、効率的なユーザコード追記が可能です。
※Content Assistの賢いところは、「ソースコード記述の周辺回路ハンドラを使ってHAL APIをリスト化」するところです。記述なしハンドラのAPIはリスト化されません。

つまり、CubeMXのPinout & Configurationタブで周辺回路を設定後コード生成しさえすれば、直ぐにユーザコードを追記できるファイルが全て自動的に準備され、これらファイルの指定区間へユーザコードを追記すれば、アプリケーションが完成する、これがCubeMXの使い方です。

このCubeMX使い方理解に最低限必要なファイルが、簡単順位:0のmain.hとmain.cの2個です。CubeMX生成ファイル数は9個ありますが、先ずはこの2個だけを理解していれば十分です。

LD2を点滅させるアプリケーションなどを指定区間へ自作すると、具体的に理解が進みます。

STM32CubeMX使い方:周辺回路のファイル分離

評価ボードのCubeMXプロジェクトファイル(*.ioc)は、デフォルトでB1[Blue PushBotton]とUSART2、LD2[GreenLed]を使っています。これらは、評価ボード実装済み周辺回路です。

これら評価ボード実装済み周辺回路へ、弊社テンプレートを適用したのが、シンプルテンプレートです(表:シンプル追加の欄)。

例えば、B1スイッチ押下げ状態をSW_PUSH、USART送信タイムアウトをUSART2_SEND_TIMEOUTなどソースコードを読みやすくする定義の追加は、CubeMX生成main.hの指定区間へ追記することでもちろん可能です。

しかし、他MCUコアへの移植性や変更のし易さを狙って、あえて別ファイル:UserDefine.hへこれらを記述しています。

同じ狙いで、LD2とB1、USART2のユーザ追記制御部分を、Led.cとSw.c、Usart2.cへファイル分離しています。ファイル分離により、HAL API利用のためMCUコア依存性が無くなり、例えば別コアのF0やG0評価ボードで同じ周辺回路を使う場合は、そのファイルのまま流用可能になります。

これらファイル分離した周辺回路の追記制御部分を、main.cの無限ループと同様に起動するのが、Launcher.cです。

つまり、シンプルテンプレートは、評価ボード実装済み周辺回路に、何も追加せずに弊社テンプレートを適用したシンプルな応用例です。その理解に必要なファイルが、緑:シンプル追加欄の☑で、簡単な順に1~5の番号を付けています。

CubeMXのそのままの使い方で周辺回路を追加すると、生成ファイル数は、赤:9個のままですが生成コード量が増えます。周辺回路の初期設定コード増加は当然ですが、この部分はCubeMX自動生成のためミス発生はありません。

しかし、ユーザコード指定区間へ、追加した周辺回路の制御コードを追記するのは、ユーザ自身です。様々な周辺回路制御が混在し追記量が増えてくると、バグやケアレスミスの元になります。

この対策に、周辺回路毎にファイルを分割し、この分割したファイルへ制御コードを記述するのが、シンプルテンプレートです。1周辺回路の制御コードが1ファイル化されていますので、簡単順位1~5の内容は、どれもとても簡単です。

さらに、ADC制御やLCD制御など、殆どの組込アプリケーションで必要になる周辺回路を追加し、Baseboardと評価ボードを結線、デバッグ済みのアプリケーションがベースボードテンプレートです(橙:ベースボード追加欄の3個)。

ユーザ追加ファイルは、全てMCUコア依存性がありません。CubeMXのHAL APIコード生成を行えば、コアに依存する部分は、CubeMX生成ファイル内に閉じ込められるからです。つまり、ユーザ追加ファイルは、全てのSTM32MCUへ流用できる訳です。

これらシンプルテンプレート、ベースボードテンプレートから新たなSTM32MCUアプリケーション開発を着手すれば、新規にアプリケーションをゼロから開発するよりも初期立上げの手間を省け、さらに機能追加や削除も容易です。

STM32CubeMX使い方:周辺回路プロパティ、既存AN利用法

CubeMXへ追加した周辺回路のプロパティ設定値やその理由、更に、既存アプリケーションノート利用方法など、新しいSTM32CubeIDE開発トラブルを回避し、スムースに開発着手できる様々なTipsをテンプレート添付説明資料へ加えています。

マイコンテンプレートサイトでSTM32Fxテンプレートは2020/05/15、STM32G0xテンプレートは2020/05/30発売開始です。ご購入をお待ちしております。
※STM32Fx/G0xテンプレートV1ご購入後1年以内の方は、後日V2を自動配布致しますのでお待ちください。

STM32Fx/G0xテンプレートV2改版状況

STマイクロエレクトロニクスの新しい純正統合開発環境:STM32CubeIDEを使い

2017/09/01発売 STM32Fxテンプレート
2019/06/01発売 STM32G0xテンプレート

を、5月中頃にVersion2:V2改版完了を目標に開発中です。どちらのテンプレートも、サードパーティ仏)AC6社の統合開発環境:SW4STM32と当時のSTM32CubeMXで開発しました。もちろん当時、STM32CubeMXビルトインSTM32CubeIDEはありませんでした。
※STM32CubeMXビルトインSTM32CubeIDEの詳細は、コチラの関連投稿3章を参照してください。

STM32FxテンプレートとSTM32G0xテンプレートのVersion2改版
STM32FxテンプレートとSTM32G0xテンプレートのVersion2改版

本稿は、改版で気が付いた1~3年前のSTM32MCU開発と、現在の「変わったところ/変わらないところ」を説明します。SW4STM32からSTM32CubeIDEへのIDE変更は自主的に変える部分ですが、IDE以外も色々な部分が変わっています。

本稿の目的

本稿は、従来IDEのSW4STM32から新しいSTM32CubeIDEへの移行を妨げるのが目的ではありません。

ほんの数年前のMCU開発環境であっても、最新開発環境へ変える場合には、環境変化への対応時間が必要であることを示したい訳です。

この数年間のブランクは、顧客へ納入済みのアプリケーションを改版、改良する場合によく出会う時間差です。MCU環境は目まぐるしく変わります。この変化にどのように上手く対応していくかも、MCU開発者要件の1つです。

現状のMCU開発は、複数の開発ツールがそれぞれ連携してアプリケーション開発が進みます。セキュリティなどの付加サービスであれば、なおさらです。これら複数ツールは、足並みを揃えて全てが一気に最新環境へ対応することは少ないでしょう。

さらに、STM32G0シリーズのような新しいデバイス情報も収集しておく必要があります。これらを考慮したうえで、顧客からのアプリケーション改版、改良案件に対して、その時点での最適解を提案することが必要だと思います(以下、用語の頭に付く「STM32」は省略して記述します)。

STM32CubeMX:コード生成ツール

CubeMXの自動生成する周辺回路の初期設定コードが変わりました。USART2の例が下図です。

STM32CubeMXの周辺回路初期設定変化
STM32CubeMXの周辺回路初期設定変化

左の従来は、USER CODE追記部分が有りませんが、右の現在は、BEGIN~END部分へユーザコードを追記できます。USART2以外にも、TIM3やIWDGの初期設定コードが同様に変わっています。

この追記部分のおかげで、より解り易い処理フロー作成が可能です。弊社テンプレートV2もこれを活用します。

MCUの消費電流Chartが生成レポート6.6に追加されました。25℃/3.3V動作時のG0/F0/F1各SimpleTemplateのChartを示します。縦軸を比較すると新汎用MCU:G0シリーズの低電力性能がよく解ります。

STM32G0、STM32F0、STM32F1の消費電流比較
STM32G0、STM32F0、STM32F1の消費電流比較

G0シリーズの特徴は、コチラの関連投稿などを参照してください。

AN:アプリケーションノート

アプリケーション開発に最も役立つのが公式AN:サンプルコード集です。CubeMXを開発起点とするサンプルコード集が、F0はAN4735、F1はAN4724、G0はAN5110です。基本的な周辺回路制御方法と、それらを生成するCubeMXプロジェクトファイルが一覧表になっています。

例えば、F1のHAL(Hardware Abstraction Layer)API利用ADCサンプルコード4種を抜き出したのが下記です。

STM32F1シリーズのADCサンプルコード
STM32F1シリーズのADCサンプルコード

従来比、各AN添付のCubeMXプロジェクトファイルは増えましたが、F0/F1は、ブランクプロジェクト(≒開発起点に使えない空プロジェクトファイルで下図左側)です。ここは、数年前と変わっていません。

また、どのサンプルコードもSW4STM32/IAR EWARM/Keil MDK-ARM対応で、未だ新しいCubeIDEには対応していません。
※サンプルコードの中身は、中級開発者には参考になりますが、初心者には、CubeMXプロジェクトファイルがある方が周辺回路の設定内容がより解り易いと思います。

ちなみに弊社テンプレートには、開発起点となるCubeMXプロジェクトファイルを自作し添付しています(下図右側がF1BaseboardTemplateの例)。

この添付CubeMXプロジェクトファイルがあると、どなたにでもテンプレートを活用したアプリケーション開発やピン配置変更、内容修正が容易です。周辺回路設定方法などもV1で頂いたテンプレートご購入者様の意見を反映し添付します。

STM32CubeMXブランクプロジェクトとSTM32F1テンプレートのプロジェクトファイル比較
STM32CubeMXブランクプロジェクトとSTM32F1テンプレートのプロジェクトファイル比較

STM32G0シリーズHAL APIアプリケーション重要性

F0~F1のMCU性能を1つでカバーし、かつ低消費動作なG0シリーズMCUには、その性能を100%活かせる専用LL(Low Layer)API開発が適すと考え、G0xテンプレートV1は、LL APIを主として発売しました。

しかし、G0シリーズは、コア依存性が少ないHAL APIアプリケーション開発がSBSFU実装も可能であり優れています(詳細は、コチラのG0/G4 Root of Trust関連投稿を参照してください)。G0xテンプレートV2は、HAL APIでテンプレートを新規開発します。
※SBSFUを実装したG0xテンプレートは、V2以降(多分V3)で予定しています。

BSP:Board Support Package

従来のSW4STM32は、サンプルコードにBSPを使っていました。しかし、新しいCubeIDEは、BSPを使わずHAL APIで直接制御するサンプルコードが主流です。BSPの実体はHAL APIの組合せですので、BSPを使うよりも評価ボード依存性が無く、より応用流用し易いのは、CubeIDEです。

テンプレートV2も、BSPを使わないCubeIDE方式にします。

Baseboard

mbed-Xpresso BaseboardとNucleo評価ボード接続
mbed-Xpresso BaseboardとNucleo評価ボード接続

秋月電子で簡単に入力できたBaseboardが、現在取扱終了です。代わりにアマゾンマルツで簡単入手できます。

LCDやSWなどのシールドをそれぞれ単体で追加購入するよりも、低価格で評価ボード機能追加ができます。その分、手配線は必要ですが😅、オス-オスジャンパーワイヤで手軽に接続ができます。

STM32CubeIDE日本語文字化け

CubeIDE当初から続く日本語文字化けは、最新版でも解消されていません。コチラの方法で解決しました。

SW4STM32 Webinar

従来の統合開発環境:SW4STM32もまだまだ現役です。例えば、2020年5月5日、15:00~17:00に2時間無料Webinarがあります(多分、英語かフランス語)。最新STM32MP1対応SW4STM32解説なので、興味ある方は、視聴してはいかがでしょう!

Free webinar on Embedded Linux with System Workbench for Linux

さいごに

開発環境変化への対応が必要と説明しましたが、実際にどれ程の時間が必要かは示していません。上手く対応できれば即座ですが、下手をすると本来のアプリケーション開発、改良よりも時間が掛かってしまいます。実際、筆者が対処に結構時間を要したものもありました。

STM32FxテンプレートV2とSTM32G0xテンプレートV2は、筆者が経験したSTM32CubeIDE開発トラブル対処法や、既存AN資産を活用するための様々な対処方法やTipsも解説資料に加えます。テンプレートと合わせてスムースなSTM32MCU開発にお役に立てると考えています。

SW4STM32からSTM32CubeIDE移設

STマイクロエレクトロニクス(以下STM)MCUの統合開発環境(IDE)を、従来のSW4STM32から新しいSTM32CubeIDEへ移設するのは簡単です。STM32CubeIDE初期画面に、SW4STM32からSTM32CubeIDEへのプロジェクト変換機能があるからです。

しかし、本稿はSTM社自身による新しいSTM32CubeIDE発表を、STM32MCU純正開発ツールラインナップの完成ととらえ、SW4STM32で開発したSTM32FxテンプレートSTM32G0xテンプレートを、STM32CubeMX起点のSTM32CubeIDE移設方法とそのメリットを示します。

SW4STM32/TrueSTUDIOからSTM32CubeIDE移設背景

IDE開発元の買収&消滅、C/C++コンパイラ改版、Eclipse改版、WindowsなどのOS改版等々、IDE移設が生じる原因は、様々です。IDEは、MCU開発者と最も長い付合いをするツールで、しかも顧客先で稼働中ソフトウェアの変更手段ですので、IDE移設はできれば避けたい出来事です。

SW4STM32は、STM32MCU向けコードサイズ制限なしの無償IDEで、サードパーティAC6社が提供してきました。また、サードパーティAtollic社のTrueSTUDIOも同じくSTM32MCU向け無償IDEとして人気がありましたが、Atollic社をSTMが買収し、TrueSTUDIOはDiscontinue、代わりにSTM自社開発のSTM32CubeIDE無償提供を始めました(Atollic社買収の目的は、STM32CubeIDE開発だと思います)。

STM32 Software Development Tools(出典:STMサイト)
STM32 Software Development Tools(出典:STMサイト)

ポイントは、従来サードパーティが提供してきたコードサイズ制限なし無償IDEを、STM自らSTM32CubeIDEで提供し、「STM32CubeMX/IDE/Programmer/Monitorから構成されるSTM純正のSTM32MCU開発ツールラインナップが完成」したことです(上図)。

このうち、STM32CubeMoniterは、比較的新しいデバッガで、本ブログで紹介を予定しています。

STM32CubeIDEフォルダ構成

STM32CubeIDEは、SW4STM32やTrueSTUDIOよりも後発IDEですので、SW4STM32/TrueSTUDIO開発プロジェクトを、STM32CubeIDEプロジェクトへ変換し取込む機能があります。この機能の使用結果が下図左側です。

STM32CubeIDE変換機能移設プロジェクト(左)とSTM32CubeIDE新規プロジェクト(右)のフォルダ構成比較
STM32CubeIDE変換機能移設プロジェクト(左)とSTM32CubeIDE新規プロジェクト(右)のフォルダ構成比較

左側は、弊社がSW4STM32で開発したSTM32G0x SimpleTemplateプロジェクトを、STM32CubeIDEの変換機能を使ってSTM32CubeIDEプロジェクトへ移設後のProject Explorer、一方、右側は、STM32CubeIDEで新規にSTM32G0プロジェクトを作成した時のProject Explorerです。

左右でプロジェクトのフォルダ構成が異なっていることが判ります。

左:変換機能利用の移設プロジェクトは、従来のSW4STM32フォルダ構成がそのままSTM32CubeIDEで再現されます。

右:STM32CubeIDE新規プロジェクトのフォルダ構成は、Coreフォルダ内にIncフォルダとSrcフォルダがまとめられています。これがSTM32CubeIDE本来のフォルダ構成です。
※ここでのCoreは、下図Application code層を示します。

STM32CubeIDE本来のフォルダ構成は、MCUがCortex-M4のSTM32G4などへ代わっても、Core>Inc/Src構成は不変で、Driversフォルダの中身がSTM32G4対応へ変わるのみです。つまり、よりCMSIS対応のアプリケーション開発に向いた構成です。

CMSIS Structure(出典:Keil CMSIS Version 5.6.0 Generalサイト)
CMSIS Structure(出典:Keil CMSIS Version 5.6.0 Generalサイト)

※CMSIS対応は、関連投稿:mbed OS 5.4.0のLチカ動作、LPCXpresso824-MAXで確認の3章 CMSISを参照してください。

このようにSTM32CubeIDEは、開発者が「本来のアプリケーション開発に集中し易い、つまりIncとSrcのコード作成に集中できるMCU非依存のフォルダ構成」です。

さらに、他の「STM32MCU純正開発ツールとの相性良さや、新発売MCUデバイスへの素早い対応」も期待できます。

これらは、サードパーティIDEになかったSTM自社開発STM32CubeIDEの大きなメリットです。

STM32CubeMX起点のSTM32CubeIDE移設

STM32Fx/G0xテンプレートは、SW4STM32で開発しました。STM32CubeIDEプロジェクト変換機能を使って、従来SW4STM32フォルダ構成のままSTM32CubeIDEへの移設は簡単です。しかし、前章のSTM32CubeIDE本来のフォルダ構成の方が、より大きなメリットが期待できます。

そこで、本来のSTM32CubeIDEプロジェクトフォルダ構成へ、SW4STM32プロジェクトを移設します。

これには、STM32Fx/G0xテンプレート開発時に自作したSTM32CubeMXプロジェクトファイル(前章の左側:SimpleTemplate.ioc)を使います。

STM32CubeMXは、STM32MCUソフトウェア開発の起点となるコード生成ツールです。このSTM32CubeMXから移設を始めれば、次段のSTM32CubeIDEも本来の新規プロジェクト構成で自動生成されます。

さらに、開発アプリケーションで使うLL API/HAL APIの選択や変更も、STM32CubeMXで行います。従って、LL APIが「主」で開発したSTM32G0xテンプレートを、HAL APIへ変えるのも容易です。
※LL API「主」からHAL APIへも「主」へ変更する理由は、STM32G0シリーズがRoot of Trust対応メインストリーム(汎用)MCUだからです。STM32G0専用のLL APIアプリケーションよりも、汎用HAL APIアプリケーションの方が、Root of Trust実現には向いています。詳しくは、関連投稿:STM32G0/G4のRoot of Trust(2)を参照してください。

SW4STM32のSTM32CubeMXプロジェクトファイル(SimpleTemplate.ioc)を起点としてSTM32CubeIDEへ移設したProject Explorerが下図です。前章の右側:STM32CubeIDE新規プロジェクトと同じフォルダ構成で移設されていることが判ります。

STM32CubeMXプロジェクトファイル起点でSTM32CubeIDEへ移設
STM32CubeMXプロジェクトファイル起点でSTM32CubeIDEへ移設

但しこの方法では、SW4STM32でユーザ(筆者)が追加作成したファイル、前章左側:Launcher.c/Led.c/Lpuart.c/UserDefine.hは、手動で移設する必要があります。

まとめ

STM32CubeIDEの提供で、STM32MCU純正開発ツールラインナップが完成しました。
※STM32CubeIDE v1.3.0に残っていた日本語文字化けは、コチラの投稿方法で解決しました。

SW4STM32/TrueSTUDIOなどの従来IDEからSTM32CubeIDE 移設のメリットは、他のSTM純正開発ツール(STM32CubeMX/Programmer/Monitor)との好相性や新発売MCUデバイスへの早い対応です。

従来IDEプロジェクトの移設は、STM32CubeIDEプロジェクト変換機能を使うと簡単です。しかし、移設メリットを活かすには、旧IDEフォルダ構成から、STM32CubeIDE本来の構成となるSTM32CubeMXプロジェクト起点の移設を、弊社STM32Fx/G0xテンプレートへ適用します。

STM32CubeIDE対応の各テンプレート改版完成は、本ブログで発表します。

STM32G0動画と専用テンプレート

STマイクロエレクトロニクス(以下STM)の公式ブログで、STM32G0を理解できるPart.0~10の動画(英語版)を紹介しています。
各動画は、休憩時間に視聴するのに丁度良い6分から15分程度の長さです。

動画リスト

13:13     Pt. 0, Install Procedure

6:05       Pt. 1, Saving Content of the Flash of the STM32

13:47     Pt. 2, Blinky

13:09     Pt. 3, PWM

9:10       Pt. 4, External Interrupt

14:20     Pt. 5, Low Power (Pt. 1)

6:23       Pt. 6, Low Power (Pt. 2)

13:19     Pt. 7, Printf

13:27     Pt. 8, Low Layer Drivers

17:37     Pt. 9, DMA

15:14     Pt. 10, Flashing STM32

少し聞きにくい英語ですが、スライドを見るだけでも内容は解ると思います。

開発環境

動画のIDEは、KeilのSTM32G0/F0/L0専用無償版を使っています。既にSTM32CubeIDEやSW4STM32を利用中の方は、これらIDEとKeil専用版を同時インストールすると、STM32G0/F0/L0のみコンパイル可能となるトラブルが発生するらしいので注意してください。

IDE以外は、コード生成ツール:STM32CubeMX、評価ボード:Nucleo-G071RB、通信アプリ:Tera Termなどおなじみの環境での解説です。

STM32G0のSTM32F0/F1をカバーする広い守備範囲、Low Layer API開発メリットや重要性などが理解できると思います。残念なのは、STM32G0x全シリーズ搭載の最新ADC解説が無いことです。ADCに関しては弊社関連投稿を参照ください。

STM32G0x専用テンプレート

動画Part8紹介のLL APIを活用したSTM32G0x専用テンプレートを発売中です。

STM32G0xシリーズのプロトタイプ開発着手時に必要となるLPUARTやLED制御などの複数サンプルソフトがあらかじめ実装済みで、評価ボードADC入力変換値のTera Term出力も実装済みです。

STM32G0xシリーズ性能をフルに発揮したアプリケーション早期開発や、STM32G0習得に最適です。

ご購入、お待ちしております。

STM32G0x専用テンプレート発売

LL API利用のSTM32G0x専用テンプレートを、2019年6月1日発売開始します。

STマイクロエレクトロニクス(以下STM)2018年12月新発売のSTM32G0xデバイスは、高性能・低電力なCortex-M0+と70nm新プロセス動作速度向上により、STM32G0x単独で従来汎用STM32F0/F1をカバーする性能と超低電力動作、低価格が特徴です。

このSTM32G0x専用LL (Low-Layer) API利用テンプレートが、今回1,000円(税込)で発売するSTM32G0x専用テンプレートです。

※従来から販売中のSTM32Fxテンプレートは、HAL API利用の汎用テンプレートです。

STM32G4シリーズ追加、全5種となったSTM32 Mainstream MCUs

2019年5月28日、超高性能汎用STM32G4xが発表されました。これでSTM汎用MCUは全5種となりました。一覧が下図です。

STM32汎用MCUラインナップ
STM32汎用MCUラインナップ(出典:STM32 Mainsterm MCUsに加筆)

STM32G0x専用テンプレートは、軽量・高速・エキスパート向きLL APIを利用します。STM32G0x性能をフル発揮するアプリケーションのプロトタイプ開発に最適です。

※STM32G0xや専用テンプレートの本ブログ関連投稿は、下欄タグ🏷:STM32G0x、または、専用テンプレートをクリックしてください。

STM32G0x専用テンプレート適用例2種、API比較評価用2種

LL APIとHAL APIの比較評価のため、汎用テンプレートをSTM32G0xへポーティングしたHAL APIテンプレートも添付します。同一アプリケーションでのLLとHALのリソース使用量、ユーザ記述量、API可読性などを具体的に評価・分析できます。全て評価ボード:Nucleo-G071RB上で動作確認済みです。

STM32G0x専用テンプレート適用例
STM32G0x専用テンプレート適用例

SimpleTemplateは、最も簡単なテンプレート適用例で、基本的なSTM32G071RB周辺回路とテンプレート動作が理解できます。AdcTemplateは、全STM32G0xシリーズ共通周辺回路:2.5Msps 12ビットADC制御をSimpleTemplateに追加し、全てのSTM32G0xプロトタイプ開発の起点となるテンプレートです。

SimpleTemplate、AdcTemplateともにLL APIを利用したSTM32G0x専用テンプレートと、汎用テンプレートをSTM32G0xへポーティングしたHAL APIテンプレートを提供します。

STM32G0x専用テンプレート適用例は、評価ボードのGPIOやLED、LPUART通信など必須の複数STM公式サンプルプロジェクトが実装済みで、すぐにプロトタイプ開発着手ができるLL API利用アプリケーションプロジェクトです。

※HAL版はAPI比較評価用です。2019年5月末時点のコード生成ツールSTM32CubeMX(v5.2.1)とSTM32G0 FW(v1.2.0)は、LL APIでのみSTM32G0x性能をフルに引き出すことができます。

※STM32MCU間でアプリケーション移植・流用性を最大限に保証するHAL APIを利用したソフトウェア開発を希望される方は、STM32Fxテンプレートの購入をご検討ください。

付属説明資料でLL APIアプリケーション開発着手時の障害解消

STM32G0x専用テンプレート付属説明資料のもくじを示します。

STM32G0x専用テンプレート付属説明資料もくじ
STM32G0x専用テンプレート付属説明資料もくじ

説明資料P1~P3は、STM32G0x専用テンプレートサイトから無料ダウンロード可能です。全14ページの詳細な説明により、LL APIが理解でき、STM32G0xデバイス専用アプリケーションのプロトタイプ開発着手時の様々な障害を取り除き、スピード開発するのに専用テンプレートは最適です。

STM32G0x専用テンプレートは、コチラの手順でご購入可能です。よろしくお願いいたします。

*  *  *

STM32CubeMX v5.2.1改版時の注意点

2019年5月24日、STM32CubeMXがv5.2.1へ改版されました。インストール時の注意点を示します。

STM32CubeMX v5.2.1改版
STM32CubeMX v5.2.1改版

STM32CubeMX v5.2.1ダウンロードは、Install Nowクリックのみです。但しダウンロード後、一旦STM32CubeMXを終了し、再起動時は、下記のように管理者と してインストールを実行する必要がありますので注意してください。

STM32CubeMX v5.2.1.Update
STM32CubeMX v5.2.1.Update。インストールは管理者として実行する必要がある。

汎用STM32FxテンプレートのSTM32G0x使用法

LL APIを利用するSTM32G0x「専用テンプレート」開発は、3月からの投稿で一応目安が付きました。
※投稿下欄タグ:専用テンプレートをクリックすると本稿を含め関連投稿が読めます。

これらの投稿で販売中の汎用STM32Fxテンプレートは、HAL APIを使っているので別STM32MCU、例えばG0シリーズMCUのSTM32G071RBなどへの使用・移植も簡単であることを何度か書いてきました。

そこで、この「汎用テンプレート」のSTM32G071RBへの使用法を説明します。

STM32Fxテンプレートは、図1に示すようにF0シリーズMCUのSTM32F072RBと、F1シリーズMCUのSTM32F103RB両方で動作確認済みです。本稿は、このSTM32FxテンプレートをSTM32G0へポーティングします。

汎用STM32Fxテンプレートのソフトウェアアークテクチャ
汎用STM32Fxテンプレートのソフトウェアアークテクチャ

汎用STM32FxテンプレートのSTM32G0x使用法まとめ

  • HAL APIはSTM32MCUで共通なので、HAL API利用アプリケーション(この場合はテンプレート、STM32Fx Template)は、STM32デバイスが変わってもそのまま使える
  • HAL APIより下層のソフトウェアは、STM32CubeMXを使って自動生成
  • STM開発環境にMCU移植機能が無い現状では、移植デバイス先のSTM32CubeMX設定さえ間違わなければ、HAL APIより上層アプリケーションの使用・移植は、簡単

汎用STM32Fxテンプレートを購入検討中の方、または既にSTM32Fxテンプレートをお持ちの方は、HAL API利用STM32Fxテンプレートの別デバイス移植性が優れていることが本稿でご理解頂けると思います。

汎用STM32F0シンプルテンプレートのSTM32G071RB移植手順

手順1.SW4STM32で、F0SimpleTemplateプロジェクト名をG0SimpleTemplateへリネームコピー

手順2.STM32CubeMXで、評価ボードNucleo-G071RBプロジェクトを新規作成し、F0SimpleTemplate.icoと同じ変更を加え、手順1でリネームしたG0SimpleTemplate.icoへ上書き保存後、コード生成

手順3.SW4STM32で、G0SimpleTemplateのmain.cとUserDefine.hなど数か所を変更&コンパイル

手順4.STM32G071RB評価ボードNucleo-G071RBで、移植シンプルテンプレート動作確認

文章で書くと手順1~4のように量が多くなります。しかし、HAL APIはSTM32MCUで共通、デバイスが変わってもHAL API利用アプリケーションをそのまま使うために、下層の構築にSTM32CubeMXを使うだけです。HAL APIアプリケーション移植は簡単です。

手順詳細を説明します。

手順1:SW4STM32で、F0SimpleTemplateプロジェクトをG0SimpleTemplateへリネームコピー

F0SimpleTemplateをコピー、同じワークスペースへペーストする時にG0SimpleTemplateへリネームします。

F0SimpleTemplateをG0SimpleTempleteへリネームコピー
F0SimpleTemplateをG0SimpleTempleteへリネームコピー

G0SimpleTemplateフォルダ内のF0SimpleTemplate.iocをG0SimpleTemplate.iocへF2:リネームします。
※手順1の目的は、F0SimpleTemplateソースコードのユーザ追記部分を、丸ごとG0SimpleTemplateで流用するためです。

手順2:STM32CubeMXで、Nucleo-G071RB新規作成とコード生成

現状のSTM32CubeMXには、MCUデバイス間の移植機能がありません。そこで、F0SimpleTemplate.iocファイルを見ながら、新規作成Nucleo-G071RBの周辺回路を手動で同じ設定にします。

先ずG0SimpleTemplete.iocファイルを新規作成し、手順1でリネームしたG0SimpleTemplete.iocへ上書き保存します。その後、STM32CubeMXの2重起動を活かしF0SimpleTemplate.iocを見ながらG0SimpleTemplete.ioc周辺回路を同じ設定にします。最後に、全ての周辺回路をHAL APIでコード生成します。

STM32CubeMXのNucleo-G071RB設定
STM32CubeMXのNucleo-G071RB設定

※Connectivityは、F0SimpleTemplateに合わせてUSART2、Clock Configurationは、HCLK Max.の64MHz、Timerは、F0SimpleTemplateのTIM3機能に近いTIM7を使いました。

手順3:SW4STM32で、main.cとuserdefine.hの数か所を修正&コンパイル

どのようなアプリケーションソフトでも、デバイス依存の箇所があります。F0SimpleTemplateも同様です。これらは手動で変更・修正するとビルドが成功します。変更・修正箇所が下記です。

  • HALライブラリとBSP(Board Support Package)変更
    stm32f0xx_hal.h→stm32g0xx_hal_conf.h、stm32f0xx_nucleo.h→stm32g0xx_nucleo.h(UserDefine.h)
  • BSPはRepository\STM32Cube_FW_G0_V1.2.0\Drivers\BSP\STM32G0xx_Nucleoのstm32g0xx_nucleo.c/hをSrc/Incへコピー
  • TIM3の代わりにTIM7を使ったので、htim3→htim7(main.c)
  • G0SimpleTemplateに無関係ファイル削除(stm32f0xx_nucleo.c/h, system_stm32f0xx.c)

手順4:評価ボードNucleo-G071RBで動作確認

F0SimpleTemplateをG0SimpleTempletaへ流用したVitrual COMポート画面
F0SimpleTemplateをG0SimpleTempletaへ流用したVitrual COMポート画面

※表示メッセージは、STM32G0xデバイス対応に変更しています。

あとがき

繰返しますが、文章で書くと移植手順は長く複雑に感じます(特に手順3)。しかし、ソフトウェアアーキテクチャ図1が理解済みならHAL API利用アプリケーションの別デバイスへの移植は簡単です。手順3内容は、デバイスが変われば当然必要となる事柄です。

HAL API利用アプリケーションの最大メリットは、MCU移植が容易なことです。つまり、HAL APIアプリケーションは、「STM32MCUデバイス非依存」とも言えます。

現状では、このメリットを活かす開発環境が不備なだけです。不備分は手動で補い、STM32F0/F1アプリケーションをSTM32G0アプリケーションへ移植する方法を示しました。

近い将来、STM開発環境にMCUデバイス移植機能が提供されると筆者は思います。

お知らせ:LL APIを利用するLL APIのSTM32G0x「専用」テンプレートの販売時には、本稿のHAL API利用「汎用」G0SimpleTemplateも添付し、専用と汎用の両方を1パッケージで販売する予定です。

※LL APIとHAL APIの差を把握したい方は、STM32CubeMXのLow-Layer API利用法(2)を参照ください。

STM32G0xのLPUART利用法

STM32G0xデバイスは、従来からあるSTM32F0/F1デバイス通信機能USARTに、LPUART(Low Power UART)が新たに加わりました。本稿は、このSTM32G0xのLPUART利用法を解説します。

LPUARTとUSART

オンライントレーニング資料:STM32G0 – USARTのP26にLPUARTとUSARTの機能差分があります。

LPUARTとUSART差分(出典:STM32G0オンライントレーニング資料)
LPUARTとUSARTの差分(説明のため着色しています。出典:STM32G0オンライントレーニング資料)

USART1/2からIrDA:赤外線とLIN:車載通信機能を除いたサブセット版がLPUARTで、USART3/4より8バイトFIFO付きで高機能です。データシート:DS12232 Rev 2から抜粋した各消費電流が下記です。

LPUARTとUSART消費電流(出典:STM32G071xデータシートRev2)
LPUARTとUSART消費電流(出典:STM32G071xデータシートRev2)

LPUARTは、USART1/2とUSART3/4の中間、USART2.5/3.5が名前として適当かもしれません。API名を考慮し、USART1/2よりもLow Powerという特徴のLPUARTにしたのでしょう。

LPUARTサンプルプロジェクトは1個

前稿STM32G0xのADC利用法STM32G0xのADC利用法で示したように、LPUARTの実践的使い方習得には、AN5110記載のLPUARTサンプルプロジェクト理解が近道です。

しかし、現状の「LPUART」サンプルプロジェクトは、Examples_LLにあるLPUART_WakeUpFromStopの1個のみ、しかも、STM32CubeMXで生成できません(STM32G0x v1.1.0、STM32CubeMX v5.1.0)。
※HAL APIを使うExampleにも、LPUARTサンプルプロジェクトは現状なしです。
※4月末リリースSTM32G0x v1.2.0、STM32CubeMX v5.2.0でも状況は同じです。

一方、STM32CubeMXで生成できるLL API利用「USART」サンプルプロジェクトは多数あります。サンプルプロジェクト流用や活用で自分のソフトウェアを開発する場合、このような需要と供給のミスマッチは良くあります。

このミスマッチ対処方法を以下に示します。

供給USARTサンプルプロジェクトから需要LPUARTプロジェクト作成

初めに示したように、LPUARTはUSART1のサブセット版です。PCとのVirtual COMポート利用なら機能差はありません。従って、以下の手順でUSARTサンプルプロジェクからLPUARTプロジェクトを作成します。

USARTサンプルプロジェクからLPUART プロジェクト作成手順
USARTサンプルプロジェクからLPUART プロジェクト作成手順。簡単な変換作業で新プロジェクト作成ができる。

STM32CubeMXのLow-Layer API利用法 (1)で示したAPIユーザマニュアル:UM2319を見ると、ユーザソースコードAPIのUSART部分をLPUARTに変更すれば、API変換ができることも解ります。

この手順の良いところは、2と3が、簡単にできることです。

STM32CubeMXで生成できるサンプルプロジェクさえあれば、2と3は簡単で、しかもミスなくできます。つまり、サンプルプロジェク活用・流用がより簡単・正確にできます。筆者が、AN5110記載サンプルプロジェクトの中で、STM32CubeMX生成アイコン付きにこだわる理由がこれです。

1. USART_Comminication_Tx_Initサンプルプロジェクト動作確認

STM32CubeMXでUSART_Comminication_Tx_InitをSW4STM32用に生成します。評価ボードCN10#21とJP6のRX、CN10#33とJP6のTXを配線します。起動後USER BOTTONを押すとHyper Terminal(Tera Term)にメッセージが出力されLD4が点灯します。

※STM32CubeMXのSW4STM32用の使い方は、前稿ADC利用法のADC_SingleConversion_TriggerSW_InitのSW4STM32へのインポートの章を参照ください。

USART_Comminication_Tx_Initサンプルプロジェクト動作確認ができました。

USART_Comminication_Tx_Initサンプルプロジェクト実行結果
USART_Comminication_Tx_Initサンプルプロジェクト実行結果

2. STM32CubeMXでUSARTをLPUARTへ変更しコード生成

STM32CubeMXのPinout viewで、USART1をMode: Disable、LPUARTをMode: Asynchronous、115200bps/8Bits Word Lengthに設定します。LPUART1はProject Manager>Advanced SettingsでデフォルトのHALからLLへ変更します。GENERATE CODEでコード生成します。

STM32CubeMXでUSART1をLPUARTへ変更しコード生成
STM32CubeMXでUSART1をLPUARTへ変更しコード生成

3. SW4STM32でユーザコードをUSART APIからLPUART APIへ変更

生成されたSW4STM32の/* USER CODE BEGIN … */~/* USER CODE END … */の間のユーザコードは、コード再生成してもそのまま上書きされます。

従って、ソースコードで旧USART APIが残っているのは、この上書きユーザコード部分だけです。これ以外は、STM32CubeMXがコード生成時にLPUART APIへ変更済みです。

USART_Comminication_Tx_Initの場合は、下図赤線部分などです。これを青線のLPUART APIへ変更します。SW4STM32のFind/Replace機能を使うと、変更がミスなく簡単にできます。

ユーザコードのUSART API(赤線)からLPUART API(青線)へ変更
ユーザコードのUSART API(赤線)からLPUART API(青線)へ変更

4. LPUART変更後のプロジェクト動作確認

USARTからLPUARTへ変更したので、評価ボードCN10#16とJP6のRX、CN10#18とJP6のTXを配線します。起動後USER BOTTONを押すとHyper Terminal(Tera Term)にメッセージが出力されLD4が点灯します。LPUART変更プロジェクトの動作確認が出来ました。
※出力メッセージは、“LPUART project creation …”に変更しました。

作成したLPUARTプロジェクト実行結果
作成したLPUARTプロジェクト実行結果

手順1~4で作成したLPUARTプロジェクトから、LPUARTは、USARTと同じ使い方ができ、40%低電力(Table 33の数値比較)なサブセット版であることが解りました。

STM32G0xデバイスの新通信機能としてLPUARTを積極的に活用したいと思います。

※本章は、LPUARTの細かな使い方は、ソースコードを読めば解るという前提で説明しています。ソースコードの具体的な読み方は、前稿:STM32G0xのADC利用法のmain.cソースコードの読み方の章などを参考にしてください。

STM32G0xの実践的LPUART利用法まとめ

実践的に周辺回路利用法を習得するには、サンプルプロジェクト理解が近道です。

現状のSTM32G0x v1.1.0、STM32CubeMX v5.1.0は、LPUART習得に使えるサンプルプロジェクはLPUART_WakeUpFromStop の1個のみで、STM32CubeMXを使って生成はできません。
※4月末リリースSTM32G0x v1.2.0、STM32CubeMX v5.2.0でも状況は同じです。

一方、現状でもSTM32CubeMXで生成できるUSARTサンプルプロジェクトは多数あるので、これらを利用し、求めるLPUARTプロジェクトを作成する簡単でミスの少ない手順を示しました。

作成したLPUARTプロジェクトから、LPUARTは、USART1/2と同じ使い方で40%低消費電力な新通信機能であることが解りました。

STM32G0xのADC利用法

STM32G0xのラインナップは、Value/Access/Access&Encryptionの3製品です。製品により内蔵周辺回路が異なりますが全製品共通回路が、2.5MSPS 12bit ADCです。本稿は、このSTM32G0xのADC利用法を解説します。

STM32G0xのADC資料一覧

時短に役立つ資料を表1にリストアップしました。

表1 STM32G0xのADC資料一覧(2019年4月現在)
資料名 概要
STM32G0 – ADC STM32G0のADCトレーニング資料。全20ページの内容は判り易く良書。
AN5110 STM32CubeMXを使い生成可能なSTM32G0x公式サンプルプロジェクト一覧表。
HAL API 4個、LL API 8個、HALとLL混在1個のADC公式STM32CubeMXプロジェクト掲載アプリケーションノート。
AN2834 全STM32MCUのADCを精度よく使う方法アプリケーションノート。全49ページ。

3資料と数は少ないですが、ADC内容は盛り沢山です。

STM32G0xのADC公式サンプルプロジェクトAN5110とオンライントレーニング資料を中心に、AN2834も参照するアプローチで解説します。

STM32G0とSTM32F0のADC差

STM32G0は最新IoT Edge MCU、STM32F0は普通の汎用MCUで、どちらもMainstream(≒汎用)MCUですが内蔵12bit ADCは異なります。トレーニング資料P18に特徴の比較があります。

STM32G0とSTM32F0のADC差
STM32G0とSTM32F0のADC差分(※説明のため着色しています。出典:ADCオンライントレーニング資料)

先ず、Conversion:ADC変換時間が0.4usと高速になった点。STM32G0xはMax. 64MHz動作(F0は48MHz)ですが2倍以上高速です。次に、Analog watchdog対応数が増え、バッテリー動作に備え低圧側に動作電圧が広がっています。ハードウェアオーバーサンプリングと高度なシーケンサーが新しい機能です。

勿論、普通のSTM32F0と同じADC制御もできますが、これら新機能を使いこなし、コアMCU負担を減らすように制御すると上手い使い方と言えるでしょう。

トレーニング資料は英文ですが、ポイントを抑えた非常に良くできた資料です。筆者の下手な解説より資料を読んで頂くと、STM32G0xのADCの使い方が判ると思います。

実践的ADCの使い方習得

トレーニング資料が一番効果的ですが、本稿では、開発中のSTM32G0x専用テンプレート動作確認評価ボードNucleo-G071RBで動作するAN5110のExamples_LL掲載サンプルプロジェクト(MXアイコン付きの下記8個)を使って、実践的にLL APIによるADCの使い方を習得します。

なぜLL APIを使うのかは、STM32G0x専用テンプレート開発全体像俯瞰、また、全般的なLL API利用法はSTM32CubeMXのLow-Layer API利用法 (1)~(3)を参照してください。

LL APIを使ったADCプロジェクト一覧(出典:AN5110)
LL APIを使ったADCプロジェクト一覧(出典:AN5110)

Descriptionを読むと、大別して4種類のサンプルプロジェクトがあることが解ります。AN5110は、Examples_LLフォルダを名前順に表示したもので、MXアイコン付き8個を制御別に解り易く並び変えたものが表2です。

表2 MXアイコン付き8プロジェクトを制御別に並び換える
制御 基本プロジェクト名(_Init省略) 応用プロジェクト名(_Init省略)
1 ADC SingleConversion TriggerSW

ADC SingleConversion TriggerSW DMA

ADC SingleConversion TriggerSW IT

ADC SingleConversion TriggerTimer DMA

2 ADC ContinuousConversion TriggerSW ADC ContinuousConversion TriggerSW LowPower
3 ADC Oversampling なし
4 ADC  AnalogWatchdog なし

4種類を整理すると、最も基本のADCプロジェクトが1です。

1のSingleConversion_TriggerSoftwareは、ソフトウェアトリガでADCを開始し、ポーリングでデータ取得、データ転送にDMA転送、割込みなどの応用例があります。タイマをトリガにDMA転送の発展例もあります。ADC処理回数は1回です。

2のContinuousConversionは、1のADC処理回数の連続形で、LowPowerでの応用例があります。
※1と2のConversion Mode説明が、トレーニング資料P11にあります。

3のOversamplingは、新機能のサンプルプロジェクトです。
※Hardware Oversampling説明が、トレーニング資料P12にあります。

4のAnalogWatchdogも、新機能の3個AnalogWatchdogを使ったサンプルプロジェクトです。
※AnalogWatchdog説明が、トレーニング資料P13にあります。

いかがですか? ADCサンプルプロジェクトだけでもおなか一杯で、しかも、これでもADCの豊富な機能の一部抜粋です。さらに、省電力動作や、実際に接続するアナログセンサ出力への対応、加えてAN2834記載の変換精度向上なども考慮すると、ADCだけでも上手く使うのはかなりのスキルや経験が必要なのが分ります。

こういう時は、最も基本のADC_SingleConversion_TriggerSWを先ず理解し、プライオリティに応じて順次ステップアップするのが常套手段です。プライオリティ無しの手当たり次第の理解は、消化不良を起こします😂。
※なおSTM32G0x専用テンプレートは、このADC_SingleConversion_TriggerSWを実装予定です。

ADC_SingleConversion_TriggerSW_InitのSW4STM32インポート

※統合開発環境SW4STM32とコード生成ツールSTM32CubeMXは、Windowsパソコンへインストール済みとします。インストール方法は、関連投稿を参照してください。

先ず、ADC_SingleConversion_TriggerSW_Initを使って、STM32G0xのADC使い方を説明します。

サンプルプロジェクト:ADC_SingleConversion_TriggerSW_InitをIDE:SW4STM32へインポートする方法は色々あります。簡単な方法が下記です。

1.STM32CubeMXをインストールしたPCの          、
STM32Cube\Repository\STM32Cube_FW_G0_V1.1.0\Projects\NUCLEO-G071RB\Examples_LL\ADC\ADC_SingleConversion_TriggerSW_Initフォルダを開き、ADC_SingleConversion_TriggerSW_Init.iocをクリックすると、STM32CubeMXが起動します。

2.起動したSTM32CubeMXのProject Manager>Projectで、Toolchain/IDEをSW4STM32へ変えます。Advanced SettingsタブでADCや周辺回路のLL利用を確認しておきます。

3.GENERATE CODEをクリックし、表示されるダイアログでOpen Projectをクリックすると、SW4STM32が起動します。ワークスペースを入力後、下記Successfully imported the project…が表示されればインポート完了です。

SW2STM32インポート成功時ダイアログ
SW2STM32インポート成功時ダイアログ

4.SW4STM32でreadme.txtを開くとインポートしたプロジェクト内容が解ります。評価ボード:Nucleo-G071RBのPA.04、またはArduinoコネクタCN8 A2接続の、0から3.3Vまでのアナログ入力電圧を、ソフトウェアトリガでADCスタートし、ADC完了ポーリングでデータ変換完了を確認するのがこのプロジェクトです。
評価ボード単独でもアナログ入力電圧は不定ですが、動作可能です。

サンプルプロジェクトmain.cソースコードの読み方

初めてmain.cを見た方は、ソースコード行数が多いのでビックリするかもしれません。しかし、以下のSTM32CubeMX(以下MX)生成ソースコードの構造を押さえて読めば簡単です。

  • 自動生成ソースコードは、ユーザコード/コメントを追記する部分と、MX生成部分の2つからなる
  • ユーザコード/コメント部分は、再度MXで新たにコード生成しても、上書きされそのまま残る
  • コーザコード/コメント部分は、/* USER CODE BEGIN… */ ~ /* USER CODE END… */で囲まれている

従って、サンプルプロジェクトのユーザコード/コメント部分は、「ユーザの代わりにSTMが作成したコードと明示的に説明を加えた箇所」です。注意して読みましょう。それ以外のMX生成部分は、コメントを眺める程度で十分です。

サンプルプロジェクトmain.c解説

ソースコードが読めると、サンプルプロジェクト内の重要関数も解ります。

ADC_SingleConversion_TriggerSW_Initの場合は、L121のConversionStartPoll_ADC_GrpRegular(void)とL120のActivate_ADC(void)が重要関数です。

これら以外のLED点滅関数(L122~124)とMX生成関数(L116~118)は、他のプロジェクトでも使える、いわばLL API開発時の汎用関数です。

ADC_SingleConversion_TriggerSW_Initのmain.c
ADC_SingleConversion_TriggerSW_Initのmain.c解説。重要関数と汎用関数に分けて読む。

L121へカーソルを移動し、F3を押すとConversionStartPoll_ADC_GrpRegular(void)の定義場所へ簡単に移動できます。

ConversionStartPoll_ADC_GrpRegular()
重要関数 ConversionStartPoll_ADC_GrpRegular()本体

ConversionStartPoll_ADC_GrpRegular(void)は、本来ユーザが作成する関数を、STMが代わりに作成した信頼性が高い関数です。ユーザが利用しない手はありません。ライセンス上も問題なく使えます。

しかも、STMが明示的に付けたコメントがありますので、自分の開発ソースコードへ利用・活用できるようにコメントを読んで内容を理解しておきましょう。内容理解には、readme.txtやトレーニング資料も役立ちます。

同様に、もう1つの重要関数:Activate_ADC(void)も利用・活用できるように理解しましょう。

以上のように重要関数を理解すると、サンプルプロジェクト:ADC_SingleConversion_TriggerSW_Initが示した処理内容とその中から利用できる関数を、自分が開発するプロジェクトの代替関数(≒一種の部品)として使えるようになります。

公式サンプルプロジェクトは、この「高信頼部品の宝庫」です。部品を利用すれば、開発速度が上がります。
また、公式サンプルプロジェクトは、「周辺回路利用時の作法」も明示STMコメントが示しています。

ユーザは、どこに、何を、追記すべきか

前章は、ADC_SingleConversion_TriggerSW_Initを使って、サンプルプロジェクトソースコード:main.cの理解方法を示しました。

一般的な周辺回路のユーザ追記箇所は、前章のように主としてmain.cの無限ループです。周辺回路の初期設定(前章で言えばMX_ADC1_Init(void)やMX_GPIO_Init(void))は、STM32CubeMXが担うからです。

サンプルプロジェクトには、周辺回路に割込みやDMAを利用した例もあります。

この場合は、STM32CubeMXのLow-Layer API利用法 (3)で示した割込みNVIC利用時のユーザ追記箇所と、本稿で示した周辺回路ユーザ追記箇所の2つに分けてソースコードを理解します。

STM32CubeMXが自動生成したソースコードの、「どこに、何を、ユーザが追記すべきか」は、本章で示した方法でサンプルプロジェクトを理解すれば、自然に解るようになります。
逆に、「どこに、何を、追記すべきか」かが解らないなら、まだサンプルプロジェクト理解が足りないと言えます。

公式サンプルプロジェクトのソースコードを作成するのは、STM32CubeMXと「ユーザ代替のSTMプロフェッショナル」です。両者の役割、作成部分やソースコード構造を理解するのがユーザ開発の第一歩です。

ここでは、表2の中で最も基本のADC_SingleConversion_TriggerSWサンプルプロジェクトを使って、STM32G0xのADC利用法を解説しました。

ADCサンプルプロジェクトは他にも多数あります。自分の開発プライオリティに応じて、他プロジェクトも同様に理解し、ステップアップすれば良いでしょう。

STM32G0x専用テンプレートの目的

MCUソフトウェア開発は、0から着手するのではなく、コード生成ツール:STM32CubeMX活用や前章で示した公式サンプルプロジェクトの部品利用・活用で、効率的に早く開発する、いわゆるプロトタイプ開発が主流です。また、プロトタイプ開発をしないと、競合他社とのビジネスには不利です。

プロトタイプ開発は、開発スピードが要求されます。何がしかの動作確認済みテンプレート(ひな形)と評価ボード、詳しい説明資料があれば、開発着手時のつまずきや手間が省け、より検討すべき項目に時間が割けます。
このテンプレートが、弊社汎用マイコンテンプレートです。

本稿のSTM32G0x専用テンプレートは、新しいEdge MCU「STM32G0xシリーズ専用」テンプレートで、STM32MCUで汎用性がある上記テンプレートとは異なりますが、目的や役割は汎用と同じです。

関連投稿:STM32G0x専用Edge MCUテンプレート開発

STM32G0x専用テンプレートには、本稿で示したADC重要関数や、USB経由のADC変換データパソコン出力、パソコンからの評価ボードLED点滅制御など、STM32G0x開発着手時に最低限必要な機能や部品をあらかじめテンプレートに実装済みです。

STM32G0x専用テンプレートをサンプルプロジェクトとの差分で説明すると、複数サンプルプロジェクトが実装済みで、プロトタイプ開発着手のレベルにより近いプロジェクト、これがテンプレートとも言えます。また、各種サンプルプロジェクト追加や削除が簡単なのも特徴です。

テンプレートのソースコードには、日本語コメントを豊富に付加し、初心・中級開発者が理解できるよう詳細な解説資料付きで提供します。

STM32G0x専用テンプレートを利用すると、STM32G0xプロトタイプ開発を即座に始められます。

STM32G0x専用テンプレートは、近日中に発売予定です。