IoT MCUコア次世代像

PCのCPUは、IntelとAMDの2社が独占状態でした。しかし、AppleがARMベースの新CPU:M1を発表し、そのコストパフォーマンスは、Intel/AMDの3倍(!)とも言われます(記事:「ソフト技術者もうなるApple「M1」の実力、新アプリに道」や、「Apple M1の実力を新世代のIntel/AMD CPUと比較」など)。

本稿は、これらPC CPUコアの現状から、次世代IoT MCUコアの3層構造と筆者希望的観測を示します。

CPUコア:Apple/Intel/AMD

筆者が学生だった頃は、マシン語のPCソフトウェアもありました。CPUコア性能が低いため、ユーザ要求を満たすアプリケーション開発には、ソフトウェア流用性や開発性を無視したマシン語開発もやむを得ない状況でした。

現在のCPUコア性能は、重たいGUIやネットワーク処理を複数こなしても、ユーザ要求を満たし、かつ流用性も高いC/C++などの高級言語でのアプリケーション開発が普通です。Appleは、この状況でIntel/AMDコストパフォーマンス比3倍のM1 CPUを開発しました。

このM1 CPUを使えば、従来CPUのボトルネックが解消できるために、より優れたGUIや新しいアプリケーションの開発が期待できます。

このM1実現の鍵は、5nmルールの製造技術と新しいCPU設計にあるようです。

MCUコア:ARM/Non ARM

MCUはARMコアとNon ARMコアがありますが、Non ARMコアのコストパフォーマンス比は、M1程ではありません。従って、主流はARM Cortex-M系シングルコア採用MCUで、事実上ARMコア独占状態です。開発言語はC言語でベアメタル開発、製造プロセスも数10nmと、いわば、数10年前のIntel独占CPUコアに近い状況です。

RISC-Vという新しいMCUコアも出てきましたが、まだ少数派でその性能も未知数です。Intel/AMD CPUと比較記事の最後に記載された「競争こそユーザの利益」には、MCU世界はなっていません。

ARMはコア設計図のみ提供し、デバイス実装はMCUベンダが担当します。従って、現状のMCU世界が続く場合には、MCU高速化は製造技術進化とマルチコア化が鍵です。

ARMは、エッジAIに向けたNPUを発表しました。独自MCUコアと付随する開発環境を提供でき、かつコストパフォーマンスがARMコアの数倍を実現できるMCUベンダが無い現状では、ARMの頑張りがIoT MCUを牽引すると思います。

NVIDIAによるARM買収が、今後のARM動向に及ぼす影響は気になる状況ではあります。

IoT MCUコア

MCUコアとCPUコアの一番の差は、ユーザ要求コストです。これは、同じコアのMCU製品に、内蔵周辺回路やFlash/RAM容量の異なる多くのデバイスをベンダが提供中であることからも解ります。ユーザは、MCUに対して無駄なコストは払いたくないのです。

つまり、MCUデバイスはアプリケーション専用製品、CPUデバイスは超汎用製品、ここが分岐点です。

IoT MCUには、エッジAI、セキュリティ、無線通信(5GやWi-Fi)などのIoT機能追加が必要です。これら機能を並列動作させる手段として、RTOSも期待されています。この状況対応に、MCUコアも高性能化やマルチコア化に進化しつつあります。

セキュリティや無線通信は、予め決まった仕様があり、これら対応の専用ライブラリがベンダより提供されます。但し、セキュリティは、コストに見合った様々なセキュリティレベルがあるのも特徴です。ソフトウェア技術者は、専用ライブラリのMCU実装には神経を使いますが、ライブラリ本体の変更などは求められません。この仕様が決まった部分を「IoT基本機能」と本稿では呼びます。

MCUソフトウェア開発者が注力すべきは、ユーザ要求に応じて開発するIoTアプリケーション部分です。この部分を、「IoT付加機能」と呼び、「IoT基本機能」と分けて考えます。

ユーザのアプリケーション専用MCU製品意識は、IoT MCUでも変わりません。例えば、IoT基本機能の無線機能は不要や、ユーザがコストに応じて取捨選択できるセキュリティレベルなどのIoT MCU製品構成になると思います。一方、IoT付加機能だけを実装するなら、現状のMCUでも実現可能です。

以上のことから、IoT MCUは3層構造になると思います。

IoT MCUコアの3層構造
IoT MCUコアの3層構造
機能 追記
Back End IoT MCU IoT基本機能+付加機能+分析結果表示 収集データ分析結果ビジュアル表示
IoT MCU IoT基本機能+付加機能 高性能、マルチコア、RTOS利用
Front End IoT MCU センサデータ収集などのIoT付加機能
最小限セキュリティ対策
収集データは上層へ有線送信
コスト最重視

最下層は、ユーザ要求アプリケーションを実装し、主にセンサからのデータを収集するFront End IoT MCUです。ここは、現状のARM/Non ARMコアMCUでも実現できIoT付加機能を実装する層です。デバイスコスト最重視なので、最小限のセキュリティ対策と収集データを有線、または無線モジュールなど経由で上位IoT MCUへ送信します。IoT MCUサブセット版になる可能性もあります。

中間層は、高度なセキュリティと市場に応じた無線通信、エッジAI機能などのIoT基本機能がフル実装できる高性能MCUコアやマルチコア、RTOS利用へ進化した層です。IoT付加機能も同時実装可能で、下層の複数Front End IoT MCUが収集したセンサデータを、まとめて上位Back End IoT MCUまたは、インターネット空間へ直接送信できます。製造技術進化とマルチコア化、ARM新コア(Cortex-M23/33/55など)が寄与し、IoT MCUの中心デバイスです。

最上層は、第2層のIoT MCU機能に加え、インターネット空間で収集データを分析・活用した結果をユーザへビジュアル表示する機能を追加した超高性能MCUコア活用層です。自動車のADAS(Advanced Driver-Assistance Systems:先進運転支援システム)のおかげでユーザへのビジュアル表示要求はより高度になります。このユーザ要求を満たす次世代の超高性能IoT MCU(またはMPU)が実現します。

最下層のFront End IoT MCUは、現状のCortex-M0+/M4コアで弊社テンプレート適用のMCUが生き残ってほしい、というのが筆者の希望的観測です。
それにしてもAppleのコスパ3倍M1、凄いです。iPhoneもそうですが、抜きん出た技術と経営能力、Jobs精神、健在ですね。

総務省IoT入門オンライン講座

総務省総務省が、2021年3月24日まで無料IoT入門オンライン講座を開設しています。IoT基礎知識、IoT技術・関連法制度、IoT活用の全3章から成るPDF配布資料(A4/36ページ)付きで各ページ冒頭に2行程度のまとめ表記があります。

※受講方法は、コチラの記事を参照してください。

資料作成日:令和元年10月

COVID-19パンデミック前、令和元年:2019年10月作成資料に沿ったオンライン講座です。関連法の導入時期などに、COVID-19の影響があるかもしれません。

※関連投稿:総務省2020年4月以降IoT機器アップデート機能義務化予定(2019年9月13日)に関する記載は、資料内にはありません。

資料フォーマット

A4縦ページの上方にスライド、下方にテキスト、いわゆるパワーポイントノート形式の配布資料です。タイトル直下、スライド冒頭に2行程度のまとめ表記があり、このまとめでページ内容が解ります。

オンライン講座は、主にスライド部分を使います。配布資料を読めば、講座内容はほぼ取得できると思います。

IoT入門オンライン講座資料の印象点

A4パワーポイントノート形式のIoTオンライン講座配布資料、良くまとまっています。

資料のWeb転載は禁止ですので、本ブログ読者は配布資料を取得済みと考え、筆者がページ毎に印象に残った点をピックアップします。

※タイトル、まとめ表記は、配布資料を基に簡素化しています。

タイトル まとめ表記 印象点
13 IoT構成機器 IoTシステム構成は3要素 データ収集、分析結果表示がIoTデバイス
14 データ収集 センサでデータ収集 8種センサ概要説明
15 IoTデバイス通信 有線と無線の2種 有線/無線のメリット/デメリット分析
17 無線電波周波数 最適な周波数 波長/周波数/呼び名/特徴分析
18 電波法 電波利用法 無線利用時「技適マーク」必須
19 無線通信 距離・速度・消費電力 無線規格特徴一覧、選択に便利
23 セキュリティ 機密性・完全性・可用性 機密性と完全性と可用性維持がセキュリティ
24 セキュリティ対策 リスクと対策 IoT特有性質とリスク分析
25 セキュリティ対策 対策の5指針 5指針と21要点、具体例一覧
26 標準化動向 標準技術メリット 4標準化団体と最新技術動向把握重要
28 IoT進め方 アイデア → 試行錯誤 プロトタイプで試行錯誤 → 導入
29 ビジネス設定 IoT解決課題設定方法 情報整理に3C/SWOT/KPT活用
30 アイデア案出 IoT活用の3段階 アイデア案出方法
31 アイデア優先順位 効果と実現可能性 効果、実現可能性の考慮方法
32 データ留意点 利害関係調整と個人情報保護 具体的留意点説明
33 運用後の対応 想定と対応策 想定具体的トラブル説明

P28のIoTデバイスをプロトタイプで試行錯誤し開発する手法は、弊社マイコンテンプレートを利用すると、「複数デバイスで実証・比較評価できるなどより効率的・実践的」になります。

マイコンテンプレートのMCUデバイスはどれも汎用MCUですが、開発者のナレや接続センサとADCの使い方により差は生じます。さらに、デバイス消費電力も、開発ツールシミュレーションと評価ボードで評価します。最もアイデアに適し開発し易いMCUは、実はプロトタイプ化しなければ判らないと思います。

配布資料は、「IoTデバイスを中心」に基礎から導入後の運用など、IoT全般に関する幅広い内容です。IoTデバイス開発者の頭の中を整理、開発後のデバイス活用・運用などを予見する場合にも役立ちます。

資料にもCOVID-19影響?

スライド利用のプレゼンテーションは、パワーポイント/Impress(LibreOfficeパワーポイント相当)の資料作成が標準です。一方、弊社テンプレート配布資料は、A3 Visio/Draw形式で作成しています。これは、横長PCモニタ表示を前提としているからです(印刷時、70%縮小A4横出力想定)。

COVID-19の影響で、プレゼンテーションも対面からオンラインへ変わりつつあります。配布資料も従来のようにパワーポイント/ Impress形式が良いか、Visio/Draw形式か、モニタも3:4サイズが良いか、9:16かなど、配布資料フォーマットにも今後影響がでるかもしれません。

弊社テンプレート開発、配布資料のご意見、ご要望などは、info@happytech.jpへお寄せください。

IoT MCU汎用Baseboardの汎用性

・IoT MCU汎用Baseboardの特徴
・CMOSデバイス直結を利用し、3.3V動作MCUソフトウェア開発に5V動作ハードウェアを使えること

をFRDM-KL25Z(動作範囲:1.71~3.6V、5V耐圧なし)を例に前稿で示しました。
このIoT MCU汎用Baseboard の汎用性について解りにくいというご指摘がありましたので、説明を加えます。

IoT MCU汎用Baseboard構成パーツ

IoT MCU汎用Baseboardの構成パーツが下図です。

Arduinoコネクタ有りのMCU評価ボードはFRDM-KL25Zを掲載しましたが、Arduinoコネクタを持たない例えば、Cypress)PSoC4000SなどのMCU評価ボードでも接続可能です。これが汎用性をうたった理由です。

様々な追加Arduinoシールドは、Arduinoコネクタでスタック接続、それ以外のパーツ間は、オス-オスコネクタで接続します。

IoT MCU汎用Baseboard構成(色付き領域)
IoT MCU汎用Baseboard構成(色付き領域)

一言で言うと、従来から使ってきた5V Baseboardに、Arduinoプロトタイプシールドを追加した構成です。

IoT MCU汎用Baseboard構成パーツの役割

パーツ名 機能、役割
MCU評価ボード 動作電圧:3.3V/5V動作のMCUソフトウェア開発ボード
外部ハードウェア接続:Arduinoコネクタ/独自コネクタ
追加Arduinoシールド IoT向けセンサなどをMCU評価ボードへ機能付加
Arduinoプロトタイプシールド シールド直上へスタック接続(Arduinoピン名シルクあり)
配線済みMCUリセット、未配線2個LED、1個SW実装済み
MCU評価ボード直上設置で操作性向上
5V Baseboard LCDやポテンショメータなど5V動作ハードウェア搭載
オス-オスコネクタ ボード、各パーツ間接続
Arduinoコネクタ Arduinoシールドスタック接続
CMOSデバイス直結 3.3V MCU出力→5Vハードウェア入力:接続問題なし
5Vハードウェア出力→3.3V MCU入力:5V耐圧無しなら3.3V以下
付属ブレッドボード CMOSデバイス直結時、電流保護抵抗や必須ハードウェア搭載

MCUに5V耐圧が無い時は、MCU入力電流保護抵抗や入力電圧を3.3V以下へ抑える必要があり、これら必須ハードウェア、およびArduinoプロトタイプシールド付属の2個LED、1個SW配線用に、プロトタイプシールド付属ブレッドボードを使います。

IoT MCUは、MCU評価ボード搭載済み機能だけでなく、様々なセンサや付加機能(例えば、構成パーツで示したデータロギングシールドなど)を追加して開発します。これら追加センサや付加機能ハードウェアを、安く早く調達するには、既製Arduinoシールドが適しています。

殆どのMCU評価ボードがArduinoシールドを追加できるように設計されているのはこのためです。Arduinoプロトタイプシールドは、Arduinoピン名がシルク印刷済みです。Arduinoピン名とMCUピン名のマッピングを間違う可能性も低く、リセット追加で制御系の操作性も向上します。

Arduinoコネクタ実装済みのFRDM-KL25Zの場合は、直上、または直下へArduinoシールドをスタック追加します。FRDM-KL25Z追加シールド処理結果を表示するため、プロトタイプシールド経由で5V Baseboard LCDと接続します。

独自コネクタで機能追加するPSoC4000S評価ボードなどに対しても、オス-オスコネクタでArduinoプロトタイプシールドと接続すれば、それ以外の部分は共通です。この時は、プロトタイプシールド直下にArduinoシールドを追加します。

※Arduinoシールドを複数追加する時は、スタック接続します。

様々なMCU評価ボードに対して、表中のMCU評価ボード以外の赤字パーツが汎用的に使え、かつ、Arduinoシールド追加性にも優れていることがお解り頂けたと思います。

IoT MCU汎用Baseboard用途

CMOSデバイス直結は、ハードウェア担当者からは、気持ちが悪いと言われるかもしれません。

この場合は、CMOSデバイス間にバス・スイッチ(SN74CB3T3245)を挿入すれば、パッシブデバイスですので高速性や信頼性、ノイズに対しても安心です。もちろん、動作ソフトウェアは同じものです。詳細は、関連投稿:3.3V MCUと5Vデバイスインタフェースを参照してください。

このIoT MCU汎用Baseboardは、早く、安くIoT MCUソフトウェア開発をするためのソフトウェア担当者向けツールという位置づけです。製品化にあたっては、ハードウェア担当者も安心するようにバス・スイッチの利用をお勧めします。

5G、Wi-Fi6、NXP、STマイクロエレクトロニクス

公衆網の5G、無線LANのWi-Fi6、どちらもIoT MCUに必須となる無線通信技術です。本稿は、5GとWi-Fi6、MCU主要ベンダのNXPとSTマイクロエレクトロニクス2社の無線対応状況を簡単にまとめます。

5GとWi-Fi6

5GやWi-Fi6、Bluetoothは、無線通信技術です。違いは、5GがNTTやau、SBが提供する公衆網サービス、Wi-Fi6やBluetoothは、LANを無線化したプライベート網サービスだということです。

これら公衆網とプライベート網、両方の無線技術やサービスを積極的に活用するデバイスが、毎年新製品が発表されるスマートフォンです。搭載カメラやスマホ操作性だけでなく、5GやWi-Fi6実現のためにスマホプロセッサの性能向上は必須です。

5GやWi-Fi6の市場は急増中です。これら市場に対応するため、スマホは常に最新無線技術、高性能プロセサへと変わらなければならない運命です。開発担当者は大変でしょう。

5G、Wi-Fi6技術牽引はスマホと自動車

自動車業界のADAS:Advanced Driver-Assistance Systems、先進運転支援システムの開発速度もスマホ同様高速です。数年でモデルチェンジする新車に搭載する様々な新しい支援機能が、売上げを左右するからです。

これら新搭載機能にバグはつきものです。例えば、制限速度標識の車載カメラ認識はかなりの精度ですが、一般道で認識速度が110 km/hと表示された経験があります。メータ表示だけなので、車速が自動で上がることはありませんが…、バグです。

一般道で110km/h表示:フェールセーフでなくバグ
一般道で110km/h表示:フェールセーフでなくバグ

このようなバグに対して、2022年7月以降の新車は、スマホのようにOTA:Over-The-Airで車載ソフトウェアのアップデートを行う国際基準が発表されました。サイバーセキュリティ対策や走行安全性にも絡むので、かなりの処理が開発担当者に要求されると思います。

ついに自動車もスマホ同様、ソフトウェアOTA必須になります。インダストリアル業界も、当然ながら自動車業界OTAと同様の仕組みとなるでしょう。

無線技術やセキュリティ、AIなどの先端技術は、一般消費者の旺盛な購買力の対象となるスマホと自動車が牽引することは間違いありません。競争が激しく開発成果も解り易いのですが、開発者担当は最新技術習得の余裕も少なく、実装期限が限られるためセルフマネジメントが大変です。

NXP対応

NXPは、2020年9月に5G無線システム向け製造工場の稼働開始を発表し、2021年初頭までにフル稼働、5Gや次の6G向け無線チップを自社製造できる見通しです。また、NXP本社副社長でもあるNXPジャパン新社長の和島正幸氏の就任も発表されました。

せっかく開発した量産電気自動車(Electric Vehicle)の販売予約中止の原因は、車載バッテリーの供給が追付かないからだそうです。無線システムのかなめ、RFチップ供給が同じ状況になるのを避けるためのNXPの措置だと思います。

STマイクロエレクトロニクス対応

STマイクロエレクトロニクスは、2020年10月7日、無線LANのBluetooth LE 5.2対応Cortex-M0+ベースMCUとその評価ボードを発表しました。Arduinoコネクタ付属で、使い勝手も良さそうな気がします。

STEVAL-IDB011V1 Evaluation Board and Updated BlueNRG Software(出展:STマイクロ)
STEVAL-IDB011V1 Evaluation Board and Updated BlueNRG Software(出展:STマイクロ)

IoT MCUの爆発的な需要増加に対して、MCU主要ベンダのNXPやSTマイクロエレクトロニクスは、着々と準備を進めています。

インダストリアル業界IoT端境期

スマホや自動車業界のように競合他社より少しでも早く最新技術を導入し製品化する動きに対し、インダストリアル業界は、COVID-19の影響でIoT技術導入の端境期のようです。つまり、積極的にIoTを進めるデンソーのようなグループと、暫く様子見をして徐々にIoTを進めるグループの2つに分離しつつあるということです。

インダストリアル業界対応の開発者は、この端境期を逆に利用し、IoT最新技術を学習しつつ、来るべきIoT開発案件をこなす力を備えるチャンスです。

具体的には、自動車やスマホで先行した無線/セキュリティ/AI技術を、効率的にIoT MCUへ流用・応用できる開発力です。または、MCUベンダ提供の無線/セキュリティ/AI最新技術サンプルプロジェクトを理解し、評価ボードを上手く活用できる開発力とも言えます。

インダストリアル業界の顧客出力となるソフトウェア/ハードウェアを、要求期限内に開発成果として提出できるベストエフォート技術、この比重が増すと思います。開発成果の不完全さやセキュリティ追加、変更はOTAで対応します。

Firefox Send終了

クラウドファイル共有サービス:Firefox Sendが2020年9月17日終了となりました。弊社テンプレート配布に最適なFirefox Send終了、残念です。代替にGoogle Driveを使いますが、送受双方に手間が1つ増えます。

本稿は、この増えた手間を説明し、セキュリティと利便性が相反することを示します。

Firefox SendからGoogle Driveへクラウドファイル共有サービス変更
Firefox SendからGoogle Driveへクラウドファイル共有サービス変更

Firefox SendとGoogle Drive比較

Firefox Sendは「ファイル共有」専門サービス。共有ファイル保存期間はアップロード後最大7日、または、ダウンロード1回で共有ファイルがオンライン上から自動的に消去されるなど、「ファイル保存」が主目的のGoogle Driveにない使い勝手がありました。

ファイル共有Firefox Sendとファイル保存Google Drive比較
Firefox Send Google Drive
ファイル共有期間 最大7日 設定不可
受信側ダウンロード回数 1回 設定不可
利用料金 無料(最大2.5GB) 無料(最大15GB)
ダウンロード側ログイン 不要 不要
パスワード保護 可能 可能
特徴 ファイル共有に最適 ファイル保存に最適

共有ファイルダウンロードリンクを送信側から受信側へメール通知、受信側がFirefox/Chrome/Edgeなどのモダンブラウザを使って共有ファイルダウンロードに成功しさえすれば、ファイル共有は終了です。ここまでは、Firefox SendとGoogle Drive全く同じです。Firefox Sendは処理完了です。

違いは、Google Driveがファイルの共有期間やダウンロード回数の制限を設けることができない点です。また、受信側が共有ファイルをダウンロードしたことを、送信側が知る手段もありません。

Google Driveでのダウンロード成功後、受信側に成功通知メールをお願いするのは、Firefox Sendでは自動で行われる共有ファイル削除、または、共有停止を送信側が手動にて行うためです。

Firefox Sendに比べ、Google Driveでは送受双方に処理完了までにこの手間が1つ余分に掛かる訳です。

Firefox Send終了理由

Firefox Sendサービス終了の理由は、マルウェア配布手段として悪用されるケースが増え、開発元Mozillaがサービスラインナップ全体コスト、戦略的焦点を見直した結果と発表されています。

高度な暗号化とファイル自動消去のFirefox Send共有サービスは、Firefoxという誰にでも知られた信頼性の高いダウンロードリンククリックだけで簡単にマルウェアをデバイスへ送れます。一般のユーザだけでなく、ハッカーにとっても便利なツールとして悪用されたのでしょう。

無料一時保存ファイルのマルウェア排除を実施することは、無理だとMozillaがあきらめたのだと思います。ただ、次々に生まれるマルウェア排除は、たとえ有料でも困難かもしれませんが…。

セキュリティと利便性の相反例です。また、セキュリティとその対価:費用対効果を考えさせる例でもあります。

企業が自社クローズドサーバーでのみ社員ファイル共有を許可するのは、費用対効果の実現解なのでしょう。
※同様に、IoT MCU開発でもセキュリティ実現解検討が必須です。

Google Drive代替理由

Firefox Send代替にGoogle Driveを選んだ理由は、ファイルの「ダウンロード前や共有前」に、ウィルススキャンが自動的に行われるからです。ウィルス検出時は、警告表示があります。

※ウィルススキャンは圧縮ファイルでも実施されます。但し、パスワード保護を行うとスキャン不可能になりますのでパスワードは設定しません。Firefox Sendでもこれら処理は実施されていたと思いますが…、ハッカーはパスワード保護でスキャンをかわしたのだと思います😥。

無償、セキュリティ、信頼度の高さ、モダンブラウザで利用できる点、これらからGoogle Driveを代替として弊社は選びました。

全テンプレート継続販売

販売中の弊社テンプレートは、戦略的焦点(???)から販売継続いたします。販売中止のサイト変更手間と消えるリンク対応などを考慮すると、そのまま継続販売する費用対効果が高いからです。

本ブログでは、その時々に応じてテンプレート販売中止・終了予定なども記載しますが、マイコンテンプレート名が購入サイトに掲載している限り販売は継続いたしますので安心(?)してご購入ください😌。

3.3V MCUと5Vデバイスインタフェース

3.3V動作MCUに、5V動作デバイスを接続するインタフェースとして、

  1. 3.3V MCUの5V耐圧ピンで、5Vデバイス(例えばLCD)と接続
  2. MCUに5V耐圧ピンがない時は、間にレベルシフタを入れる

弊社投稿:MCUの5V耐圧ピンの要旨でした。本稿は、さらに2つ選択肢を追加し、4インタフェースを評価しました。

4インタフェース特徴と評価結果

3.3V MCUと5Vデバイス接続4インタフェースの特徴と評価結果
インタフェース 特徴 評価
1 MCU 5V耐圧ピン ピン数が足りれば追加コストなく信頼性も高い Good
2 レベルシフタ挿入 I2C/SPI接続でトラブル報告多く信頼性は低い Poor
3 CMOSデバイス直結 開発MCUソフトウェアの動作確認に使える Average
4 バス・スイッチ挿入 高速性・信頼性ともに高くMCU低消費電力動作に理想的 Excellent

レベルシフタ挿入

入手性の良い秋月電子)8ビット双方向レベルシフタ:FXMA108の使用例を調べると、I2C接続時には期待通りの動作をしない情報がネット上に多数あります。原因は、アクティブデバイスFXMA108の双方向判定のようです。

I2C専用レベルシフタ:PCA9306使用例もありますが、MCUポート用途に応じてレベルシフタを使い分けるのは、コスト高を招きます。

CMOSデバイス直結

3.3V MCUと5V動作デバイス直結(出展:5V系・3.3V系信号レベル変換掲載図を加工)
3.3V MCUと5V動作デバイス直結(出展:5V系・3.3V系信号レベル変換掲載図を加工)

コチラの投稿:5V系・3.3V系信号レベル変換を参照すると、3.3V系と5V系の間にレベルシフタなどのアクティブLSIデバイス挿入は不要、5Vデバイス出力から電流制限抵抗を入れれば3.3V MCU入力へ直結、3.3V MCU出力はそのまま5Vデバイス入力へ直結可能です。

直結は、アマチュア電子工作レベルのCMOSデバイス同士の接続でノイズ・マージンは減る、という但し書き付きですが、次章バス・スイッチのアプリケーション回路図と比べても遜色は少ないと思います。

MCU入力側には、5V CMOSセンサ、出力側には、5V LCD等の表示デバイス接続を想定します。このCMOSデバイス直結を利用すると、3.3V動作MCU評価ボードと5Vデバイス間の接続に手間が少なく、開発するMCUソフトウェアの動作確認には好都合です。

もちろん、MCU評価ボードと5Vデバイス間の配線を短くツイストするなどのマージン減少対策は必要です(配線ツイスト効果は、コチラの弊社関連投稿を参照してください)。

バス・スイッチ挿入

SN74CB3T3245の代表的なアプリケーション(出展:SN74CB3T3245データシート)
SN74CB3T3245の代表的なアプリケーション(出展:SN74CB3T3245データシート)

前章の5V系・3.3V系信号レベル変換投稿で推薦されている2.5Vおよび3.3V、8ビットバス・スイッチ(5V耐圧付き):SN74CB3T3245をインタフェースに使う方法は、伝搬遅延がゼロに近く、双方向パッシブデバイスのためノイズにも強いなど、3.3V低電力動作MCUと5V動作デバイスのインタフェースとして理想的です。

※SN74CB3T3245は、ハードウェア開発で良く用いられるCMOSデバイスの双方向3ステートバッファ:SN74HC245を、より低電圧動作で高速化し5V耐圧も付加した高速CMOSデバイスです。Vcc=2.5Vなら、5V/3.3V入力から2.5V出力へのレベルシフトも可能です。

※付録に、動作電圧が異なるデバイス間の相互接続基礎知識を示しました。

3.3V MCUの5Vデバイス接続インタフェース評価

3.3V動作MCUに、5V動作デバイスを接続する4インタフェースを示しました。

  1. MCUの5V耐圧ピンで接続
  2. MCUと5Vデバイス間に、レベルシフタ挿入
  3. CMOSデバイス同士なら直結可能
  4. MCUと5Vデバイス間に、5V耐圧3V/2.5Vバス・スイッチ挿入

4インタフェース評価は、以下の実績、動作確認に基づいています。

1は、5V耐圧ピンありMCUの弊社テンプレートで、既に多くの動作実績があります。

2のレベルシフタ追加は、I2C接続の不具合情報がネットに多数ありますので、弊社確認は省きます。

3のCMOSデバイス直結は、開発中の3.3V MCU動作5V耐圧ピンなしのFRDM-KL25Zテンプレートソフトウェアで、5V LCDを接続し動作確認します。

4のバス・スイッチ挿入は、TIから数個サンプル入手が以前は簡単にできたのですが、現在は購入が必要です。SN74CB3T3245価格が100円以下と安いだけに送料が無視できず、何かのついでに購入予定です。それまで動作確認は保留します。ただ、データシートを見ると、3.3V MCUと5Vデバイス双方向接続インタフェースには理想的だと思います。

3と4どちらも、確認結果が判明次第、本ブログでお知らせします。

付録:デバイス相互接続の基礎知識

相互接続判定のロジック概要(出展:TIロジック・ガイドP4に加筆)
相互接続判定のロジック概要(出展:TIロジック・ガイドP4に加筆)

TI)ロジック・ガイドから、動作電圧が異なるデバイス間の相互接続判定方法(Judgement)とその結果(Results)を抜粋したのが上図です。

結果は、例えば5V CMOSデバイス同士ならYes=直結、3.3V LVTTL/2.5V CMOS/1.8V CMOSへはVOHはVIHより高く、VOLはVILより低いので、低圧入力側にVIHトレランス(耐圧)があればYes*=直結可能を示しています。

表から、5V CMOSデバイスのD(出力)は、全デバイスのR(入力)へ直結、またはVIH 耐圧で直結できるなど、広い適用範囲が判ります。センサの多くが5V CMOSデバイスでも、3.3V動作MCUとの間にSN74CB3T3245を入れさえすれば、簡単に高信頼インタフェースが実現できる理由です。



Linux Mintお勧め理由

PCへインストールするLinuxには、様々なディストリビューションがあります。ディストリビューションとは、Linux 本体とLibreOfficeなどの標準搭載アプリケーションを1パッケージにまとめ、利用者がLinuxインストールとその活用を即座にできるようにした配布形態のことです。

本稿は、これらディストリビューションの中で、筆者がLinux Mint 20 MATEエディション(64ビット)をWindows MCU開発環境トラブル発生時、代替に使えるLinuxディストリビューションとしてお勧めする理由を示します。

Linuxディストリビューション

2020年7月発表のWebサイト向けLinuxディストリビューションシェアを見ると、UbuntuやDebianなどがメジャーなディストリビューションであることが判ります。

様々なLinuxディストリビューション、特にUbuntuやDebian、Raspberry Pi用のRaspbianと本稿のLinux Mint概要は、コチラの情報が参考になります。用途、安定性/情報量/デザイン性などでディストリビューションを評価した結果が示されています。

Linux Mintとメジャーディストリビューションの差

UbuntuとLinux Mintの関係を、まとめました。

  • Ubuntuベースの派生形として、様々なデスクトップPCディストリビューション(Linux Mint)がある
  • Ubuntuは定期的にアップグレートされるが、主にセキュリティ修正のみでアプリケーションの大幅更新をしない5年長期サポート版:LTS版(最新は2020年4月リリース:Ubuntu Desktop 20.04)もあり、このLTS版に準ずる派生ディストリビューション(Linux Mint 20.x)がある
  • Ubuntuアプリケーションリポジトリ(公式アプリケーション保存庫)をそのまま使える派生ディストリビューション(Linux Mint)がある

MCU開発者の方は、EclipseベースIDE(EclipseベースIDE≒Ubuntu)なら、どれもほぼ同じユーザインタフェースで、同じプラグインが使えるのと同様と言えばご理解頂けると思います。

Ubuntuが最もシェアが高いのは、派生ディストリビューションのベースだからです。また、MCUベンダのLinux版IDEなどの説明書も、トップシェアUbuntu利用を前提に提供されます。

Linux Mintは、Ubuntu派生ディストリビューションの1つで、Linux特有のコマンド操作やリポジトリもUbuntuと同じです。また、UbuntuよりもWindowsやMacの操作に近いGUIを持ち、万一の際のシステムバックアップツール(TimeShift)も標準搭載済みです。

つまり、「Windows/Macユーザが、Linux Mintインストール後、Linux本体のカスタマイズは不要で、即MCU開発アプリケーションが利用できる点」が、Linux Mintをお勧めする最大の理由です。

※MCU開発アプリケーション(例えばNXPのMCUXpresso IDE、STMのSTM32CubeIDE)は、非搭載ですので、別途インストールは必要です。

Linux MintとメジャーディストリビューションUbuntuの主な差は、GUI、少し遅れるリリース時期と考えて頂ければ良いと思います。

Linux Mintの3エディション

Windows Home/Proと同様、Linux Mintにも、3種類のエディションがあります。

GUI処理の軽い方から、Xfce/MATE/Cinnamonエディションと呼ばれます。少し古い版ですが、Linux Mint 17 ユーザズガイドによると、どのエディションを使えば良いかわからない時は、METAエディションを使ってください、とあります。

筆者は3種類とも試しましたが、処理の軽さとメニューの解りやすさ、使いやすさからMETAエディションをお勧めします。

GUIは、好みの問題がありますので、3エディションをインストールして試すと良いでしょう。クリーンインストール所要時間は、せいぜい30分程度です。インストール方法は、まとめに記載しております。

まとめ:お勧めLinux MCU開発環境Linux Mint 20 MATEエディション(64ビット)

最新Ubuntu Desktop 20.04ベースで、Windows MCU開発環境トラブル発生時、代替に使えるLinuxディストリビューションとして、Linux Mint 20 METAエディション(64ビット)をお勧めする理由を示しました。

多発するWindows起因のトラブル発生時、Windows MCU開発に慣れた開発者が、MCU開発を中断することなくLinux環境で継続するには、Windows操作に近いGUI、LTS版のOS安定性、Linux特有コマンドへの情報量多さなどが必要で、これらを満たすのがLinux Mintです。

Linux Mint 20 METAエディション(64ビット)のPCインストール方法は、ユーザズガイドにも記載されていますが、コチラなどを参考にすると素早くインストールができます。

Linux Mint 20と旧版Mintシェアは、Mint公式ブログのMonthly News – July 2020によると、投稿時点では、32ビットPCにも対応した前版Mint 19.xのほうが高いのですが、いずれ逆転すると思います。全ての32ビットOS新規開発は、完了しました。

Mint 20標準搭載のLibreOfficeは、安定性重視のStill版v6.4.5です。カスタマイズ不要と書きましたが、Fresh版v7.0.0へ変更したい方は、コチラに方法が記載されています。



MCUXpresso Config Toolsの使い方

前稿に続きMCUXpresso SDKベースのMCUソフトウェア開発に欠かせないMCUXpresso Config Toolsの使い方を説明します。SDKサンプルプログラムに少しでも変更を加える時には、Config Toolsが必要になります。

MCUXpresso IDEクイックスタートパネルのConfig Tools
MCUXpresso IDEクイックスタートパネルのConfig Tools

Config ToolsとSDK

MCUXpresso IDEのSDKサンプルプロジェクトは、そのままコンパイルして評価ボードで即動作可能です。ユーザが変更を加える箇所は、sourceフォルダ内に限られています。sourceフォルダ以外は、ライブラリフォルダです(詳細は、前稿を参照してください)。

Config Toolsは、このSDKライブラリに変更を加えるツールです。

SDKサンプルプロジェクトは、MCU内蔵周辺回路の動作例ですが、逆に言うと、「その周辺回路しか動作させない例」です。低電力動作が必須のMCUでは、しごく当然のこのソフトウェア作法、つまり無用な回路は動作させない方針で開発されています。

ところが、SDKサンプルプロジェクトにユーザが変更を加える場合、サンプルプロジェクトで動作中の回路以外の周辺回路動作を新たに加える時があります。

この時には、MCUXpresso Config Tools>>をクリックし、MCU内蔵の眠っている(=Inactive)周辺回路の目を覚ます(=Activate)必要があります。

周辺回路をActivateした結果、サンプルプロジェクトのSDKライブラリに対して、相応の変更をConfig Toolsが自動生成(上書き)します。これが、Config ToolsとSDKの関係です。

Config Toolsの使い方

具体的にFRDM-KL25Z(Cortex-M0+/48MHz、General Purpose)評価ボードのSDKサンプルプロジェクト:gpio_led_outputを例に、Config Toolsの使い方を説明します。このサンプルプロジェクトは、いわゆるLチカサンプルで、評価ボード上の赤LEDを点滅させます。

ここでは、赤LEDの代わりに緑/青LEDを点滅させる変更をユーザが加えると想定します。

※他のサンプルプロジェクトも、殆ど赤LED(BOARD_RED_LED)1個のみを動作させますので、この緑/青LED変更方法は、多くのサンプルプロジェクトにも流用できます。

MCUXpresso SDKのgpio_led_outputソースコード(一部抜粋)
MCUXpresso SDKのgpio_led_outputソースコード(一部抜粋)

先ずConfig Toolsを使わずにL40とL41のRED_LEDをGREEN_LEDへ変更後、Buildします。その後、DebugでFRDM-KL25Z評価ボードを動作させても緑LEDは点滅しません。もちろん、ブレークポイントをL92に設定して動作は確認済みです。

LEDが点滅しない理由は、評価ボードの緑/青LEDに接続済みのgpioピンが、Inactiveだからです。

対策にMCUXpresso Config Toolsをクリックすると、Develop画面がPins画面へ変わります。

MCUXpresso Config Toolsクリックで現れるPin画面
MCUXpresso Config Toolsクリックで現れるPin画面

Routed Pinsタブ①に、GPIOB:LED_REDがリストアップされています。このリストは、Activate済みの全ピンを示します。

そこで、Peripheral Signalsタブ②で緑/青LEDのGPIOB、19とGPIOD、1に✅を入れると、リストに両ピンが加わります。Identifierは、LED_GREENとLED_BLUEにします。

MCUXpresso Config ToolsでActivateした緑と青LEDのgpioピン
MCUXpresso Config ToolsでActivateした緑と青LEDのgpioピン

この状態で、「緑色」のUpdate Codeボタン③をクリックすると、Update Filesダイアログが開き、上書き対象のSDKライブラリが一覧表示されます。この場合は、ライブラリ:board>pin_mux.c/hとboard>clock_config.c/hが上書き更新されます。

MCUXpresso Config Toolsが生成(上書き)するファイル一覧
MCUXpresso Config Toolsが生成(上書き)するファイル一覧

ダイアログのOKクリックで最終的にSDKライブラリへ変更が加わり、自動的にDevelop画面に戻ります。上書きされるライブラリのソースコードは、Pins画面上のCode Previewタブ④でも更新前に確認ができます。

戻ったDevelop画面で、RED_LEDをGREENやBLUE_LEDへ変更し、Build を再実行、Debugすると、今度は評価ボードの緑/青LEDが点滅します。

Config Toolsが、緑/青LED接続のgpioピンをActivateしたSDKライブラリに上書き更新したからです。

このようにSDKサンプルプロジェクトは、必須周辺回路とクロックルートのみをActivateした例で、その周辺回路単体でのMCU消費電力も判ります。この時のクロック周波数は、MCU最高動作周波数です。周波数を下げることで消費電力も減らせますが、その分ソフトウェア開発の難易度は上がります。

機能的には似た周辺回路がある場合や、特に電力消費が大きい回路を比較・最適化し、MCUトータル消費を改善する手段としてもサンプルプロジェクトは利用できます。

MCU電力低減方法は、SDK/Config Toolsデフォルトの最高周波数でソフトウェアを開発し、次に周波数を下げるアプローチが適すと言えるでしょう。

Config ToolsのUpdate Code

SDKサンプルプロジェクトに何も変更を加えずに、Config Toolsをクリックしても、Update Codeボタンが「緑色」になる場合があります。Update Codeボタンの灰色は、上書きするSDKライブラリが無いことを示します。この場合は、変更を加えていないので、本来「灰色」のハズです。

これは、元々のSDKライブラリが手動生成、または旧Config Toolsで生成していて、IDE付属の最新Config Toolsの上書き版と(機能的には同じでも)異なる場合があるからです。例えば、ライブラリコメントが変わる場合などが相当します。

気になる方は、SDKサンプルプロジェクトを最初にIDEへImport後、直にConfig Toolsを起動し、Update Codeを一度実行しておけば、次回からユーザ変更が無ければ、灰色でボタン表示されます。

新規プロジェクトのConfig Tools

Config Toolsの使い方に本稿では、SDKサンプルプロジェクトのLチカサンプル点滅LED変更を例にしました。この使い方は、MCUXpresso IDEで新規プロジェクト作成時でも同じです。

新規プロジェクト作成時、初めからMCU内蔵周辺回路のSDKドライバを全て実装したとしても、消費(浪費)されるリソースはFlash/RAM容量のみです。周辺回路やクロックルートのほとんどは、Inactiveが初期値で、ActivateはUART0程度です。

そこで、IDE新規プロジェクト作成後、先ずConfig Toolsで使用予定の周辺回路やクロックルートをActivateし、それらに対応したSDKライブラリをUpdate Codeで上書き更新、最後にユーザ処理を記述するという順番になります。

MCUXpresso IDEソフトウェア開発要点

NXPのMCUXpresso IDEは、SDKベースのMCUソフトウェア開発を行います。

SDKには、多くのサンプルプロジェクトがあり、これらを上手く活用すると、効率的で汎用的なMCUソフトウェア開発が可能です。

SDKサンプルプロジェクトは、対象周辺回路とクロックルートのみを動作させる基本に忠実な作法で開発しているため、ユーザがプロジェクトへ変更を加える時、新たな周辺回路のActivateが必要な場合があります。

Config Toolsは、MCU全内蔵回路とクロックルートを、GUIで簡単にActivate/Inactive変更ができ、その結果として、更新の必要があるSDKサンプルプロジェクトのライブラリを上書き更新します。

NXPのMCUソフトウェア開発は、MCUXpresso IDEに備わったSDKとConfig Tools両方の活用が必須で、前稿と本稿の2回に分けてその使い方を説明しました。

MCUXpresso SDKの使い方

NXP MCUXpresso IDEを使ったFRDM-KE02Z40Mテンプレートv2開発にあたり、MCUXpresso SDKベースのMCUソフトウェアの開発方法を示します。

MCUXpresso SDK全般の使い方

MCUXpresso SDKの全般的な使い方は、IDE付属のGetting Started with MCUXpresso SDKコチラの動画で判ります。どちらも初めてSDK:Software Development Kitを使う時には役立ちますが、具体的にSDKを使ってMCUソフトウェア開発をするにはどうすれば良いのかの説明はありません。

「導入説明だけで活用説明がない」典型例です。

MCUXpresso SDK構造

本稿はソフトウェア開発初心者が、一番知りたいハズだと思うSDKの具体的な使い方:活用の説明をします。SDK全般の使い方:導入説明に関しては、上記リンク先を参照してください。

OpenSDA接続問題

現時点では、FRDM-KE02Z40M(Cortex-M0+/40MHz、5V Robust)のOpenSDAとIDEデバッガ間が接続できない問題があり、代わりにFRDM-KL25Z(Cortex-M0+/48MHz、General Purpose)も使います。FRDM-KL25Zには、接続問題はありません。

※FRDM-KE02Z40MのOpenSDA接続問題は、内容とその解決策を次回以降投稿予定です。

SDK Version

Installed SDK Version (2020-07)
Installed SDK Version (2020-07)

投稿時点のSDK_2.x_FRDM-KE02Z40M(Version 2.7.0)とSDK_2.x_FRDM-KL25Z(Version 2.2.0)が上図です。MCUXpresso IDEへインストールされたSDK Versionが異なることには注意が必要です。

Versionが異なると、SDK提供サンプルプロジェクトやその中身が異なることがあるからです。多くの評価ボードの最新SDK Versionは2.7.0ですので、テンプレートもSDK Version 2.7.0を前提とします。

Hello_worldサンプルプロジェクトと新規作成プロジェクト

Hello_worldサンプルプロジェクト(左)と新規作成Templateプロジェクト(右)
Hello_worldサンプルプロジェクト(左)と新規作成Templateプロジェクト(右)

FRDM-KE02Z40Mのhello_worldプロジェクトが上図(左)です。CMSISやboardなど多くのフォルダがあり、その中にcソースファイルと、hヘッダファイルが混在しています。sourceフォルダ内にhello_world.cとmain関数があります。

このsourceフォルダが、ユーザの開発するc/hファイルを格納する場所で、他のboardフォルダなどは当面無視して構いません。New Projectをクリックし新たなプロジェクト(プロジェクト名:Template)を作成すると、この理由が判ります。

上図(右)が新規作成したTemplateプロジェクトです。sourceフォルダ以外は、hello_worldと同じ構造です。sourceフォルダ内のTemplate.c内に、コメント:/* TODO: inset other… */が2か所あることも判ります。この青色TODOコメントのソース位置は、ソースウインド右端の上下スライダに青で明示されています。

青色TODOコメントは、ソースコードのユーザ追記場所を示します。

最初のTODOコメントの下にユーザ追記インクルードファイルを、次のTODOコメントの下にユーザ宣言や定義を追記し、main関数内にユーザ処理を追記すればTemplateプロジェクトが完成します。

※main関数内にユーザ処理を追記するのは当然のことですので、main関数内にあるべき青色TODOコメントは、省略されています。

MCUXpresso SDK活用のMCUソフトウェア開発方法

前章までのSDK構造をまとめます。

  • ユーザが新規に開発(追記)するソース/ヘッダファイルは、全てsourceフォルダ内に配置
  • IDEが生成したsourceフォルダ>プロジェクト名.cのユーザ追記場所は、目印として青色TODOコメントがあり、上下スライダにも明示される
  • sourceフォルダ以外は、IDEがSDK Versionに応じて自動生成するライブラリフォルダ
  • ライブラリフォルダの中身は、ユーザ編集は不要

SDK付属のサンプルプロジェクトは、SDK構造に基づいてNXPが作成した周辺回路の利用例です。
※サンプルプロジェクトでは、青色TODOコメントは全て省略されています。

MCUが異なっても、同じ処理を行う場合は、sourceフォルダ内のユーザ追記処理も同じハズです。例えば、FRDM-KE02Z40MとFRDM-KL25Zのhello_worldプロジェクト>sourceフォルダ>hello_world.cは、全く同じソースコードで実現できています。

MCU差やSDK Version差は、sourceフォルダ以外のSDK構造部分で吸収されます。導入説明:Getting Started with MCUXpresso SDKの図1は、このことを図示したものです。

MCUXpresso SDK Laysers(出典:Getting Started with MCUXpresso SDK, Rev. 10_06_2019)
MCUXpresso SDK Laysers(出典:Getting Started with MCUXpresso SDK)

もちろん、旧SDK Versionで未提供なAPIが、新SDK Versionで新たに提供される場合もあります。ただ基本的なAPIは、新旧SDKで共通に提供済みです。

FRDM-KE02Z40MのSDK VersionとFRDM-KL25ZのSDK Versionは現時点で異なるため、IDEが自動生成するフォルダ数は異なります。しかし、ユーザ開発(追記)処理が、sourceフォルダ内で全て完結するSDK構造は同じです。

これが、hello_worldサンプルプロジェクトのようにFRDM-KE02Z40MとFRDM-KL25Z両方に共通で記述できるユーザ処理(Application Code)がある理由です。

SDK構造に沿ったsourceフォルダへのユーザ処理追記と、基本的API利用により、汎用的で効率的なMCUソフトウェア開発が出来ることがご理解できたと思います。

あとがき

2章で、「具体的にSDKを使ってMCUソフトウェア開発をするにはどうすれば良いのかの説明はない」と書きました。しかし、本稿で示したSDK活用説明は、ソフトウェア開発者は当然知っていること・・・だから説明がないとも言えます😅。

このように組込みMCU関連の資料は、前提とするソフトウェア知識・経験をどの読者も既に持っており、本稿記述の当たり前の活用説明は省略する(≒すっ飛ばす)傾向があります。

弊社マイコンテンプレートは、初心者~中級レベルの開発者を対象としており、提供テンプレートも本稿で示したSDK活用方法で開発します。ご購入者様が、なぜこのようなテンプレートになったのか疑問を持った時、それに答えるため、このすっ飛ばした省略部分を補う説明を本稿ではあえて加えました😌。

Cortex-M0からCortex-M0+変化

前稿で示したNXP MCUラインナップ図には、ARM Cortex-M0/M0+両方のコアが掲載中でした。しかし、最新版MCUXpresso IDEのコア選択ダイアログには、Cortex-M0選択肢がありません。

MCUXpresso IDEのコア選択ダイアログ
MCUXpresso IDEのコア選択ダイアログ

そこで、Cortex-M0+とCortex-M0の違いを調べた結果、新規MCU開発にNXPのCortex-M0コアを使う必然性は低いという結論に達しました。本稿は、その根拠を示します。

ARM Cortex-M0+とCortex-M0の差

弊社関連投稿:Cortex-M0/M0+/M3比較とコア選択や、ARMコア利用メリットの評価ARM MCU変化の背景をまとめ、ARMコアの発表年順に示したのが下表です。※M4の発表年は間違っているかもしれませんが、市場に出回ったCortex-Mxコアの順番は下表で正しいハズです😌。

ARM Cortex-Mx性能、発表年
Cortex-Mコア 性能 (MIPS @ MHz) ARM発表年 MCUモデル
Cortex-M3 1.25 2004 旧メインストリーム
Cortex-M0 0.9 2009 ローコスト
Cortex-M0+ 0.95 2011 ローパワー
Cortex-M4 1.25 2012頃 デジタル信号処理新メインストリーム

要するに、Cortex-M0+やCortex-M4は、Cortex-M0やCortex-M3をベースに市場ニーズに即した変更を加えた新しいARMコアだと言うことです。本稿では、特にCortex-M0+とM0の違いに注目します。

Cortex-M0+には、表の差以外にも高速IOアクセス、高速パイプライン、低消費動作モードなどCortex-M0には無い数々の特徴がありますが、Cortex-M0よりも高性能(0.9→0.95MIPS@MHz)で、シリコンチップ高速化にも好都合です。

つまり、新規開発にCortex-M0+の代わりに敢えてCortex-M0コアを用いる理由は、見当たらない訳です。

NXPの新しい統合開発環境MCUXpresso IDEのSDKのコア選択肢に、Cortex-M0が無いのは、上記が理由だと思います。※ローコストに関しては、コア単体の相対評価はできても、使用数量でかなり変動するためMCUコスト絶対評価を難しくしています。

NXP MCUXpresso SDK対応評価ボード数

最新MCUXpresso IDE v11.1.1のSDKで対応中の評価ボード数を一覧にしました。例えば、Cortex-M33コアなら下図のように7個です。

MCUXpresso SDK対応評価ボード数(Cortex-M33の場合)
MCUXpresso SDK対応評価ボード数(Cortex-M33の場合)
MCUXpresso SDK対応評価ボード数比較(2020-07)
MCUXpresso SDK対応評価ボード数比較(2020-07)

評価ボードは、プロトタイプ開発には必須で、その評価ボードで動作するSDK(Software Development Kit)があればソフトウェア開発効率は向上します。Cortex-Mxコア間のソフトウェア移植性は高く、同じコアのソフトウェアであれば、異なる評価ボードへの移植もさらに容易です。

つまり、評価ボード数が多いCortex-M0+やCortex-M4が、現在最もCortex-Mxコアソフトウェア開発効率が高いことを示しています。また、Cortex-M3コア選択肢がない理由も、Cortex-M0コアがない理由と同じと推測します。

本当の並列処理が要求されるマルチコア開発なら、Cortex-M0+とM4のペア、または、IoTセキュリティを強化したCortex-M33コアx2であることも判ります。※Cortex-M33は、2016年ARM発表のセキュリティ強化コアです。

新規ARM Cortex-Mxソフトウェア開発は、Cortex-M0+コアまたはCortex-M4コア利用に収束してきたと思います。
※Cortex-M33コアは、従来コアに無いIoT向けセキュアゾーンなどが新規機能追加されていますので除外しています。

弊社テンプレート開発方針

前稿のNXP MCUラインナップからCortex-M0とCortex-M3を除き、現状SDK提供中のARM Cortex-Mxコアラインナップをまとめると下図になります。※Cortex-M33は未掲載です。

Software Development Kit開発から見たNXP MCUラインナップ
Software Development Kit開発から見たNXP MCUラインナップ

弊社もCortex-M0+、Cortex-M4、Cortex-M33コア向けのテンプレート開発を進める方針です。