3.3V MCUと5Vデバイスインタフェース

3.3V動作MCUに、5V動作デバイスを接続するインタフェースとして、

  1. 3.3V MCUの5V耐圧ピンで、5Vデバイス(例えばLCD)と接続
  2. MCUに5V耐圧ピンがない時は、間にレベルシフタを入れる

弊社投稿:MCUの5V耐圧ピンの要旨でした。本稿は、さらに2つ選択肢を追加し、4インタフェースを評価しました。

4インタフェース特徴と評価結果

3.3V MCUと5Vデバイス接続4インタフェースの特徴と評価結果
インタフェース 特徴 評価
1 MCU 5V耐圧ピン ピン数が足りれば追加コストなく信頼性も高い Good
2 レベルシフタ挿入 I2C/SPI接続でトラブル報告多く信頼性は低い Poor
3 CMOSデバイス直結 開発MCUソフトウェアの動作確認に使える Average
4 バス・スイッチ挿入 高速性・信頼性ともに高くMCU低消費電力動作に理想的 Excellent

レベルシフタ挿入

入手性の良い秋月電子)8ビット双方向レベルシフタ:FXMA108の使用例を調べると、I2C接続時には期待通りの動作をしない情報がネット上に多数あります。原因は、アクティブデバイスFXMA108の双方向判定のようです。

I2C専用レベルシフタ:PCA9306使用例もありますが、MCUポート用途に応じてレベルシフタを使い分けるのは、コスト高を招きます。

CMOSデバイス直結

3.3V MCUと5V動作デバイス直結(出展:5V系・3.3V系信号レベル変換掲載図を加工)
3.3V MCUと5V動作デバイス直結(出展:5V系・3.3V系信号レベル変換掲載図を加工)

コチラの投稿:5V系・3.3V系信号レベル変換を参照すると、3.3V系と5V系の間にレベルシフタなどのアクティブLSIデバイス挿入は不要、5Vデバイス出力から電流制限抵抗を入れれば3.3V MCU入力へ直結、3.3V MCU出力はそのまま5Vデバイス入力へ直結可能です。

直結は、アマチュア電子工作レベルのCMOSデバイス同士の接続でノイズ・マージンは減る、という但し書き付きですが、次章バス・スイッチのアプリケーション回路図と比べても遜色は少ないと思います。

MCU入力側には、5V CMOSセンサ、出力側には、5V LCD等の表示デバイス接続を想定します。このCMOSデバイス直結を利用すると、3.3V動作MCU評価ボードと5Vデバイス間の接続に手間が少なく、開発するMCUソフトウェアの動作確認には好都合です。

もちろん、MCU評価ボードと5Vデバイス間の配線を短くツイストするなどのマージン減少対策は必要です(配線ツイスト効果は、コチラの弊社関連投稿を参照してください)。

バス・スイッチ挿入

SN74CB3T3245の代表的なアプリケーション(出展:SN74CB3T3245データシート)
SN74CB3T3245の代表的なアプリケーション(出展:SN74CB3T3245データシート)

前章の5V系・3.3V系信号レベル変換投稿で推薦されている2.5Vおよび3.3V、8ビットバス・スイッチ(5V耐圧付き):SN74CB3T3245をインタフェースに使う方法は、伝搬遅延がゼロに近く、双方向パッシブデバイスのためノイズにも強いなど、3.3V低電力動作MCUと5V動作デバイスのインタフェースとして理想的です。

※SN74CB3T3245は、ハードウェア開発で良く用いられるCMOSデバイスの双方向3ステートバッファ:SN74HC245を、より低電圧動作で高速化し5V耐圧も付加した高速CMOSデバイスです。Vcc=2.5Vなら、5V/3.3V入力から2.5V出力へのレベルシフトも可能です。

※付録に、動作電圧が異なるデバイス間の相互接続基礎知識を示しました。

3.3V MCUの5Vデバイス接続インタフェース評価

3.3V動作MCUに、5V動作デバイスを接続する4インタフェースを示しました。

  1. MCUの5V耐圧ピンで接続
  2. MCUと5Vデバイス間に、レベルシフタ挿入
  3. CMOSデバイス同士なら直結可能
  4. MCUと5Vデバイス間に、5V耐圧3V/2.5Vバス・スイッチ挿入

4インタフェース評価は、以下の実績、動作確認に基づいています。

1は、5V耐圧ピンありMCUの弊社テンプレートで、既に多くの動作実績があります。

2のレベルシフタ追加は、I2C接続の不具合情報がネットに多数ありますので、弊社確認は省きます。

3のCMOSデバイス直結は、開発中の3.3V MCU動作5V耐圧ピンなしのFRDM-KL25Zテンプレートソフトウェアで、5V LCDを接続し動作確認します。

4のバス・スイッチ挿入は、TIから数個サンプル入手が以前は簡単にできたのですが、現在は購入が必要です。SN74CB3T3245価格が100円以下と安いだけに送料が無視できず、何かのついでに購入予定です。それまで動作確認は保留します。ただ、データシートを見ると、3.3V MCUと5Vデバイス双方向接続インタフェースには理想的だと思います。

3と4どちらも、確認結果が判明次第、本ブログでお知らせします。

付録:デバイス相互接続の基礎知識

相互接続判定のロジック概要(出展:TIロジック・ガイドP4に加筆)
相互接続判定のロジック概要(出展:TIロジック・ガイドP4に加筆)

TI)ロジック・ガイドから、動作電圧が異なるデバイス間の相互接続判定方法(Judgement)とその結果(Results)を抜粋したのが上図です。

結果は、例えば5V CMOSデバイス同士ならYes=直結、3.3V LVTTL/2.5V CMOS/1.8V CMOSへはVOHはVIHより高く、VOLはVILより低いので、低圧入力側にVIHトレランス(耐圧)があればYes*=直結可能を示しています。

表から、5V CMOSデバイスのD(出力)は、全デバイスのR(入力)へ直結、またはVIH 耐圧で直結できるなど、広い適用範囲が判ります。センサの多くが5V CMOSデバイスでも、3.3V動作MCUとの間にSN74CB3T3245を入れさえすれば、簡単に高信頼インタフェースが実現できる理由です。



WindowsとLinux Mintの大型更新比較

春と秋の年2回大型更新するWindows 10のリリース開始からサポート終了までのライフサイクルは、1.5年です。Windows 10最新バージョン2004へ更新済みの場合、2021年12月14日までは、2回目/3回目の大型更新を延期でき、この間の大型更新トラブルも回避できる可能性があります(COVID-19の影響は除いています)。

一方、Linux Mint 20の大型更新は春の年1回、ライフサイクルは5年です。

本稿は、このPC OSの大型更新を比較し、MCU開発用OSの安定性という観点から、Linux Mintが優位であることを示します(関連投稿:Linux Mintお勧め理由の続編という位置づけです)。

WindowsとLinux Mintの大型更新比較結果

Windows 10(Version 2004) Linux Mint 20(Ubuntu 20.04 LTS)
大型更新回数 年2回 年1回
ライフサイクル 1.5年(2021/12/14まで)

※この間2回の大型更新予定

5年(2025年春まで)

※この間4回の大型更新予定

大型更新方法 Windows Update(手動延期可能) ユーザによるクリーンインストール
大型更新間隔 0.5年 1年
通常更新方法 Windows Update アップデートマネジャー(5章参照)

Windows 大型更新(Windows 10)

2020年2回目の大型更新、Windows 10バージョン20H2の内容が判りました。バージョン20H2も、様々な機能追加・更新の発表があり、大型更新トラブルが少ないことを願っています。一方で、コチラの記事によると、現行バージョン2004では旧バージョンから消えた重要機能も少なくないようです。

※Windowsの機能追加・削除によるMCU開発弊害の例が、関連投稿:FRDM評価ボードOpenSDA接続問題の3章にあります。

Windows 10運用に安定性を求める場合は、1.5年のライフサイクル期間中、大型更新を「手動延期」する方法があります。但し、大型更新毎に変わるメニューやタスクバーなどのPC基本操作が、最新版で無くてもかまわない場合です。職場利用のPCなどは、この運用方法でも良いかもしれません。

個人利用のPCは、大型更新が基本です。Windows Updateは「最新版へ更新」するのがデフォルト設定ですし、巷に溢れるWindows 10情報は、どれも最新版の話題で、ユーザに大型更新バイアスをかけ続けるからです。

但し、プリンタや接続機器も多種多様な個人利用PCの場合、大型更新トラブルの発生確率は、職場利用のPCよりも高くなる傾向があります。

この大型更新トラブル確率が増すにも関らず、デフォルトでは最新版へ更新することが、Windows 10の矛盾点だと思います。

Windows Updateは、OS自身の大型更新と、通常のセキュリティ更新の2機能が混在しています。これは、Windows 10が商用であるがゆえに、より早い競合製品(Apple macOSやLinux)差別化もビジネス的には必要なためか(?)と筆者はあきらめています。

Windows Updateで無理やり大型更新も行うのではなく、ユーザ主体で大型更新が開始できる別ボタン、例えばInstall New Windowsを設ければ、少なくとも大型更新起因のトラブルは回避できると思うのですが…。

Linux Mint大型更新(Linux Mint 20)

Windows と最も異なるのは、Windows Updateに相当するLinux Mintアップデートマネジャーに、OS大型更新機能が無い点です。

Linux Mintのアップデートマネジャーは、稼働中OSの主にセキュリティ関連更新を行います(標準搭載のFirefoxブラウザなどは、このアップデートマネジャーで最新版へ更新されます)。つまり、ユーザが主体的に操作しない限りOS大型更新はできない仕様です。

旧版Mint 19からMint20への更新は、基本的にはOSクリーンインストールで行います。旧Mint 19利用中のユーザ追加アプリケーションやユーザフォルダなどを、新Mint 20へ引き継ぐバップアップツールが標準で用意されています。

また、現行Mint 20と旧Mint 19のOS自体を比較しても、差はデスクトップの色や壁紙程度で、本来のOS部分は、(詳細に見れば別ですが)大差は見当たりません。

Linux Mint 20のリリースノートを読み、大型更新の必要性をユーザが感じなければ、そのままLinux Mint 19を使い続けても最長5年間はセキュリティ更新が受けられます。

MCU開発用PC OS安定性評価

MCU開発用のPC OS として、以下の2点からLinux Mintが優れると評価します。

  • Linux Mint大型更新間隔は、Windows 10の0.5年に比べ1年と長い
  • Linux Mint大型更新は、ユーザが主体的に開始する

MCU開発速度が上がり、MCUソフトウェア/ハードウェア生産性が向上しても、プロジェクト開始から終了まで数か月~1年は要するでしょう。EclipseベースIDEなどのMCU開発ツールも、この間に1回程度は更新がありえます。

これらMCU開発ツールの動作土台となるPCのOSは、少なくてもプロジェクト実行中の1年程度は安定的に、かつ大型更新する場合でもユーザ主体で開始してほしいと願う開発者は、筆者だけではないと思います。

アップデートマネジャーの使い方(Linux Mint 20)

Linux Mintアップデートマネジャーの使い方
Linux Mintアップデートマネジャーの使い方

Linux Mint 20起動時、①アップデートマネジャーを起動しても、「このシステムは最新の状態です」と表示されることがあります。この時は、念のため、②再読込をクリックします。

すると、更新情報を再チェックし、何らかの更新がある場合には、リスト表示されますので、③アップデートインストールをクリックします。

インストール中に「以下のパッケージがインストールされます」と表示される場合は、デフォルトのまま④OKをクリックします。

①~④によりLinux Mint 20へ最新アップデートが適用されます。

※これらの操作はWindows Update「更新プログラムのチェックボタン」を、ユーザ自身で押すことに相当します。

また、ファイアウォールのデフォルトは無効です。「起動する」をクリックし、自宅/会社/パブリック選択後、Statusを変更、有効に変更することをお勧めします。

HTML版マンスリー・アップデートの見かた

図1 PDF版からHTML版へ変わったSTM32マイコン マンスリー・アップデート
図1 PDF版からHTML版へ変わったSTM32マイコン マンスリー・アップデート

STマイクロエレクトロニクスのSTM32マイコン マンスリー・アップデートがPDF版からHTML版に変わって3ヶ月経過しました。新しいHTML版の掲載フォーマットもほぼ固まったと思いますので、両者の比較結果を示します。

PDF版は、紙(Book)の置換えであるため、掲載文書内容と全体との関係、掲載ページも解りやすかったのに対し、ハイパーリンクのHTML版では、モバイルデバイスへ最適化したため、「コンテンツ重視の掲載へ変わった」、これが結論です。HTML版で見逃しがちな全体像との関係を明らかにするため、リンク集を別途作成しました。

※STマイクロエレクトロニクスの日本語MCU技術資料は、弊社ブログ掲載MCUベンダ中、最も優れています。STM以外のMCU開発中の方にも役立つ情報が、リンク集から得られると思います。

HTML版STM32マイコン マンスリー・アップデートの大項目タイトル

PDF版からHTML版へ変わったSTM32マイコン マンスリー・アップデートのタイトル比較
PDF版からHTML版へ変わったSTM32マイコン マンスリー・アップデートのタイトル比較

HTML版とPDF版のSTM32マイコン マンスリー・アップデート大項目タイトル(図1の赤囲いこみ部分)を比較すると、HTML版はPDF版よりも具体的内容を示すタイトルに変わっています。

実は、PDF版も大項目以下の中項目、小項目タイトルは、HTML版と同じでした。PCで読む(見る)ことが前提のPDF版は、一度に読めるページや範囲もスマホに比べ広く、目的記事への移動も簡単なため、更新内容の構造(大項目>中項目>小項目)が解りやすい掲載が可能でした。

一方、スマホで読む(見る)ことが前提のHTML版は、構造よりもそのタイトルを一目見ただけで読んでもらえる工夫が必要なうえ、表示はスマホの縦長連続ページのため移動に制約があり、コンテンツ重視のタイトル掲載に変わったのだと思います。

HTML版はコンテンツフィルタリングに適す

移動中やチョットした空き時間にスマホで情報をチェックすることは、COVID-19以前はよくありました。膨大なアップデート情報コンテンツが有用か無用かを瞬時に判断し、後で有用情報のみにアクセスすることで能率は向上します。

これは、コンテンツフィルタリングです。

HTML版は、フィルタリングに適す構成を簡単に作成可能です。要不要判断に最低限必須なタイトルとその概要を掲載し、「詳細はコチラ」でリンク先へジャンプする形式です。

フィルタリング結果をスマホへ上手く覚えさせておけば、より効率的です。

PDF版はスマホで操作しにくい

PDF版の内容の一部切取り(コンテンツ加工)や広範囲なコピー(コンテンツ抽出)は、スマホでは操作しにくく、結局全部保存か、または捨てる結果となります。PCならば、必要情報のみの加工・抽出・保存は簡単なのですが…😥。

つまり、スマホなどのモバイルデバイスとの相性が良いのがHTML版、PCと相性が良いPDF版とは掲載内容表現のしかたが異なる訳です。

従来の月刊PDF版は、その月の変更情報のみを抽出掲載し、しかも全体へもリンク表示するなど、読者(情報の受け手)寄りの手間がかかる編集でした。HTML版は、STマイクロエレクトロニクス(情報の送り手)が強調したいコンテンツに重きを置いた編集となっています。

HTML版の全体像リンク集

在宅勤務の増加に伴い、モバイルとPCの両デバイスを併用して能率を上げたいところですが、現状のHTML版では、難しいと思います。※全体像が判る従来のPDF相当が参照できるリンクが追加されれば別ですが、これには編集に二度手間がかかります。

そこで、月刊HTML版で見逃しがちな全体像との関係を明らかにするリンク集を、お節介ながら作成しました😅。

リンク内容 補足
マンスリー・アップデートバックナンバー HTML版:2020年6月号以降
PDF版:2017年1月号~2020年5月号
日本語MCU技術ノート Cortex-Mコア横断的な周辺回路Tips
日本語MCU開発のヒント
日本語トレーニング資料 Cortex-Mコア毎のセミナープレゼン資料
STM32マイコン開発環境 STM32CubeIDE/MXなどのダウンロードリンク
STM32マイコンファームウェア Cortex-Mコア毎のファームウェアダウンロードリンク
セミナー・イベント・キャンペーン セミナー開催予定/終了、キャンペーン一覧
Q&Aで学ぶマイコン講座 初心者向けMCU技術解説記事

あとがき

STM32マイコン マンスリー・アップデートに限らず殆どのアップデート情報は、モバイルファーストへ向けた「コンテンツタイトル+数行の概要+詳細はコチラ」の形式です。

全体像も見つつHTML版が強調する詳細コンテンツを理解・整理・記憶したい方には、多少効率が落ちるかもしれませんが本稿リンク集が役立つと思います。

繰返しになりますが、STマイクロエレクトロニクスの日本語MCU資料は、他社MCU開発中の方でも参考になる情報満載で、質・量ともに優れています。開発に行き詰まりが生じた時など、ベンダの壁を越えて参照すると、打開策が見つかるかもしれません。

アフターCOVID-19では、MCU開発のしかたも変わりそうです。丁度、ADAS(Advanced Driver Assistance System:先進運転支援システム)で自動車ソフトウェア開発が激変したように、エッジMCU開発も、IoTセキュリティ絡みで、より効率的で複雑な処理をこなせるように変化すると思います。

MCU開発の情報収集と生産性向上、両方にお役に立てば幸いです。

Linux Mintお勧め理由

PCへインストールするLinuxには、様々なディストリビューションがあります。ディストリビューションとは、Linux 本体とLibreOfficeなどの標準搭載アプリケーションを1パッケージにまとめ、利用者がLinuxインストールとその活用を即座にできるようにした配布形態のことです。

本稿は、これらディストリビューションの中で、筆者がLinux Mint 20 MATEエディション(64ビット)をWindows MCU開発環境トラブル発生時、代替に使えるLinuxディストリビューションとしてお勧めする理由を示します。

Linuxディストリビューション

2020年7月発表のWebサイト向けLinuxディストリビューションシェアを見ると、UbuntuやDebianなどがメジャーなディストリビューションであることが判ります。

様々なLinuxディストリビューション、特にUbuntuやDebian、Raspberry Pi用のRaspbianと本稿のLinux Mint概要は、コチラの情報が参考になります。用途、安定性/情報量/デザイン性などでディストリビューションを評価した結果が示されています。

Linux Mintとメジャーディストリビューションの差

UbuntuとLinux Mintの関係を、まとめました。

  • Ubuntuベースの派生形として、様々なデスクトップPCディストリビューション(Linux Mint)がある
  • Ubuntuは定期的にアップグレートされるが、主にセキュリティ修正のみでアプリケーションの大幅更新をしない5年長期サポート版:LTS版(最新は2020年4月リリース:Ubuntu Desktop 20.04)もあり、このLTS版に準ずる派生ディストリビューション(Linux Mint 20.x)がある
  • Ubuntuアプリケーションリポジトリ(公式アプリケーション保存庫)をそのまま使える派生ディストリビューション(Linux Mint)がある

MCU開発者の方は、EclipseベースIDE(EclipseベースIDE≒Ubuntu)なら、どれもほぼ同じユーザインタフェースで、同じプラグインが使えるのと同様と言えばご理解頂けると思います。

Ubuntuが最もシェアが高いのは、派生ディストリビューションのベースだからです。また、MCUベンダのLinux版IDEなどの説明書も、トップシェアUbuntu利用を前提に提供されます。

Linux Mintは、Ubuntu派生ディストリビューションの1つで、Linux特有のコマンド操作やリポジトリもUbuntuと同じです。また、UbuntuよりもWindowsやMacの操作に近いGUIを持ち、万一の際のシステムバックアップツール(TimeShift)も標準搭載済みです。

つまり、「Windows/Macユーザが、Linux Mintインストール後、Linux本体のカスタマイズは不要で、即MCU開発アプリケーションが利用できる点」が、Linux Mintをお勧めする最大の理由です。

※MCU開発アプリケーション(例えばNXPのMCUXpresso IDE、STMのSTM32CubeIDE)は、非搭載ですので、別途インストールは必要です。

Linux MintとメジャーディストリビューションUbuntuの主な差は、GUI、少し遅れるリリース時期と考えて頂ければ良いと思います。

Linux Mintの3エディション

Windows Home/Proと同様、Linux Mintにも、3種類のエディションがあります。

GUI処理の軽い方から、Xfce/MATE/Cinnamonエディションと呼ばれます。少し古い版ですが、Linux Mint 17 ユーザズガイドによると、どのエディションを使えば良いかわからない時は、METAエディションを使ってください、とあります。

筆者は3種類とも試しましたが、処理の軽さとメニューの解りやすさ、使いやすさからMETAエディションをお勧めします。

GUIは、好みの問題がありますので、3エディションをインストールして試すと良いでしょう。クリーンインストール所要時間は、せいぜい30分程度です。インストール方法は、まとめに記載しております。

まとめ:お勧めLinux MCU開発環境Linux Mint 20 MATEエディション(64ビット)

最新Ubuntu Desktop 20.04ベースで、Windows MCU開発環境トラブル発生時、代替に使えるLinuxディストリビューションとして、Linux Mint 20 METAエディション(64ビット)をお勧めする理由を示しました。

多発するWindows起因のトラブル発生時、Windows MCU開発に慣れた開発者が、MCU開発を中断することなくLinux環境で継続するには、Windows操作に近いGUI、LTS版のOS安定性、Linux特有コマンドへの情報量多さなどが必要で、これらを満たすのがLinux Mintです。

Linux Mint 20 METAエディション(64ビット)のPCインストール方法は、ユーザズガイドにも記載されていますが、コチラなどを参考にすると素早くインストールができます。

Linux Mint 20と旧版Mintシェアは、Mint公式ブログのMonthly News – July 2020によると、投稿時点では、32ビットPCにも対応した前版Mint 19.xのほうが高いのですが、いずれ逆転すると思います。全ての32ビットOS新規開発は、完了しました。

Mint 20標準搭載のLibreOfficeは、安定性重視のStill版v6.4.5です。カスタマイズ不要と書きましたが、Fresh版v7.0.0へ変更したい方は、コチラに方法が記載されています。



FRDM-KL25Z タッチスライダの使い方

FRDM-KL25Z評価ボードのタッチスライダ(Capacitive Touch Slider)の使い方を説明します。

タッチスライダ動作にはのMCU内蔵TSIが必須(出展:Fig1データシート、Fi2ユーザズマニュアル)
タッチスライダ動作にはのMCU内蔵TSIが必須(出展:Fig1データシート、Fi2ユーザズマニュアル)

タッチスライダ

CypressのPSoC 4000S/4100S/4100PSテンプレートでも使用中の指によるタッチユーザインタフェースは、MCU入力手段として人気があります。

NXPの多くのFRDM評価ボードにもFigure2のようにCapacitive Touch Sliderが実装済みですが、これをタッチスライダとして動作させるには、MCU内蔵TSIハードウェアと、これを制御するTSIライブラリの両方が必須です。
※TSI:Touch Sensor Input。

例えば、FRDM-KE02Z40Mでは、TSIハードウェアがMCU非内蔵なためタッチスライダは動作しません。

MCUXpresso SDKのTSI:Touch Sensor Inputサンプルプロジェクト

MCUXpresso SDKのTSIサンプルプロジェクトは、driver_examples>tsi_v4>normalにあります。MCUXpresso SDKの使い方は、関連投稿を参照してください。

MCUXpresso SDKのTSIサンプルプロジェクト
MCUXpresso SDKのTSIサンプルプロジェクト

以降は、サンプルプロジェクトのソースコードを横目で見ながら本稿を読んで頂くと良く分かると思います。が、ソースコードが無い場合には、まとめ章へスキップしてください。

tsi_v4_normal.cを見ると、このサンプルプロジェクトは、MCU内蔵TSIハードウェアをキャリブレーション(L127)後、下記3つの方法でTSIを制御しているサンプルであることが解ります。
※キャリブレーションとは、測定系ハードウェアの測定精度を上げる処理で、ADCなどでも必要です。

  1. (L136)SOFTWARE TRIIGER SACN USING POLLING METHOD
  2. (L159)SOFTWARE TRIIGER SACN USING INTERRUPT METHOD
  3. (L178)HARDWARE TRIIGER SACN

1や2でもTSIソフトウェアライブラリ単独制御ではなく、TSIハードウェア/ライブラリ両方が必須であることに注意してください。3も同様です。

サンプルプロジェクトでは、1~3の方法を順に処理し、各方法の最後にPRINTFで取得値xxxxをConsoleへ出力します。その出力例がreadme.txtにあります。

MCUXpresso SDKのTSIサンプルプロジェクト3方法の動作出力例
MCUXpresso SDKのTSIサンプルプロジェクト3方法の動作出力例

3番目のハードウェア割込み方法設定後、無限ループへ入ります。

このサンプルプロジェクトソースコードは、本来は3サンプルプロジェクトに分離すべきものを、1つにまとめた書き方をしています。つまり、TSIソフトウェアポーリングプロジェクト、TSIソフトウェア割込みプロジェクト、TSIハードウェア割込みプロジェクトを1つにまとめています(ので、少々解りにくいかもしれません)。

TSIソフトウェアポーリングプロジェクト

そこで、TSIソフトウェアポーリングプロジェクトのみを抽出します。

先ずは、ソフトウェアポーリング処理後、他の2方法を飛ばして無限ループへジャンプさせます。例えば、L157のTSI_ClearStatusFlags()の後にgoto LOOP;を追加し、無限ループの前に飛び先ラベルLOOP:を加えます。すると、ポーリング方法のみの処理結果がConsoleへ正常出力されます。

つまり、ソフトウェアポーリングのみで、1回TSI制御ができることが確認できました。

組込み処理は、初期設定と無限ループ内の繰返し処理の2つに分けて考えるのが常套手段です。そこで、ソフトウェアポーリングの方法も、初期設定と繰返し処理の2つへ分けます。

L101~L143がソフトウェアポーリングの初期設定、L143~L157が繰返し処理です(※L143がダブっているのは間違いではありません)。この繰返し処理先頭L143に無限ループに付加したラベルLOOP:を移動し、無限ループ化します(無限ループに加えたラベルは削除してください)。

動作させ、TSIソフトウェアポーリングプロジェクトのみの抽出と連続ポーリング処理が完成です。

他の2方法、TSIソフトウェア割込みプロジェクトや、TSIハードウェア割込みプロジェクトのみを抽出する場合も同様です。3プロジェクトに分離すると、各方法の理解がより深まります。

※FRDM-KL25Zは、TSI channel 9と10の両方を使っています。両チャネルを使うメリットは、2つあります。1つは、その取得値変化から、指がスライダの左右どちらへ移動したかが解ることです。抽出プロジェクトで、その取得値変化の様子を実際に試してください。

TSIタッチスライダパッドの2チャネルの使い方
TSIタッチスライダパッドの2チャネルの使い方

※もう1つのメリットは、タッチ感度が上がることです。上図のように、各チャネルカバー範囲は相補的ですので、片チャネルでタッチ検出するよりも両チャネル検出の方が、より高感度になります。

FRDM-KL25Z タッチスライダの使い方

前章までで、FRDM-KL25ZタッチスライダのSDKサンプルプロジェクト3制御方法を解説しました。

本章は、もっと実用的なタッチスライダの使い方を説明します。

前章のTSIソフトウェアポーリング方法で、TSIチャネル9のみを使い、タッチスライダを物理スイッチの代わりに動作させる使い方です。

この動作は、オリジナルサンプルプロジェクトのTSIハードウェア割込み方法で、タッチスライダを指で触るとLEDがトグル点滅、つまり、スライダではなくタッチパッドとして動作するのと同様です。物理スイッチではないので、経年変化が少ないことが特徴です。

FRDM-KL25Z の性能を100%使ったTSIサンプルプロジェクトでは、タッチスライダ動作も十分可能です。

しかし、FRDM-KL25ZでTSI処理以外にも様々な処理を行う場合は、このタッチパッド的使い方が実用的だと筆者は思います。オリジナルサンプルプロジェクトも、この事を暗に示しているのかもしれません。

FRDM-KL25Z タッチスライダの初期設定

初期設定は、抽出したTSIソフトウェアポーリングプロジェクトの初期設定からチャネル10設定分を削除します。

FRDM-KL25Z タッチスライダの無限ループ内処理

抽出プロジェクトは、無限ループ内でチャネル9と10を「連続計測」しConsole出力しました。実用的な処理では、タッチスライダ処理以外の様々な他の処理を1個のMCUで行うため、この計測処理は(他の様々な処理が間に挟まるため)「離散的」になります。

離散計測処理を行う際の注意点は、チャタリング対策です。

指によるタッチであっても、本当にタッチしたのか、または、たまたま触っただけなのかをソフトウェア側で判断する必要があり、これをチャタリング対策(=入力ノイズ対策)と言います。

例えば、複数回の離散タッチ検出ならば本当のタッチ、1回のみのタッチ検出ならば、触っただけのノイズでタッチと判断しない等です。

まとめ

FRDM-KL25Z評価ボード付属タッチスライダ制御を、MCUXpresso SDK TSIサンプルプロジェクトのソフトウェアポーリング、ソフトウェア割込み、ハードウェア割込みの3方法から解説し、タッチスライダを物理スイッチの代わりに動作させるタッチパッド的な使い方を説明しました。

3方法をまとめたオリジナルサンプルプロジェクトを、方法別に分離プロジェクト化し、初期設定と無限ループ内処理の2つに分け、ループ内処理のソフトウェアチャタリング対策を説明しました。

開発中のKinetis Lテンプレートには、本稿で示したチャタリング対策済みの応用例を添付します。

FRDM-KL25Z VCOMの使い方

FRDM-KL25ZのUARTとPC を、USB経由のVCOM:Virtual COM port接続する方法を説明します。

FRDM-KL25ZのUARTとVCOM接続中のTera Term画面
FRDM-KL25ZのUARTとVCOM接続中のTera Term画面

VCOM:Virtual COM port

MCU評価ボードとPC間は、USBで接続されており、このUSB経由でターゲットMCUのプログラミングやデバッグを行います。前稿説明のJ-TAGハードウェアデバッガの代わりが、評価ボード付属デバッガで、FRDM-KL25Zの場合は、OpenSDAと呼びます。

本ブログ掲載の評価ボード付属デバッガが下表です。ベンダ毎に付属デバッガの呼び名は異なりますが、どれも機能的には同じです(Renesasは、別途E2 Lite/E2ハードウェアデバッガで機能提供します)。

ベンダ毎に呼び名が異なる評価ボード付属デバッガ
ベンダ 評価ボード付属デバッガ 評価ボード例 MCU – PC間通信
NXP OpenSDA/CMSIS-DAP FRDM-KL25Z/LPCXpresso54114 UART
STM ST-Link STM32G071RB UART
Cypress KitProg CY8CKIT-145 UARTとI2C
TI XDS110-ET MSP-EXP432P401R LaunchPad UART
Renesas なし(E2 Lite/E2必須) BlueBoard-RL78G13-64 UART

評価ボード付属デバッガには、ターゲットMCUのプログラミング/デバッグ機能に加え、MCUのUARTとPCのUSB間を橋渡し(=接続)する機能があります。これをVCOM:Virtual COM port接続といい、Tera Termなどのシリアル通信ソフトウェアをPCにインストールすれば、いとも簡単にMCUの UART通信ソフトウェア送受信の動作確認ができます。

※Tera Termの代わりにMCUXpresso IDEプリインストールのSerial Terminalも使えます。

MCUXpresso IDEのTerminalによるTera Termの代用
MCUXpresso IDEのTerminalによるTera Termの代用

UART:Universal Asynchronous Receiver/Transmitter

UARTは、最重要MCU周辺回路です。

古くから装置組込み済みMCUの再プログラミング手段としてUARTは利用されてきました。最新IoT MCUでも、セキュア・ブート、セキュア・ファームウェア更新に使える手段はUARTのみです(関連投稿:STM32G0/G4のRoot of Trustなどを参照してください)。

さらに、MCUXpresso SDKの評価ボード新規プロジェクト作成時でも、最初からActiveな周辺回路はUART0だけです(※UARTの“0”に注意してください)。ボード実装済みのLEDさえ初期値はInactiveです。つまり、UARTを動作させないMCUは無いと言えるでしょう。

UARTソフトウェアの動作確認には、送・受信機能を持つため通信相手が必要で、VCOM接続によりPCが通信相手になるため、最重要周辺回路:UARTソフトウェアの動作確認ができる訳です。

FRDM-KL25ZのVCOM接続方法

前置きが長くなりました。本章から評価ボード:FRDM-KL25Z をOpenSDA経由でVCOM接続する方法を説明します。

結論から言うと、FRDM-KL25ZのVCOM接続には評価ボードに2配線追加が必要です。2配線を追加しTera Termを使ったUART送受信中の画面が写真1です。

  • J1-2とJ2-20配線・・・・・・・UART0_TX:PTA1とUART1_TX:PTE0接続
  • J1-1とJ2-18配線・・・・・・・UART0_RX:PTA2とUART1_RX:PTE1接続

FRDM-KL25Z関連資料は不親切で、この必須配線が分かりにくいので順を追って説明します。が、配線さえ追加すれば、全てのSDK UARTサンプルプロジェクトが正常動作しますので、急ぐ方は、まとめ章へスキップしてください。

MCUXpresso SDK UARTサンプルプロジェクトと回路図

FRDM-KL25ZのMCUXpresso SDK UARTサンプルプロジェクトは、どれもUART0ではなくUART1を使った処理例です。readme.txtには、“USB to Com Converter:USB2COM”をJ2-20/18と配線せよと記載されています。もちろん、別途USB to Com Converterを用意し、このとおり接続すればサンプル動作確認ができるでしょう。

しかし、OpenSDAにUSB to Com Converter と同じVCOM機能が備わっているのにこれを使わない手はありません。

そこで、FRDM-KL25Z回路図Rev.EのSheet 3を見ると、OpenSDAとMCUはUART0で接続済みで、R5とR6でUART1とも並列接続済みなのが判ります。本来ならUSB to Com Converterが無くてもそのままUART1サンプルプロジェクトが動作するハズです。

試しに、サンプルプロジェクトのUART1をUART0へ変更すると、コンパイル時に妙なワーニングが発生しますが、VCOM接続でUART0が動作します(UART0からUART1への変更にはMCUXpresso Config Toolsの使い方を参照してください)。つまり、UART0とOpenSDAは、回路図どおり接続済みな訳です。

R5とR6は実装されていますが、この代わり追加したのが2配線です。

その結果、UART1で全てのサンプルプロジェクトが正常動作します。また、UART0で発生した妙なワーニングもありません。

つまり、SDK付属UART1サンプルプロジェクトの正常動作には、J1-2とJ2-20、J1-1とJ2-18の2配線が必要です。この時UART0は、並列接続を避けるためInactiveにします。

※サンプルプロジェクトは、元々UART0がInactiveです。新規プロジェクト作成の時は、デフォルトActiveなUART0をInactive、UART1をActiveへ変更すると、サンプルプロジェクトがそのまま流用できます。

※評価ボード回路図最新版がRev.Eです。FRDM-KL25Z評価ボード裏側にシールが貼ってあり、回路図版数Rev.Eと一致、R5とR6も実装済みですが正常動作には追加配線が必要でした。回路図と実評価ボードの版数には、留意してください。

まとめ、新開発汎用Kinetis Lテンプレート

UARTとVCOM接続の重要性を示し、FRDM-KL25Z評価ボードで、VCOM接続を使ってMCUXpresso SDK UART1サンプルプロジェクトを正常動作させるには、評価ボードへ2配線を追加する使い方、各種注意点を説明しました。

このFRDM-KL25Z(Cortex-M0+/48MHz、General Purpose = Main Stream)を使って開発中の汎用Kinetis Lテンプレートは、新規プロジェクト作成時のデフォルトActiveなUART0をUART1へ変更済みで、本稿で示したような開発つまずきを回避する各種情報なども添付します。

写真1は、最も簡単なテンプレート応用例のVCOM動作で、評価ボードの赤/緑/青LEDやタッチスライダ、低消費電力動作のKinetis Lソフトウェアを簡単に開発できるテンプレートです。

3.3V動作新Baseboard

Cortex-M0+のKinetis Lは1.71Vから3.6 V動作で、従来弊社が扱ってきた5V Baseboard接続への5V耐圧端子が残念ながらありません。100MHzクラスで3.3V動作のCortex-M4テンプレート開発なども考慮すると、3.3V/1.8V動作用の新しいBaseboardを探し、テンプレート応用例に適用させたいと考えております。

OpenSDA接続トラブル解決方法

ブログ読者様のおかげで、不明だったFRDM評価ボードOpenSDAとMCUXpresso IDE間の接続トラブル解決方法が判明しました。本稿は、このOpenSDA接続トラブル解決方法と、昨今の激しいMCU開発環境変化への開発者対応私案を示します。

OpenSDA v1/v2差

前投稿当日、弊社ブログ読者様からFRDM評価ボードOpenSDA処理トラブル時のJ-Linkハードウェアデバッガによる解決方法と、その根拠となったNXP Communityリンク、さらに、同様のトラブルを抱えた方々向けに、ご提供情報を弊社ブログで共有してくださいとのメールを頂きました。

この場を借りて御礼申し上げます。ありがとうございます。

ご提供情報を基に、FRDM評価ボードOpenSDA v1/v2の差をまとめたのが、下表です。

OpenSDA v1/v2とFRDM評価ボードのまとめ
OpenSDA版数 評価ボード例 開発者 トラブル状況 トラブル解決方法
OpenSDA v1.0 FRDM-KE02Z40M P&E Micro社

(Proprietary)

弊社あり OpenSDA処理MCUをハードウェアデバッガで書換えれば解決の可能性あり
FRDM-KL25Z 弊社なし
OpenSDA v2.0 FRDM-K64F ARM/mbed.org

(Open source)

Community内あり OpenSDA処理MCUをハードウェアデバッガ:SEGGER J-Linkなどで書換えて解決(情報提供者様の解決実績あり)
OpenSDA v2.1以上 FRDM-K22F

OpenSDAにはv1系とv2系があり、v1.0は開発会社:P&E MicroのProprietary製品、v2系はARM/mbed.org開発のオープンソースです。また、新しいFRDM評価ボードの多くはv2.1以上を搭載済みで、v1.0やv2.0は古くからあるFRDM-K64Fなどです(Getting Start with MCUXpresso SDK, Rev.3, 03/2017のTable 1掲載ボードでの比較。この表になぜかFRDM-KE02Z40Mの記載はありません)。

Getting Start with MCUXpresso SDK Rev. 3 03-2017のTable 1
Getting Start with MCUXpresso SDK Rev. 3 03-2017のTable 1

OpenSDA接続トラブル解決方法

OpenSDA v2系のブートローダ更新失敗などにより生じたMCUXpresso IDE接続トラブルは、SEGGER J-Linkなどのハードウェアデバッガを使って、OpenSDA処理MCU:Kinetis K20(Cortex-M4)を、評価ボードのJ-TAGコネクタ経由でユーザが直接再プログラミングすれば解決します。再プログラミング用コードも、オープンソースです(情報提供者様の解決実績もあります)。

しかし残念ながら、弊社トラブル中のFRDM-KE02Z40Mは、OpenSDA v1.0です。OpenSDA 1.0は、処理ソフトウェアがProprietary(非オープンソース)ですので、この処理部分のユーザによる再プログラミングが可能かはCase-by-caseです。

通常Proprietaryソフトウェアは、下記理由で再プログラミングができない場合が多いと思います。

理由:前稿で示したユーザ(筆者)が、Windows 10ストレージサービスを一時停止しなかったブートローダ更新は、MCU側にとってはProprietary処理ソフトウェアの悪意侵害と判断される可能性があります。
侵害と判断された場合には、セキュリティ防御手段としてMCU書込みプロテクトをかけ、再プログラミングはできなくなります。また、Proprietaryなので初めからMCU書換えプロテクト済みの可能性もあります。

※USB経由で行うブートローダ更新と、J-TAG経由のOpenSDA処理MCUソフトウェア書換えは、別物であることに注意してください。

FRDM-KE02Z40M Proprietary OpenSDA v1.0再プログラミングは、トラブル実機で試す必要があります。Proprietaryソフトウェアのため、書換え障壁はオープンソースOpenSDA v2系よりも当然高いと思われます。

J-TAGハードウェアデバッガメリット

評価ボードOpenSDA v1.0再プログラミングに必要となるJ-TAGハードウェアデバッガ価格は、例えばSEGGER J-Linkなら最低€300から、円換算で約¥37,000(2020年7月)からです。

同じ金額で10枚程度の最新MCU評価ボードが購入できるので、個人レベルのJ-TAGハードウェアデバッガ購入は勇気がいります。

J-TAGハードウェアデバッガのメリットは、旧Freescale)Bertrand Deleris氏の組込み向けデバッグ技術の基本(2007年3月:EDN)が良く解ります。マルチコアMCUデバッグや、ハードウェア/ソフトウェアブレークポイント差、セキュリティとDebug/Releaseの関係など参考になりますので、一読をお勧めします。

半導体ライフサイクルとMCU開発者対応私案

半導体製品のライフサイクルと製造中止(EOL)対策(2020年7月、EE Times)によると、多くの半導体製品の平均寿命は、3~5年だそうです。

MCUベンダ各社は、10~15年の安定供給を保証しますが、製品搭載済みMCUの賞味期限は、我々開発者が製品化に1年要したとして、発売後5年程度だと個人的には思います。

※MCU賞味期限≒MCUの差別化特徴を活かした製品が競合他社より優位な期間。IoTセキュリティ、AI機能実装や製造プロセス細分化など今後MCUは激変するハズなので、より短くなると思います。

丁度、新車購入後、2回目の車検(3年+2年=5年)で名目上の減価償却する自動車と同程度です。

COVID-19の影響で少し鈍る可能性もありますが、ADAS(先進運転支援システム)が引っ張る自動車と同様、“MCU製品も5年目安で世代交代を考えるべきだ”と思います。

また、「日本製品」が海外で売れなくなった根本原因(2020年7月、東洋経済オンライン)を読むと、「加点型の完璧主義」の世界基準に対して、日本人の「盆栽のような減点型のミニマムな完璧ものづくり」が日本敗因の1つです。プラス側メリットやそれに費やした見えない労力などは無視する一方、マイナス側の過度な批判は、日本特有かもしれません。

“基準を減点型→加点型へ180度変える努力が日本は必要”になりそうです。

MCU開発環境は、PC OSも含めて常に変化・進化します。そして、それらの環境変化は全て世界基準です。

MCUXpresso IDEは、7月9日にv11.2.0へ、MCUXpresso SDKの多くは、7月19日にv2.8.0へ更新されました。次々に生まれる新MCUや環境変化に対応するためですが、逆にこれら変化・進化に馴染まない従来MCUや減点型対応者も生じます。これらは、徐々に進化と逆らい「ガラパゴス化」している訳です。

MCU開発者は、変化・進化する環境に対して、開発中、または顧客稼働中のMCUが進化に馴染まなくなる兆候・前兆を素早く捉え、最終利用者と協議の上、従来から180度変えた“加点型対応策を取ることが、ワールドワイドなMCU開発者との競争に生き残り、その結果、日本製品も生き残れる方法”だと思います。

ガラパゴス化が全て悪い訳ではありません。しかし、日本MCU開発者がガラパゴス化すれば、その生存確率は確実に下がります。

まとめ、新開発汎用Kinetis Lテンプレート

これまでの章内容をまとめます。

  • 壊れたFRDM-KE02Z40のOpenSDA v1.0 Proprietary再プログラミングには、J-TAGハードウェアデバッガ:37,000円が必要で、OpenSDA v2系とは異なるProprietaryソフトウェアのため、書換え可能かはトラブル実機検証が必須。
  • J-TAGハードウェアデバッガは、MCUコア/ベンダに依存しない強力デバッグツール。
  • 激変MCU環境に対して、加点型へ進化しないと日本MCU開発者はガラパゴス化する。

これらから、FRDM-KE02Z40(Cortex-M0+/40MHz、5V Robust)のOpenSDA v1.0 Proprietary再プログラミングはあきらめ、5V耐圧が特徴であるKinetis Eテンプレートv2改版開発は中止、新たにFRDM-KL25Z(Cortex-M0+/48MHz、General Purpose = Main Stream)を用いた汎用Kinetis Lテンプレート開発に着手しようと考えております。

5V耐圧の代案は、一般的になってきたレベルシフタを用いる方法でKinetis Eテンプレートの最終利用者様への対応をお願いいたします(関連投稿:MCUの5V耐圧ピンを参考にしてください)。

5V耐圧を失う代わりに、FRDM-KE02Z40Mでは実装していましたが動作しないTouch pad (Slider)が、FRDM-KL25Zでは動作します。Touch pad (Slider)動作には、MCU内蔵Touch Sense Input:TSIハードウェアが必須です。FRDM-KE02Z40Mは内蔵されていません。TSIライブラリソフトウェアのみでは動作しないことは、2015年開発のKinetis Eテンプレート v1で確認済みです。

新開発の汎用Kinetis Lテンプレートは、このFRDM-KL25Z内蔵TSIハードウェアとライブラリ使いTouch pad (Slider)を、外付けSW入力の代わりに用います。

FRDM-KL25Z Block Diagram(出典:ユーザズマニュアル)
FRDM-KL25Z Block Diagram(出典:ユーザズマニュアル)

※FRDM-KL25Z搭載のMCU:MKL25Z128VLK4 (Cortex-M0+/48MHz、Flash:128KB、RAM:16KB、66:IOs)は最新MCUとは言えませんが、「低価格、入手性良し、汎用性(Main Stream)、応用範囲の広さ、OpenSDAトラブル無し」が、新規汎用テンプレート開発採用にプラスに働きました。

さいごに

多彩な情報満載のCommunityですが、逆に欲しい答え発見までにかなりの時間・労力がかかるのもCommunityです。

ブログ読者様ご提供Communityリンクのおかげで、短期間で効率的に問題解決法を見つけることができ、さらにJ-TAGハードウェアデバッガなどの関連情報収集、現状テンプレート開発見直しもできました。

ここにあらためて心より感謝いたします。ありがとうございました。

FRDM評価ボードOpenSDA接続問題整理

Kinetis E(Cortex-M0+/40MHz、5V Robust)テンプレートv2開発障害となっている評価ボード:FRDM-KE02Z40MのOpenSDAとMCUXpresso IDEデバッガ間の接続問題は、残念ながら未解決です。今回は、このOpenSDA問題を簡単に整理します。また、Linuxによる第2のMCU開発環境構築の新設カテゴリも示します。

Kinetis OpenSDA

OpenSDA Block Diagram(出典:OpenSDA Users Guideに加筆)
OpenSDA Block Diagram(出典:OpenSDA Users Guideに加筆)

Figure 1は、MCUXpresso IDEとKineties MCU間のブロック図です。旧Freescaleは、Kinetis Design Studio:KDSというFreescale製IDEとKinetis MCU評価マイコンボード間の接続は、OpenSDAというインタフェースで接続していました。

このOpenSDAは、KDS直接接続だけでなく、PC(Windows 7)との接続時、File System(USBメモリ)として動作し、クラウド開発環境:mbed開発にも利用できる2種類のプログラミング機能を持ちます。

現在問題発生中のFRDM-KE02Z40MのOpenSDAも、Windows 7当時は問題なく動作していました。その結果、Kinetis Eテンプレートv1発売ができました。

MCUXpresso IDE接続問題(Windows 10)

Freescaleを買収したNXPは、自社LPCと新旧Freescale Kinetis両マイコンに新しい統合開発環境:MCUXpresso IDEを用意しました。このMCUXpresso IDEの評価ボード接続インタフェース一覧(一部抜粋)が下図です。

MCUXpresso SDK support platform(出典:Getting Started with MCUXpresso)
MCUXpresso SDK support platform(出典:Getting Started with MCUXpresso)

簡単に説明すると、MCUXpresso IDEは、NXP純正評価ボードEVKやLPCXpresso54xxx接続インタフェース:CMSIS-DAPと、新旧FRDM評価ボード接続インタフェース:OpenSDA v1系/v2系とmbedの3種類全てをサポートします。

接続問題が発生するのは、OpenSDAの一部です(表内にFRDM-KE02Z40Mが無いのは不安ですが、記載漏れだと思います)。FRDM-KL25Z(Cortex-M0+/48MHz、General Purpose)のOpenSDAは、MCUXpresso IDEと問題なく接続できています。

接続問題解決には、Figure 1のMSB Bootloaderを、MCUXpresso IDE対応済みの最新版へUpdateすることが必要です。

MSB Bootloader更新注意点(Windows 10)

MSB Bootloader更新方法は、評価ボードのリセットボタンを押しながらPC(Windows 10)とUSB接続し、エクスプローラーに現れるBootloaderフォルダへ、最新版:BOOTUPDATEAPP_Pemicro_v118.SDAをドラッグ&ドロップするだけです(FRDM-KE02Z40Mの最新Bootloaderは、コチラから取得できます)。

この操作後、再度評価ボードとPCを接続すると、今度はエクスプローラーに通常モードのFRDM-KE02Z40Mフォルダが現れ、更新完了となるハズです。ところが、筆者の評価ボードは、Bootloaderモードから通常モードへ復帰しません。

従って、MCUXpresso IDEとFRDM-KE02Z40MをUSB接続しても、IDEは評価ボード無しに認識します。

簡単に説明しましたが、実際はWindows 10でのBootloader 更新時、「Windows 7では不要であったストレージサービスの一時停止が必須」です(詳細は、コチラのNXP情報のStep 2を参照してください)。

調べると、Windows 8以降に一般的なユーザには知らせずに追加したWindows PCのUSBメモリへの隠しフォルダ書込み機能(これが上記一時停止するストレージサービス)が、諸悪の根源のようです。

FRDM評価ボードOpenSDA接続問題整理と対策(Windows 10)

以上を整理し、対策をまとめます。

・旧Freescale製FRDM評価ボードが、新しいNXP MCUXpresso IDEと接続できない原因は、評価ボードOpenSDAのMSB Bootloaderにあり、対策は、MCUXpresso IDE対応版Bootloaderへの更新を、Windows 10ストレージサービスを停止させた状態で行うことが必要。

旧Freescale製(つまりWindow 7対応)のまま入手したFRDM評価ボードは、FRDM-KE02Z40M以外でもIDE接続問題が発生することがありますので、上記まとめを参考に対策してください。

このまとめと対策にたどり着く前に、Windows 10でストレージサービスを停止せずにFRDM-KE02Z40MのOpenSDA MSB Bootloader更新を何度か繰返しました。評価ボードが、Bootloaderモードから通常モードへ復帰しない理由は、これかもしれません😥。

筆者は、Windows 7時代からFRDM評価ボードを活用してきました。まさか、Bootloaderモード時にWindows 10ではサービス一時停止が必須だとは思いもしませんでした。しかも、このサービスは隠しフォルダ対応なので、通常ではWindows 7と同様にBootloader更新が正常終了したように見えます。

事前に調査しなかった筆者が悪いのですが、旧Freescale評価ボード記載Windows 7対応マニュアル通りに対処すれば、筆者と同じトラブルに出会う人は多いハズです。

また、OpenSDAユーザズガイドにも上記トラブルからの復帰方法の記載はありません。ネット検索か、NXP communityが解決手段でしょう😥。解決方法が見つかれば、本ブログでお知らせします。

エンドユーザを無視したかのようなWindows 10の度重なる変更に起因するトラブルは、今後も増える可能性があると思います。次章は、その対策です。

Windows MCU開発者向けLinuxカテゴリ新設

筆者は、昨年からLinux MintでのMCUXpresso IDE開発環境もWindows 10のバックアップ用に構築しています。このLinux環境でも、残念ながら今回のトラブル回復はできていません。

今回はLinux/Windows両方NGでしたが、Windows以外の第2のMCU開発環境があると、何かと便利です。

そこで、本ブログで、Windows MCU開発に慣れた開発者が、簡単にLinuxを使うための情報も発信したいと思います。このための新設カテゴリが、PC:パソコン>Linuxです。
※親カテゴリPC:パソコンへ、LibreOfficeとWindowsも移設しました。

Windows 10、Linuxともに単なるPC OSです。Linux上でMCU開発アプリケーション、本ブログではNXP MCUXpresso IDEやSTM STM32CubeIDEを利用するために、最低限必要な情報に絞って説明する予定です。

Linux情報量もまたWindows同様多いのですが、Windowsに慣れたMCU開発者としては、当面不要な情報も多く、Windowsの代わりにLinuxを短期間で効率的に活用するMCU開発環境構築が目標・目的です。今回のようなWindows PCでのトラブル発生時、Linux PCへ移ってMCU開発を停止することなく継続するのが狙いです。

MCU Devopments Windows and Linux 2 Routes
MCU Devopments Windows and Linux 2 Routes

Linuxのシステム動作要件は下記で、Windows 10よりも低いので、古いPCでも快適に動作します。ただし新しいOS利用なら「64ビットCPUは必須」ですが…😅。32ビットPC OSの新規開発は、終了しました。

  • 1GB RAM (2GB recommended for a comfortable usage)
  • 15GB of disk space (20GB recommended)
  • 1024×768 resolution

COVID-19の影響で、市場に中古PCが安価で数多く出回っていますので、これら活用も一案かと思います。

MCUXpresso Config Toolsの使い方

前稿に続きMCUXpresso SDKベースのMCUソフトウェア開発に欠かせないMCUXpresso Config Toolsの使い方を説明します。SDKサンプルプログラムに少しでも変更を加える時には、Config Toolsが必要になります。

MCUXpresso IDEクイックスタートパネルのConfig Tools
MCUXpresso IDEクイックスタートパネルのConfig Tools

Config ToolsとSDK

MCUXpresso IDEのSDKサンプルプロジェクトは、そのままコンパイルして評価ボードで即動作可能です。ユーザが変更を加える箇所は、sourceフォルダ内に限られています。sourceフォルダ以外は、ライブラリフォルダです(詳細は、前稿を参照してください)。

Config Toolsは、このSDKライブラリに変更を加えるツールです。

SDKサンプルプロジェクトは、MCU内蔵周辺回路の動作例ですが、逆に言うと、「その周辺回路しか動作させない例」です。低電力動作が必須のMCUでは、しごく当然のこのソフトウェア作法、つまり無用な回路は動作させない方針で開発されています。

ところが、SDKサンプルプロジェクトにユーザが変更を加える場合、サンプルプロジェクトで動作中の回路以外の周辺回路動作を新たに加える時があります。

この時には、MCUXpresso Config Tools>>をクリックし、MCU内蔵の眠っている(=Inactive)周辺回路の目を覚ます(=Activate)必要があります。

周辺回路をActivateした結果、サンプルプロジェクトのSDKライブラリに対して、相応の変更をConfig Toolsが自動生成(上書き)します。これが、Config ToolsとSDKの関係です。

Config Toolsの使い方

具体的にFRDM-KL25Z(Cortex-M0+/48MHz、General Purpose)評価ボードのSDKサンプルプロジェクト:gpio_led_outputを例に、Config Toolsの使い方を説明します。このサンプルプロジェクトは、いわゆるLチカサンプルで、評価ボード上の赤LEDを点滅させます。

ここでは、赤LEDの代わりに緑/青LEDを点滅させる変更をユーザが加えると想定します。

※他のサンプルプロジェクトも、殆ど赤LED(BOARD_RED_LED)1個のみを動作させますので、この緑/青LED変更方法は、多くのサンプルプロジェクトにも流用できます。

MCUXpresso SDKのgpio_led_outputソースコード(一部抜粋)
MCUXpresso SDKのgpio_led_outputソースコード(一部抜粋)

先ずConfig Toolsを使わずにL40とL41のRED_LEDをGREEN_LEDへ変更後、Buildします。その後、DebugでFRDM-KL25Z評価ボードを動作させても緑LEDは点滅しません。もちろん、ブレークポイントをL92に設定して動作は確認済みです。

LEDが点滅しない理由は、評価ボードの緑/青LEDに接続済みのgpioピンが、Inactiveだからです。

対策にMCUXpresso Config Toolsをクリックすると、Develop画面がPins画面へ変わります。

MCUXpresso Config Toolsクリックで現れるPin画面
MCUXpresso Config Toolsクリックで現れるPin画面

Routed Pinsタブ①に、GPIOB:LED_REDがリストアップされています。このリストは、Activate済みの全ピンを示します。

そこで、Peripheral Signalsタブ②で緑/青LEDのGPIOB、19とGPIOD、1に✅を入れると、リストに両ピンが加わります。Identifierは、LED_GREENとLED_BLUEにします。

MCUXpresso Config ToolsでActivateした緑と青LEDのgpioピン
MCUXpresso Config ToolsでActivateした緑と青LEDのgpioピン

この状態で、「緑色」のUpdate Codeボタン③をクリックすると、Update Filesダイアログが開き、上書き対象のSDKライブラリが一覧表示されます。この場合は、ライブラリ:board>pin_mux.c/hとboard>clock_config.c/hが上書き更新されます。

MCUXpresso Config Toolsが生成(上書き)するファイル一覧
MCUXpresso Config Toolsが生成(上書き)するファイル一覧

ダイアログのOKクリックで最終的にSDKライブラリへ変更が加わり、自動的にDevelop画面に戻ります。上書きされるライブラリのソースコードは、Pins画面上のCode Previewタブ④でも更新前に確認ができます。

戻ったDevelop画面で、RED_LEDをGREENやBLUE_LEDへ変更し、Build を再実行、Debugすると、今度は評価ボードの緑/青LEDが点滅します。

Config Toolsが、緑/青LED接続のgpioピンをActivateしたSDKライブラリに上書き更新したからです。

このようにSDKサンプルプロジェクトは、必須周辺回路とクロックルートのみをActivateした例で、その周辺回路単体でのMCU消費電力も判ります。この時のクロック周波数は、MCU最高動作周波数です。周波数を下げることで消費電力も減らせますが、その分ソフトウェア開発の難易度は上がります。

機能的には似た周辺回路がある場合や、特に電力消費が大きい回路を比較・最適化し、MCUトータル消費を改善する手段としてもサンプルプロジェクトは利用できます。

MCU電力低減方法は、SDK/Config Toolsデフォルトの最高周波数でソフトウェアを開発し、次に周波数を下げるアプローチが適すと言えるでしょう。

Config ToolsのUpdate Code

SDKサンプルプロジェクトに何も変更を加えずに、Config Toolsをクリックしても、Update Codeボタンが「緑色」になる場合があります。Update Codeボタンの灰色は、上書きするSDKライブラリが無いことを示します。この場合は、変更を加えていないので、本来「灰色」のハズです。

これは、元々のSDKライブラリが手動生成、または旧Config Toolsで生成していて、IDE付属の最新Config Toolsの上書き版と(機能的には同じでも)異なる場合があるからです。例えば、ライブラリコメントが変わる場合などが相当します。

気になる方は、SDKサンプルプロジェクトを最初にIDEへImport後、直にConfig Toolsを起動し、Update Codeを一度実行しておけば、次回からユーザ変更が無ければ、灰色でボタン表示されます。

新規プロジェクトのConfig Tools

Config Toolsの使い方に本稿では、SDKサンプルプロジェクトのLチカサンプル点滅LED変更を例にしました。この使い方は、MCUXpresso IDEで新規プロジェクト作成時でも同じです。

新規プロジェクト作成時、初めからMCU内蔵周辺回路のSDKドライバを全て実装したとしても、消費(浪費)されるリソースはFlash/RAM容量のみです。周辺回路やクロックルートのほとんどは、Inactiveが初期値で、ActivateはUART0程度です。

そこで、IDE新規プロジェクト作成後、先ずConfig Toolsで使用予定の周辺回路やクロックルートをActivateし、それらに対応したSDKライブラリをUpdate Codeで上書き更新、最後にユーザ処理を記述するという順番になります。

MCUXpresso IDEソフトウェア開発要点

NXPのMCUXpresso IDEは、SDKベースのMCUソフトウェア開発を行います。

SDKには、多くのサンプルプロジェクトがあり、これらを上手く活用すると、効率的で汎用的なMCUソフトウェア開発が可能です。

SDKサンプルプロジェクトは、対象周辺回路とクロックルートのみを動作させる基本に忠実な作法で開発しているため、ユーザがプロジェクトへ変更を加える時、新たな周辺回路のActivateが必要な場合があります。

Config Toolsは、MCU全内蔵回路とクロックルートを、GUIで簡単にActivate/Inactive変更ができ、その結果として、更新の必要があるSDKサンプルプロジェクトのライブラリを上書き更新します。

NXPのMCUソフトウェア開発は、MCUXpresso IDEに備わったSDKとConfig Tools両方の活用が必須で、前稿と本稿の2回に分けてその使い方を説明しました。

MCUXpresso SDKの使い方

NXP MCUXpresso IDEを使ったFRDM-KE02Z40Mテンプレートv2開発にあたり、MCUXpresso SDKベースのMCUソフトウェアの開発方法を示します。

MCUXpresso SDK全般の使い方

MCUXpresso SDKの全般的な使い方は、IDE付属のGetting Started with MCUXpresso SDKコチラの動画で判ります。どちらも初めてSDK:Software Development Kitを使う時には役立ちますが、具体的にSDKを使ってMCUソフトウェア開発をするにはどうすれば良いのかの説明はありません。

「導入説明だけで活用説明がない」典型例です。

MCUXpresso SDK構造

本稿はソフトウェア開発初心者が、一番知りたいハズだと思うSDKの具体的な使い方:活用の説明をします。SDK全般の使い方:導入説明に関しては、上記リンク先を参照してください。

OpenSDA接続問題

現時点では、FRDM-KE02Z40M(Cortex-M0+/40MHz、5V Robust)のOpenSDAとIDEデバッガ間が接続できない問題があり、代わりにFRDM-KL25Z(Cortex-M0+/48MHz、General Purpose)も使います。FRDM-KL25Zには、接続問題はありません。

※FRDM-KE02Z40MのOpenSDA接続問題は、内容とその解決策を次回以降投稿予定です。

SDK Version

Installed SDK Version (2020-07)
Installed SDK Version (2020-07)

投稿時点のSDK_2.x_FRDM-KE02Z40M(Version 2.7.0)とSDK_2.x_FRDM-KL25Z(Version 2.2.0)が上図です。MCUXpresso IDEへインストールされたSDK Versionが異なることには注意が必要です。

Versionが異なると、SDK提供サンプルプロジェクトやその中身が異なることがあるからです。多くの評価ボードの最新SDK Versionは2.7.0ですので、テンプレートもSDK Version 2.7.0を前提とします。

Hello_worldサンプルプロジェクトと新規作成プロジェクト

Hello_worldサンプルプロジェクト(左)と新規作成Templateプロジェクト(右)
Hello_worldサンプルプロジェクト(左)と新規作成Templateプロジェクト(右)

FRDM-KE02Z40Mのhello_worldプロジェクトが上図(左)です。CMSISやboardなど多くのフォルダがあり、その中にcソースファイルと、hヘッダファイルが混在しています。sourceフォルダ内にhello_world.cとmain関数があります。

このsourceフォルダが、ユーザの開発するc/hファイルを格納する場所で、他のboardフォルダなどは当面無視して構いません。New Projectをクリックし新たなプロジェクト(プロジェクト名:Template)を作成すると、この理由が判ります。

上図(右)が新規作成したTemplateプロジェクトです。sourceフォルダ以外は、hello_worldと同じ構造です。sourceフォルダ内のTemplate.c内に、コメント:/* TODO: inset other… */が2か所あることも判ります。この青色TODOコメントのソース位置は、ソースウインド右端の上下スライダに青で明示されています。

青色TODOコメントは、ソースコードのユーザ追記場所を示します。

最初のTODOコメントの下にユーザ追記インクルードファイルを、次のTODOコメントの下にユーザ宣言や定義を追記し、main関数内にユーザ処理を追記すればTemplateプロジェクトが完成します。

※main関数内にユーザ処理を追記するのは当然のことですので、main関数内にあるべき青色TODOコメントは、省略されています。

MCUXpresso SDK活用のMCUソフトウェア開発方法

前章までのSDK構造をまとめます。

  • ユーザが新規に開発(追記)するソース/ヘッダファイルは、全てsourceフォルダ内に配置
  • IDEが生成したsourceフォルダ>プロジェクト名.cのユーザ追記場所は、目印として青色TODOコメントがあり、上下スライダにも明示される
  • sourceフォルダ以外は、IDEがSDK Versionに応じて自動生成するライブラリフォルダ
  • ライブラリフォルダの中身は、ユーザ編集は不要

SDK付属のサンプルプロジェクトは、SDK構造に基づいてNXPが作成した周辺回路の利用例です。
※サンプルプロジェクトでは、青色TODOコメントは全て省略されています。

MCUが異なっても、同じ処理を行う場合は、sourceフォルダ内のユーザ追記処理も同じハズです。例えば、FRDM-KE02Z40MとFRDM-KL25Zのhello_worldプロジェクト>sourceフォルダ>hello_world.cは、全く同じソースコードで実現できています。

MCU差やSDK Version差は、sourceフォルダ以外のSDK構造部分で吸収されます。導入説明:Getting Started with MCUXpresso SDKの図1は、このことを図示したものです。

MCUXpresso SDK Laysers(出典:Getting Started with MCUXpresso SDK, Rev. 10_06_2019)
MCUXpresso SDK Laysers(出典:Getting Started with MCUXpresso SDK)

もちろん、旧SDK Versionで未提供なAPIが、新SDK Versionで新たに提供される場合もあります。ただ基本的なAPIは、新旧SDKで共通に提供済みです。

FRDM-KE02Z40MのSDK VersionとFRDM-KL25ZのSDK Versionは現時点で異なるため、IDEが自動生成するフォルダ数は異なります。しかし、ユーザ開発(追記)処理が、sourceフォルダ内で全て完結するSDK構造は同じです。

これが、hello_worldサンプルプロジェクトのようにFRDM-KE02Z40MとFRDM-KL25Z両方に共通で記述できるユーザ処理(Application Code)がある理由です。

SDK構造に沿ったsourceフォルダへのユーザ処理追記と、基本的API利用により、汎用的で効率的なMCUソフトウェア開発が出来ることがご理解できたと思います。

あとがき

2章で、「具体的にSDKを使ってMCUソフトウェア開発をするにはどうすれば良いのかの説明はない」と書きました。しかし、本稿で示したSDK活用説明は、ソフトウェア開発者は当然知っていること・・・だから説明がないとも言えます😅。

このように組込みMCU関連の資料は、前提とするソフトウェア知識・経験をどの読者も既に持っており、本稿記述の当たり前の活用説明は省略する(≒すっ飛ばす)傾向があります。

弊社マイコンテンプレートは、初心者~中級レベルの開発者を対象としており、提供テンプレートも本稿で示したSDK活用方法で開発します。ご購入者様が、なぜこのようなテンプレートになったのか疑問を持った時、それに答えるため、このすっ飛ばした省略部分を補う説明を本稿ではあえて加えました😌。