ARM MCU変化の背景

昨今のARM MCU事情、そして今後の方向性”という記事が、2019年11月22日TechFactoryに掲載されました。詳細は記事を参照して頂き、この中で本ブログ筆者が留意しておきたい箇所を抜粋します。その結果、ARM MCU変化の背景を理解できました。

現在のARM MCUモデル

Cortex-Mコアだけでなく、周辺回路も含めた組み合わせARM MCUモデルが、端的に整理されています。

・メインストリームは、Cortex-M4コアに周辺回路搭載
・ローパワーは、Cortex-M0+に低消費電力周辺回路搭載
・ローコストは、Cortex-M0に周辺回路を絞って搭載

例えば、STマイクロエレクトロニクスの最新STM32G0xシリーズのLPUART搭載は、ローパワーモデルに一致します。各Cortex-Mコアの特徴は、コチラの投稿の5章:Cortex-M0/M0+/M3の特徴などを参照してください。

ARM MCUの新しい方向性

2019年10月時点で記事筆者:大原雄介氏が感じた今後のARM MCU方向性が、下記4項目です。

  1. ハイエンドMCU動作周波数高速化、マルチコア化
  2. RTOS普及
  3. セキュリティ対応
  4. RISC-Vとの競合

以下、各項目で本ブログ筆者が留意しておきたい箇所を抜粋します。

1.ハイエンドMCU動作周波数高速化、マルチコア化

動作周波数高速化は、NXPのi.MX RT 1170のことで、Cortex-M7が1GHzで動作。i.MX RT1170は400 MHz動作のCortex-M4も搭載しているディアルコアMCU。

これらハイエンドMCUの狙いは、性能重視の車載MCU比べ、コスト最重視の産業機器向け高度GUIやHMI:Human Machine Interface用途。従来の簡単な操作パネルから、車載のような本格的なGUIを、現状の製造プロセスで提供するには、動作周波数の高速化やマルチコア化は必然。

2.RTOS普及

普通はベアメタル開発だが、アプリケーション要件でRTOS使用となり、ポーティング例は、Amazon FreeRTOSが多い。マルチコアMCUでは、タスク間同期や通信機能実現には、ベアメタルよりもRTOS利用の方が容易。また、クラウド接続は、RTOS利用が前提となっている。

3.セキュリティ対応

PAS:Platform Security Architectureというセキュリティ要件定義があり、これが実装済みかを認証するPSA Certifiedがある。PAS Certified取得にはTrustZoneを持つATM v8-MコアCortex-M23/33が必須ではなく、Cortex-M0やM4でも取得可能。但し、全MCUで取得するかは未定で、代表的なMCUのみになる可能性あり。

4.RISC-Vとの競合

ARM CMSISからずれるCustom Instruction容認の狙いは、競合するRISC-Vコアへの対抗措置。RISC-V採用製品は、中国では既に大量にあり、2021年あたりに日本でもARMかRISC-Vかの検討が発生するかも?

ARM MCU変化背景

本ブログ対象の産業機器向けMCUの1GHz動作や、ディアルコアMCUの狙いは、ADAS(先進運転支援システム)が引っ張る車載MCU+NVIDIA社などのグラフィックボードで実現しつつある派手なGUIを、10ドル以下のBOM:Bill Of Matrixで実現するのが目的のようです。また、産業機器向のMCUのAIへの対応も気になる点です。これにら向け、各種ツールなども各ベンダから提供されつつあります。

ハイエンドMCU開発でRTOS利用が一般的になれば、下位MCUへもRTOSが利用される場面は多くなると思います。タクス分離したRTOSソフトウェア開発は、タスク自体の開発はベアメタルに比べ簡単で、移植性や再利用性も高いからです。ベアメタル開発は、RAMが少ない低コストMCUのみになるかもしれません。

RTOS MCU開発も、Windowsアプリケーション開発のようにOS知識が(無く!?)少なくても可能になるかもしれません。

MCUベンダのセキュリティ対応は、まだ明確な方針が無さそうです。RTOSと同様、IoTアプリケーション要件がポイントになるでしょう。総務省による2020年4月以降IoT機器アップデート機能義務化予定などもその要件の1つになる可能性があります。

Custom Instructionは、コチラの投稿の5章でベンダ独自のカスタム命令追加の動きとして簡単に紹介しましたが、その理由は不明でした。これが、競合RISC-Vコアへの対抗策とは、記事で初めて知りました。

本ブログ記事範囲を超えた、広い視野でのMCU記事は貴重です。

来年開発予定のベアメタルCortex-M4テンプレートへ、RTOSの同期や通信機能を簡易実装できれば、より役立ち、かつRTOS普及へも対抗できるかもしれないと考えています。クラウド接続IoT MCUは、Amazon FreeRTOSやMbed OS実装かつ専用ライブラリ利用が前提なのは、ひしひしと感じています。

MCUプロトタイプ開発のEMS対策とWDT

ノイズや静電気によるMCU誤動作に関する興味深い記事がEDN Japanに連載されました。

どのノイズ対策が最も効果的か? EMS対策を比較【準備編】、2019年10月30日
最も効果的なノイズ対策判明!  EMS対策を比較【実験編】、2019年11月29日

EMS:(ElectroMagnetic Susceptibility:電磁耐性)とは、ノイズが多い環境でも製品が正常に動作する能力です。

MCUプロトタイプ開発時にも利用すべきEMS対策が掲載されていますので、本稿でまとめます。また、ノイズや静電気によるMCU誤動作を防ぐ手段としてWDT:Watch Dog Timerも説明します。

実験方法と評価結果

記事は、インパルスノイズシュミレータで生成したノイズを、EMS対策有り/無しのMCU実験ボードに加え、LED点滅動作の異常を目視確認し、その時点のノイズレベルでEMS対策効果を評価します。

評価結果が、11月29日記事の図5に示されています。

結果から、費用対効果が最も高いEMS対策は、MCU実験ボードの入力線をなるべく短く撚線にすることです。EMS対策用のコンデンサやチョークコイルは、仕様やパーツ選定で効果が左右されると注意しています。

MCUプロトタイプ開発時のお勧めEMS対策

MCUプロトタイプ開発は、ベンダ提供のMCU評価ボードに、各種センサ・SWなどの入力、LCD・LEDなどの出力を追加し、制御ソフトウェアを開発します。入出力の追加は、Arduinoなどのコネクタ経由と配線の場合があります。言わばバラック建て評価システムなので、ノイズや静電気に対して敏感です。

このMCUプロトタイプ開発時のお勧めEMS対策が下記です。

1.配線で接続する場合は、特に入力信号/GNDのペア線を、手でねじり撚線化(Twisted pair)だけで高いEMS効果があります。

身近な例はLANケーブルで、色付き信号線と白色GNDの4組Twisted pairが束ねられています。このTwisted pairのおかげで、様々な外来ノイズを防ぎLANの信号伝達ができる訳です。

信号とGNDの4組Twisted pairを束ねノイズ対策をするLANケーブル
信号とGNDの4組Twisted pairを束ねノイズ対策をするLANケーブル

2.センサからのアナログ入力信号には、ソフトウェアによる平均化でノイズ対策ができます。

アナログ信号には、ノイズが含まれています。MCU内蔵ADCでアナログ信号をデジタル化、複数回のADC平均値を計算すればノイズ成分はキャンセルできます。平均回数やADC周期を検討する時、入力アナログ信号が撚線と平行線では、2倍以上(図5の2.54倍より)のノイズ差が生じるので重要なファクターです。従って、撚線で検討しましょう。
平均回数やADC周期は、パラメタ設定できるソフトウェア作りがお勧めです。

3.SWからの入力には、チャタリング対策が必須です。数ミリ秒周期でSW入力をスキャンし、複数回の入力一致でSW値とするなどをお勧めします。
※弊社販売中のMCUテンプレートには、上記ADCとSWのEMS対策を組込み済みです。

4.EMS対策のコンデンサやチョークコイルなどの受動部品パーツ選定には、ベンダ評価ボードの部品表(BOM:Bill Of Matrix)が役立ちます。BOMには、動作実績と信頼性がある部品メーカー名、型番、仕様が記載されています。

ベンダMCU評価ボードは、開発ノウハウ満載でMCUハードウェア開発の手本(=ソフトウェアで言えばサンプルコード)です。

特に、新発売MCUをプロトタイプ開発に使う場合や、MCU電源入力ピンとコンデンサの物理配置は、BOM利用に加え、部品配置やパターン設計も、MCU評価ボードを参考書として活用することをお勧めします。
※PCB設計に役立つ評価ボードデザイン資料は、ベンダサイトに公開されています。

MCU誤動作防止の最終手段WDT

EMS対策は、誤動作の予防対策です。EMS対策をしても残念ながら発生するノイズや静電気によるMCU誤動作は、システムレベルで防ぐ必要があります。その手段が、MCU内蔵WDTです。

WDTは、ソフトウェアで起動とリセットのみが可能な、いわば時限爆弾です。WDTを一旦起動すると、ソフトウェアで定期的にリセットしない限りハードウェアがシステムリセットを発生します。従って、ソフトウェアも再起動になります。

時限爆弾を爆発(=システムリセット)させないためには、ソフトウェアは、WDTをリセットし続ける必要があります。つまり、定期的なWDTリセットが、ソフトウェアの正常動作状態なのです。

ノイズや静電気でMCU動作停止、または処理位置が異常になった時は、この定期WDTリセットが無くなるため、時限爆弾が爆発、少なくとも異常状態継続からは復帰できます。

このようにWDTはMCU誤動作を防ぐ最後の安全対策です。重要機能ですので、プロトタイプ開発でもWDTを実装し、動作確認も行いましょう。

※デバッグ中でもWDTは動作します。デバッグ時にWDT起動を止めるのを忘れると、ブレークポイントで停止後、システムリセットが発生するのでデバッグになりません。注意しましょう!

SW4STM32アプリケーションのSTM32CubeIDE移設

SW4STM32で開発した2017年9月発売STM32Fxテンプレートと2019年6月発売STM32G0xテンプレートを、STM32MCU最新統合開発環境STM32CubeIDE v1.1.0へ移設しました。

移設は成功し、STマイクロエレクトロニクス最新統合開発環境:STM32CubeIDE v1.1.0(以下、CubeIDE)、STM32CubeMX v5.4.0(以下、CubeMX)、最新ファームウェアと弊社テンプレートを使って、効率的で最新のSTM32MCUプロトタイプ開発、アプリケーション開発ができます。

本稿は、STM32CubeIDE v1.1.0更新と文字化け対策投稿(その1)、(その2)のその3に相当します。説明が重複する箇所は、リンク先を参照してください。

移設成功結果

G0AdcTemplateのSTM32CubeIDE移設成功結果
G0AdcTemplateのSTM32CubeIDE移設成功結果

STM32Fxテンプレートは「ひと手間」、STM32G0xテンプレートは「そのまま」で最新統合開発環境へ移設でき、評価ボードにてテンプレート動作を確認しました。G0AdcTemplateのCubeIDE移設後と評価ボード動作例です。

既にSTM32Fx/G0xテンプレートご購入者様は、本稿の方法で最新STマイクロエレクトロニクス開発環境へ乗換えることができます。

※現状のCubeMX v5.4.0でコード生成後、CubeIDE v1.1.0の日本語コメントは文字化けしますので注意してください(詳細は、投稿その2参照)。

最新開発環境ファームウェアとアプリケーション開発時ファームウェア

最新開発環境ファームウェアとテンプレート開発時ファームウェア
最新開発環境ファームウェアとテンプレート開発時ファームウェア

投稿その2で示したように、MCU開発ソフトウェア(=アプリケーション)に最も影響を与えるのは、ファームウェア更新です。

STM32FxテンプレートのF0用ファームウェアFW_F0は、開発当時のv1.8.0からv1.11.0へ、F1用ファームウェアはv1.4.0からv1.8.0へ、G0用ファームウェアFW_G0はv1.2.0からv1.3.0へそれぞれ更新されています。
※STM32G4テンプレートは、これから開発着手しますので最新のv.1.1.0のままです。

次章3から5章までを使って、STM32F1テンプレート:F1BaseboardTemplateを例に、当時の開発環境から最新開発環境への移設作業、ファームウェア変更、トラブルシューティングを「詳細に説明」します。但し、結果として行う処理は、6章まとめに示す簡単なものです。途中の章は読み飛ばしても構いません。

開発済みMCUアプリケーションを暫くたってから更新、または本稿のようにIDE自体が変わり最新開発環境へ移設することはよくあります。F1BaseboardTemplateをお持ちでない方も、(手前みそですが)次章から5章の内容は参考になると思います。

ファームウェア更新でコンパイルエラー発生:3章

先ず、ファームウェア起因のコンパイルエラーが発生するまでを示します。

1.SW4STM32で開発したF1BaseboardTemplateプロジェクトをCubeIDEへインポートします(インポート方法は、投稿その1-3章参照)。インポートソースコードの日本語コメントに文字化けが発生しますので、その1で示したShift-JISからUTF-8へのエンコード変換で解決します。

2.インポート済みのCubeMXプロジェクトファイルを、CubeIDEプラグイン版CubeMXで開き、Project Managerタブをクリックし、Toolchain/IDEがSTM32CubeIDEであることを確認します。インポートIDE変換が成功していれば、SW4STM32から自動的にSTM32CubeIDEへ変わっているハズです。

SW4STM32プロジェクトインポート後、プラグイン版STM32CubeMXで開いたプロジェクトファイル
SW4STM32プロジェクトインポート後、プラグイン版STM32CubeMXで開いたプロジェクトファイル

ファームウェアは、最新版STM32Cube FW_F1 V1.8.0になっています。そのままProject>Generate Codeをクリックし、コード生成を実行します。

3.CubeIDEへ戻ると、(デフォルトの自動コンパイル設定だと)Lcd.cなど数か所に赤下線のコンパイルエラーが発生します。

ファームウェア起因のコンパイルエラー(赤下線)
ファームウェア起因のコンパイルエラー(赤下線)

例えば、L236のLCD_EN_Pinは、CubeMXでGPIO_PIN_8をUser Label付けしたものです。LCD_EN_Pinへカーソルを持っていき、F3をクリックすると、定義ファイルmain.hのL103へ飛び、User Label付けは問題ないことが判ります。この段階では、コンパイルエラー原因は不明です。

4.コンパイルエラーがファームウェア起因かを確認するため、ファームウェアだけをFW_F1 V1.8.0からF1BaseboardTemplate 開発当時のFW_F1 V1.4.0へ戻します。但し、CubeIDE「プラグイン版CubeMX」は、ファームウェアを旧版へ戻す機能がありません。そこで、「スタンドアロン版CubeMX」を使ってファームウェアをFW_F1 V1.4.0へ戻し、再度コード生成を行うと、コンパイルエラーは発生しません。
※スタンドアロン版CubeMXでファームウェアを元の版数へ戻す方法は、4章で説明します。

以上の作業で、コンパイルエラー原因は、ファームウェア起因であることが判りました。

STM32CubeMXコード生成ファームウェア変更方法:4章

トラブルシューティングの前に、CubeMXでコード生成ファームウェア版数を変える方法を示します。CubeMXは、旧版ファームウェアをRepositoryフォルダへ自動保存し、いつでも旧版へ戻せる準備をしています。

1.スタンドアロン版CubeMXのProject Managerクリックで表示されるダイアログ一番下のUse Default Firmware Locationの☑を外し、BrowseクリックでRepositoryフォルダ内の旧版ファームウェア:STM32Cube_FW_V1.4.0を選択します。

スタンドアロン版STM32CubeMXでファームウェア版数を変える方法
スタンドアロン版STM32CubeMXでファームウェア版数を変える方法

2.そのままCubeMXでコード生成を実行すると、ファームウェア版数のみを変えたソースコードが生成されます。

※CubeIDEプラグイン版CubeMX(2つ前の図)は、Use Default Firmware Location自体有りません。つまり、最新ファームウェアでのみコード生成が可能です。
※CubeMXのGenerate Reportは、コード生成時の各種パラメタをPDF形式で出力する優れた機能です。しかし、肝心のコード生成ファームウェア版数が現状では出力されません。PDF出力へ手動で使用ファームウェア版数を追記することをお勧めします。

トラブルシューティング:5章

3章コンパイルエラー発生後、つまり最新ファームウェアFW_F1 V1.8.0でのコード生成後からトラブルシューティングします。

1.CubeIDEのエラーメッセージは、Symbol ‘LCD_EN_Pin’ could not be resolvedです。main.hで定義済みなので、なぜresolveできないのか不可解です。

2.そこで、Lcd.cの#include関連を見ると、#include “UserDefine.h”はあります。
※弊社テンプレートは、UserDefine.hでツール生成以外の全てのユーザ追加定義を記述し、全ソースファイルへincludeする方式を用いています。
※一方、CubeIDEは、CubeMXで生成するmain.cソースファイル1つへ、全ての制御を記述する方式を用いています。小規模なサンプルプロジェクトなどでは、解り易い方法です。
※但し、規模が大きくなると、ソースファイルを機能毎に分離し、ファイル単位の流用性やメンテナンス性を上げたくなり、弊社は、このファイル分離方法をテンプレートに採用中です。

3.UserDefine.hに、#include “main.h”の1行を追加します。

UserDefine.hへ#include "main.h" 追加
UserDefine.hへ#include “main.h” 追加

4.Clear Project後、Build Projectでコンパイルエラーは解消し、コンパイル成功します。評価ボード:STM32F103RBでF1BaseboardTemplate の最新開発環境での正常動作確認ができます。

最新ファームウェアは、全てのユーザ追加ソースファイルに、#include “main.h”が必須なことがトラブル原因でした。

最新開発環境への移設まとめ:6章

2017年9月にSW4STM32で開発完了したSTM32Fxテンプレートは、UserDefine.hに、#include “main.h”追記で、2019年11月STM32MCU最新開発環境:STM32CubeIDE v1.1.0、STM32CubeMX v5.4.0、STM32Cube FW_F1 V1.8.0/FW_F0 V1.11.0へ移設できます。

2019年6月にSW4STM32で開発完了したSTM32G0xテンプレートは、なにもせずに、2019年11月最新開発環境:STM32CubeIDE v1.1.0、STM32CubeMX v5.4.0、STM32Cube FW_G0 V1.3.0へ移設できます。
※STM32G0xテンプレートは、初めからUserDefine.hに、#include main.hが追記済みです。

Build Analyzer

SW4STM32からCubeIDEへ移設後、最初に目に付くIDE画面の差分は、ビルド成功時、右下表示のBuild Analyzerだと思います。

STM32CubeIDEのBuild Analyzer
STM32CubeIDEのBuild Analyzer

最初の図で示したG0AdcTemplate移設後のCubeIDE Build Analyzerを示します。RAM、FLASH使用率が一目で解ります。その他のIDE画面や操作は、旧SW4STM32と殆ど同じです。

Serial Console

CubeIDEは、Serial Console画面を持っています。従来環境では別途必要であったVirtual COM Port (VCP)用のTera Termなどのツールが不要となり、IDEだけでVCP入出力が確認できます。高まるVCP重要性が最新IDEへ反映されたと思います(関連投稿:STLINK-V3の4章)。

但し、バックグラウンドが、Tera Termの黒からSerial Console画面では白になったため、テンプレートで用いたVCP出力文字色を、デフォルトの白から黒へ変更した方が見易いです。この色変更後のSerial Consoleが下図右側です。

TeraTerm画面とSTM32CubeIDEのSerial Console画面
TeraTerm画面とSTM32CubeIDEのSerial Console画面

最新開発環境移設の課題と対策、テンプレート改版予定

現状のCubeIDE v1.1.0は、コード生成後、日本語コメントに文字化けが発生します。また、エディタタブ幅が2のまま変更できません。これら以外にも細かな不具合があります。このままでは、筆者には使いにくいIDEです。一方、Build AnalyzerやSerial Consoleは、とても役立ちます。
CubeIDEプラグイン版CubeMX v5.4.0は、Repository旧ファームウェアへの変更機能が無く、最新ファームウェアのみ利用可能です。

これら移設課題に対して、投稿その1から本稿で対策を示しました。

現状は、従来SW4STM32からCubeIDEへの「IDE移設過渡期」です。筆者は暫く両IDEを併用するつもりです。そして、新環境の使いにくい箇所が解消された時点でCubeIDEへ完全移設し、同時に汎用MCU第2位、シェア20%超のSTM32MCU向けテンプレートとしてSTM32FxテンプレートとSTM32G0xテンプレートを、本稿変更などを加え最新開発環境対応へ全面改版する予定です。

既に弊社テンプレートをお持ちの方や全面改版を待てない方は、まとめ6章の方法で移設可能です。但し、投稿その2で示した多くのリスクがありますのでお勧めはしません、自己責任で行ってください。

なお、新開発のSTM32G4テンプレートは、初めから最新CubeIDE、CubeMXで開発着手します。

*  *  *

STマイクロエレクトロニクスのSTM32CubeIDE v1.1.0改版により、旧SW4STM32開発アプリケーションを新環境へ移設する連続3回の投稿、いかがでしたでしょうか? 詳細説明がリンク先となり、筆者にしては長文投稿でしたので、解りづらかったかもしれません😌。

IoTによりMCU開発環境は、より急ピッチで変わります。最新デバイスと最新API利用が、その時点で最も効率的で優れたMCUアプリケーション開発手段です。環境急変にも柔軟対応できる開発者が求められます。

最新開発環境に上記のような課題が多少あっても、従来SW4STM32開発済みアプリケーションの最新STM32CubeIDE移設は、6章で示した1行追記のみで成功しました。

但し、顧客や管理者の方には、開発環境更新、移設の危うさや開発者の心理的負担、何よりもそれらへの対応時間は、あまり表に出てこない部分、また移設してみて初めて判る部分で理解されづらいものです。

本稿がMCUアプリケーション顧客、管理者、開発者の方々のご参考になれば幸いです。

P.S:2019年11月12日、2か月遅れでWindows 10 1909配布が始まりました。年2回のWindows 10大型更新トラブル話は多数あります。MCU開発環境は、年2回どころか度々更新されます。開発者は、その度にトラブル対処をしているのです👍。ちなみに本稿は、全てWindows 10 1903での結果です。

汎用MCUシェア20%超、第2位はSTM32MCU

シェア2位に躍り出たSTの汎用マイコン事業戦略”が、EE Times Japanに掲載されました。本稿は、この記事を要約し、記事記載のMCU 4ニーズの1つ、セキュリティ強化マイコン:STM32H7の暗号鍵利用によるソフトウェア更新方法(ST公式ブログ10月8日投稿)を示します。

STM32MCUは、汎用MCU世界市場シェア20%超の第2位へ

2019年9月、東京都内でSTマイクロエレクトロニクス(以下STM)による記者会見が開かれ、そのレポートがEE Times Japan記事内容です。ARM Cortex-Mコア採用のSTM32MCUが、2018年には汎用MCU世界市場シェア20%を超え第2位になった要因分析、今後のSTM汎用MCU事業方針が会見内容です。

汎用STM32MCUの世界シェア推移(出典:STM)
汎用STM32MCUの世界シェア推移(出典:STM)

車載用を除くMCUが汎用MCUです。本ブログも、この汎用MCUを対象としており、上図推移は重要なデータです。

以下、マイクロコントローラ&デジタルICグループマイクロコントローラ製品事業部グローバル・マーケティング・ディレクタ)Daniel Colonna氏の記者会見談話を中心に記事要約を示します。

STM32MCUシェア続伸要因

STM競合他社は買収や統合で成長しているが、STMは独自でシェア2位を実現。要因は、民生機器だけに集中せず、産業機器などのインダストリアル分野(=マスマーケット)に主眼を置き製品開発を行ってきたこと。マスマーケットターゲット事業方針は今後も変えず、シェア30%を目指す。

インダストリアル分野の4MCUニーズとSTM対応

演算性能の強化(STM32MP1/STM32H7)、より高度なAI実現(STM32CubeMXのAI機能拡張パッケージ)、多様な接続技術への対応(STM32WB)、セキュリティ強化(STM32Trust)の4点がインダストリアル分野MCUのニーズとそのSTMの対応(カッコ内)。

インダストリアル分野汎用MCUの4ニーズ(出典:STM)
インダストリアル分野汎用MCUの4ニーズ(出典:STM)

より広範囲なマスマーケット獲得策

モノクロからカラーLEDへ置換え(TouchGFX)、8ビットなどから32ビットMCUへ置換え(STM32G0シリーズ)で、より広範囲マスマーケットでのSTM32MCU浸透を図る。

以上が記者会見記事の要約です。

汎用MCU第2位となったSTM32MCU評価ボードは、入手性が良く安価です。コードサイズ制限なしの無償開発環境(STM32CubeIDE /SW4STM32/STM32CubeMX)も使い勝手に優れています。また、厳選された日本語技術資料も活用でき、初級/中級レベルのMCU開発者に最適だと筆者も思います。

この特徴を持つSTM32MCUに対して、弊社はSTM32G0x専用テンプレートSTM32Fx汎用テンプレートを販売中です。今後は、STM32G4テンプレートも開発を予定しています。

これまでNon ARM汎用MCU1位であったRunesasも、ARMコア他社対応か(?)ついに2019年10月8日、Cortex-MコアMCU販売を開始しました。これについては、別途投稿します。

セキュリティ強化STM32H7のソフトウェア更新

インダストリアル分野4MCUニーズのうち、演算性能とセキュリティ強化を満たすのが、STM32H7(Cortex-M7/480MHz、Cortex-M4/240MHzのデュアルコア)です。筆者個人は、MCUというよりむしろMPUに属す気がします。STMも、STM32MCU(下記右)に対して、STM32マイクロプロセッサ(下記左)と区別しています。但し、名称は違っても、そこに用いる技術は同一のはずです。

STM32MCUとSTM32マイクロプロセッサ(出典:STM)
STM32MCUとSTM32マイクロプロセッサ(出典:STM)

丁度最初に示した10月8日のSTM公式ブログに、セキュリティ強化STM32H7のファームウェア書換え手順図を見つけました。関連投稿:総務省:2020年4月以降IoT機器アップデート機能義務化予定の2章で示した3種サイバー攻撃へのウイルス感染対策です。

STM32H7ソフトウェア更新時のSFI、HSM(出典:STM)
STM32H7ソフトウェア更新時のSFI、HSM(出典:STM)

ハードウェア暗号化エンジンを持つSTM32H7は、図右上のSFI:Secure Firmware Installで暗号化、STM32G0やSTM32G4等は、図右下のSMI:Secure Module Installで暗号化し、更新ソフトウェアを準備します。どちらも、セキュリティ認証情報を含むHSM:ST Hardware Secure Module smart cardで鍵を受渡し復号化、ソフトウェア書換えを行います。

我々が開発するMCUソフトウェアの更新頻度は、PCに比べれば低いはずです。しかし、その頻度は、ウイルスの数に比例しますので、サイバー攻撃が増えればその度にこの書換えで対応することを考えると憂鬱になります。
※書換え失敗やワクチン投入による通常処理への配慮も必要で、Windows 10のようにユーザ任せの無責任な対応はMCUソフトウェアでは論外なため、開発者負担は増すばかりです😫。

総務省:2020年4月以降IoT機器アップデート機能義務化予定

総務省は、電気通信事業法を改正し、2020年4月以降「IoT機器アップデート機能義務化を予定」しているそうです(日経ビジネス2019年9月6日有料会員限定記事、“モノのインターネットに死角あり 狙われるIoT機器”より)。

本稿は、普通のMCU開発者が知るべき最低限のIoT MCUセキュリティ対策をまとめてみたいと思います。

IoT MCUセキュリティ

記事には、“歴史の浅いIoT機器は、開発者とユーザ双方にセキュリティ意識が欠如している“、”開発者は、便利で魅力的な機能搭載を優先し、セキュリティ配慮は2の次”とあります。確かにそうゆう見方はあります。

しかし、サイバー攻撃やセキュリティ関連ニュースが溢れる昨今、開発者/ユーザともに無関心ではないハズです。むしろ、現状のMCU能力では、セキィリティ強化が無理な側面を十分知った上で妥協している(目を瞑っている)のが事実だと思います。

セキィリティ関連記事は、その性質上、英語の省略用語を多用し、漏れがない細かい説明が多いので、全体を把握したい普通のMCU開発者には、解りにくいと筆者は考えています。

そこで、全体把握ができるMCUセキュリティのまとめ作成にトライしたのが次章です。

サイバー攻撃対策

MCUセキュリティ機能は、サイバー攻撃を防ぐための対策です。サイバー攻撃には、以下3種類があります。

  1. ウイルス感染
  2. 通信傍受
  3. 通信データ改ざん

2)通信傍受対策には、暗号化が効果的です。暗号化処理には、データをやり取りする相手との間に鍵が必要で、共通鍵と公開鍵の2方式があります。共通鍵は、処理負荷が公開鍵に比べ小さく、公開鍵は、鍵を公開する分、処理負荷が大きくなる特徴があります。

3)通信データ改ざん検出には、ハッシュ関数(=要約関数)を使います。ハッシュ関数に送信データを与えて得た値をハッシュ(=要約値)と言います。送信データにハッシュを追加し、受信側でハッシュ再計算、送受ハッシュ一致時がデータ改ざん無しと判定します。

2)と3)は、データ通信が発生するIoT MCUセキィリティ機能です。暗号化、ハッシュ関数は、新サイバー攻撃に対し、次々に新しい防御方式が提案される鉾と盾の関係です。MCU外付けセキュリティデバイス(例えばNXPのEdgeLock SE050など)によるハードウエア策もあります。

PCやスマホのようなウイルス対策ソフト導入が困難なMCUでは、1)のウイルス感染対策に、MCUソフトウェアのアップデートで対応します。総務省は、IoT機器にアップデート機能とID、パスワード変更を促す機能を義務付ける予定です。
※開発者自身で溢れるウイルス状況を常時監視し、ソフトウェア対応するかは不明です。

従来のMCUソフトウェアアップデートは、UART経由やIDE接続で行ってきました。しかし、ネットワーク経由(OTA)やアクセス保護のしっかりしたソフトウェア書換えなどを、1)のアップデートは想定しています。

以上、ごく簡単ですが、MCUセキュリティ対策をまとめました。

総務省の「IoT機器アップデート機能義務化」が、具体的にどのようになるかは不明です。ただ、無線機器の技適規制などを考えると、技術ハードルは、かなりの高さになることが予想できます。

サイバー攻撃対策のIoT MCUセキュリティ
サイバー攻撃対策のIoT MCUセキュリティ

ディアルコアや超高性能汎用MCUの背景

簡単にまとめたMCUセキィリティ対策を、IoT機器へ実装するのは、簡単ではありません。

実現アプローチとしては2つあります。

1つ目は、ディアルコアMCU(例えばNXPのLPC54114、関連投稿:ARM Cortex-M4とM0+アプリケーションコード互換)や、超高性能な汎用MCU(例えばSTMのSTM32G4、関連投稿:STM32G0x専用テンプレート発売1章)が各ベンダから発売中です。

これら新世代MCU発売の背景は、従来MCU処理に加え、法制化の可能性もあるセキュリティ処理実装には、MCU処理能力向上が必須なためです。

ワールドワイドにIoT機器は繋がります。日本国内に限った話ではなく、地球規模のIoT MCUセキュリティ実装に対し、ディアルコアや超高性能汎用MCUなどの新世代MCUでIoT機器を実現するアプローチです。

2つ目が、セキュリティ機能が実装し易いMPU(例えばRaspberry Pi 4など)と、各種センサー処理が得意なMCU(旧世代MCUでも可能)のハイブリッド構成でIoT機器を実現するアプローチです。

2018年IoTトレンドと2019年予想記事をEdge MCU開発者観点で読む

セキュリティ、産業IoT、通信事業者との連携、ウェアラブルデバイスという4テーマで2018年IoTドレンドとその予想結果、2019年のそれらを予想した記事がTechTarget Japanに掲載されています。

本稿はこの記事内容を、マイコン:MCU、特に本ブログ対象Edge MCU開発者の観点から読みたいと思います。

IoTサービス観点からの顧客目線記事

一言でIoTと言っても様々な観点があります。本ブログ読者は、殆どがMCU開発者なので、顧客がどのようなIoT開発を要求し、それに対して自社と顧客双方のビジネス成功をもたらす「ソリューション提供」が最も気にする点だと思います。

一方、要求を出す側の顧客は、記事記載の「IoTサービス」に注意を払います。そのサービス実現手段として、ベンダー動向やMCU開発者自身の意見を聞いてくるかもしれません。そんな時、日頃の技術動向把握結果を具体的に顧客に提示できれば、顧客案件獲得に有効なのは間違いありません。

顧客と開発者のIoT捉え方は異なる。
顧客はサービス観点でIoTを捉える。開発者はソリューション提供でIoTを捉える。

そこで、記事の4テーマ毎にEdge MCU開発者の観点、特にEdge MCU最新動向を関連投稿とともに示します。

セキュリティ

Edge MCUセキュリティ強化策として、昨年頃からMCUにセキュリティ機能を内蔵するか、または、MCU外付けに専用セキュリティチップを追加する動きが出始めました。
要するに、IoTではEdge MCUでデジタルデータ暗号化機能実装が必須になりつつあるのです。
関連投稿:守備範囲が広いSTM32G0のアクセス・ライン製品
関連投稿:IoTマイコンとセキュリティの色々なセキュリティ強化方法

産業IoT

産業機器データ収集と分析の重要性は顧客に認識されていますが、IoT導入は記事にあるように初期段階です。Edge MCUも、産業用にも流用できるメリットを示すIoT MCU新製品もありますが、車載用の新製品が多い状況です。
関連投稿:NXP新汎用MCU S32K1

通信事業者との連携

国により大きく異なる通信事業者とそのサービスや連帯を一言で表すことは困難です。ただし、日本国内でのIoTフィールドテストは、今一つ盛り上がりに欠ける感じが個人的にはします。やはり、黒船(海外発のIoT通信デファクトスタンダードとその普及)が必要かな?と思います。

ウェアラブルデバイス

Edge MCUに近距離無線通信(NFC)機能を搭載したり、AI機能(機械学習)を搭載しHuman Activity Recognition:人間活動認識を実現したりする新しいEdge MCI製品が登場しています。
関連投稿:NFCを使うLPC8N04のOTA
関連投稿:MCUのAI機能搭載

2019年2月18日速報:タイムリーなことに、Motor Fan Techという自動車関連の情報誌で、次世代ARM v8.1-Mアークテクチャが、業界最小の組み込みデバイス向けに、強力な信号処理を実現が掲載ました。次世代Cortex-Mプロセサは、機械学習(ML)パフォーマンスを最大15倍、信号処理パフォーマンスを最大5倍向上させるそうです。

IoTサービス例を顧客に示せるEdge MCUテンプレート構想

2018年3月の弊社LPC8xxテンプレートV2.5改版以降、新開発のマイコンテンプレートはありません。その理由は、記事にもあるIoTの急速な普及・変化が無かったことも1つの理由です。

これまでの弊社マイコンテンプレートの目的は、「開発者個人が低価格でMCU開発を習得すること」でした。このため、各ベンダーの汎用MCUとBaseboardを使い、そのMCU基本的動作開発までを1つの到達点としてきました。

2018年後半から新しいIoTトレンドに沿った新Edge MCUが各ベンダーから発売済みです。そこで、マイコンテンプレートも、顧客目線やその観点を取り入れた到達点へステップアップしようと思います。

顧客は単にMCUが動作するだけでなく、何かしらのサービス提供をしているIoT MCUを見たいでしょう。この「IoTサービス例を、開発者個人が、低価格かつ簡単に示せるマイコンテンプレート」が新しいEdge MCUテンプレートの構想です。

IoTサービス例を示すEdge MCUテンプレート
IoTサービス例を示すEdge MCUテンプレート

この場合の顧客とは、ビジネス顧客に限らず、開発者の上司や同僚、さらに、開発者自身でも良いと思います。開発結果がIoTサービスに関連していれば、誰でもその効果が判り易いハズです。

期待されているIoTサービスならば、開発者もMCU開発がより楽しく、その習得や応用サービスへの発展もより具体的かつアグレッシブになると思います。と言っても、クラウドを含めたIoTサービスを開発・提供するのは、個人レベルでは無理です。
従って、ほんの触り、一部分のIoTサービスになります。それでも、見る側からは、開発内容が解りやすくなります。

もはやMCUが動作するのは、当たり前です。その上で、+αとしてEdge MCUがIoTで出来るサービス例を示し、さらに、Edge MCU習得も効率的にできるのがEdge MCUテンプレートです。

今後開発するEdge MCUテンプレートは、IoTサービス指向の結果、これまでマイコンテンプレートが持っていた汎用性が少し犠牲になる可能性もあります。ただ、従来の汎用MCUの意味・位置づけもIoTで変わりつつあります。
関連投稿:RL78ファミリから解る汎用MCUの変遷
関連投稿:STM新汎用MCU STM32G0

MCU基本動作に加え、何らかのIoTサービス提供例を示す工夫をEdge MCUテンプレートへ加えるつもりです。

Arduinoコネクタを持つMCU評価ボードが多い理由

ArduinoコネクタコンパチブルMCU評価ボード例
ArduinoコネクタコンパチブルMCU評価ボード例

本稿は、Arduinoコネクタを持つMCU評価ボードが多い理由を、少し丁寧に説明します。上図は、Arduinoコネクタレベルでコンパチブル(=置換え可能)なSTマイクロエレクトロニクス、サイプレス・セミコンダクター、NXPセミコンダクターズ各社のMCU評価ボードを示しています。

Arduinoコネクタ

イタリア発で「オープンソースハードウェア概念」の発端となったArduino(アルデュイーノ、もしくはアルドゥイーノ)。その制御系とArduinoシールドと呼ばれる被制御系ボード間の物理インタフェースがArduinoコネクタ(右下)です。
I2C(SCL/SDA)/ADEF(アナログ基準電位)/DIGITAL(PWM兼用)/ IOREF(IO基準電位)/RESET/POWER/ANALOG INのピン配置が決まっています。

Arduinoコネクタのおかげで、制御系とシールドに分離して開発でき、それぞれをArduinoコネクタで接続すれば、Arduinoボードシステムが完成します。

Wikipediaによると、2013年には制御系とシールド、公式非公式合わせて140万台ものArduinoボードが販売されていて、安価にプロトタイプシステム構築が可能となっています。

Arduinoコネクタを持つMCU評価ボードが多い理由その1:市販安価シールド資産が使える

既にこれだけの数のシールドが販売中ですので、MCU開発にそのまま流用や小変更で使えるシールドもあります。

Arduinoコネクタを持つMCU評価ボードが多い理由その1が、この既製品で安価なシールド資産が使えるからです。使用部品選定やアートワークパターンなども十分に練られた既製品が入手できるのです。しかもこれらは殆どの場合、オープンソースハードウェアなので詳細が開示済みです。

シールドは縦方向に段重ね(スタッカブル)できますので、複数段を重ね機能増加も可能です。

ハードウエア基板を0から動作するレベルにまでもっていくのは、時間もコストも掛かります。市販シールドを利用したプロトタイプ開発が可能なことが、MCU評価ボードにArduinoコネクタを持つ理由です。

Arduinoコネクタを持つMCU評価ボードが多い理由その2:MCU性能評価に使える

シールドを使ってハードウエアが用意されれば、後はソフトウェアです。

図のようにシールドは、複数ベンダーのMCU評価ボードに使えますし、同一ベンダー内の異なるMCUの性能評価にも使えます。

例えば、最も重要な処理に必要なシールドと、その制御ソフトウェアのみをプロトタイプ開発し、MCU性能が重要処理に十分か否かの評価を行います。この評価結果で、コストパフォーマンスに優れたMCU選択が可能となります。

場合によっては、ピンコンパチブル性を利用して他ベンダーのMCU選択も可能です。Cortex-M系MCUはどれも似通ってはいますが、例えば、サイプレスのPSoCシリーズはアナログブロントエンド機能内蔵など、各ベンダーでそれぞれ特徴があります。これらMCU特徴を活かした開発で競合他社との差別化もできます。

MCU評価ボードプロトタイプ開発スピードを上げるマイコンテンプレート

その1もその2もポイントは、プロトタイプ開発のスピードです。効率的に、しかも精度良くプロトタイプ構築し評価するには、MCU製品で使用頻度が高いLCD出力やアナログポテンショメータ入力、LED出力などの単機能シールドを複数使うよりも、これら機能実装済みの汎用Baseboardを使う方が、より低コストにプロトタイプハードウエアの構築ができます。

関連投稿:CY8CKIT-042とCY8CKIT-042-BLEへの機能追加、サンプルソフトが直に試せるマイコン開発環境の章

弊社マイコンテンプレートは、Baseboard動作に必要なソフトウェアをBaseboardテンプレートで提供済みです。開発要件に必要なシールドを見つけ、シールド単体でMCU性能評価を行い、さらにBaseboard実装機能を付加すれば、MCU製品完成形により近いプロトタイプシステムでの評価も可能です。

MCUプロトタイプ開発をスピードアップさせるマイコンテンプレート
MCUプロトタイプ開発をスピードアップさせるマイコンテンプレート

マイコンテンプレートは、MCU評価ボードプロトタイプ開発の「速さ」をより早めます。

MCU評価ボード、IDE、開発ツール、ベンダーが変わってもテンプレート本体は不変

テンプレート本体、具体的にはアプリケーションのLauncher機能は、MCU評価ボード、IDE、コード生成ツールなどの開発ツール、ベンダー各社には依存しません。つまり、単純なC言語でできています。

従いまして、開発ツールやIDEが時代により変化・更新しても、テンプレート本体は変わりません。ご購入頂いた弊社マイコンテンプレートの付属説明資料は、発売当時の環境をベースに解説しております。しかし、最新版のIDEやコード生成ツールに更新されても、このテンプレート本体は不変ですので、安心してお使いください。

まとめ

Arduinoコネクタを持つMCU評価ボードが多い理由は、市販安価シールド資産を活用し、MCU性能評価へも活用すれば、MCUプロトタイプ開発が効率的かつ容易になるからです。プロトタイプ開発スピードをさらに上げるためマイコンテンプレートが役立つことも示しました。

マイコンは種類が多く、どのベンダーの何を使って開発すれば良いかというご質問を時々頂きます。お好きなベンダーのArduinoコネクタを持つMCU評価ボードを使ってプロトタイプ開発することをお勧めしています。制御系ベンダー差は、Arduinoコネクタで消えます。先ずは着手、あえて言えば被制御系の開発着手が先決です。

MCUパラメタ設定を改善したSTM32CubeMX version 5

2018年12月STマイクロエレクトロニクス(以下STM)のMCUコード生成ツール:STM32CubeMXがversion 5にメジャー更新しました。本稿は、このSTM32CubeMX version 5について主に旧version 4をご利用中の方を対象に説明します。初めてSTM32CubeMXを利用される方は、インストール方法などは旧version 4で示したコチラの関連投稿と同じですのでご覧ください。

STM32CubeMX version 5への更新方法

STM32CubeMXは、スタンドアロンアプリケーションとして動作させる場合と、Eclipse IDEのプラグインとして動作させる場合があります。更新が簡単なのは、先に説明するスタンドアロン版です。Eclipse IDEは、SW4STM32を例にプラグイン更新方法を示します。

スタンドアロン版STM32CubeMXの更新方法

デフォルト設定を変えてなければ、STM32CubeMX起動時に自動的に更新を検出しInstall Nowクリックで最新版がダウンロードされます。ダウンロード後、一旦STM32CubeMXを終了し、再起動でversion 5への更新が始まります。

STM32CubeMX version 5への更新(スタンドアロン版)
STM32CubeMX version 5への更新(スタンドアロン版)

スタンドアロンの場合は、更新開始時Access Errorが表示されることもあります。この時は、「管理者として実行」で更新プロセスが始まり、STM32CubeMX version 5の初期画面になります。

STM32CubeMX version 5初期画面
STM32CubeMX version 5初期画面

Eclipse IDE(SW4STM32)プラグイン版STM32CubeMXの更新方法

Eclipse IDEのプラグインでSTM32CubeMX機能を追加した場合は、旧プラグインを削除した後にversion 5プラグインをインストールします。SW4STM32のプラグイン削除は、Help>About EclipseからInstallation Detailsボタンをクリックし、Installed Softwareタブから旧STM32CubeMXを選択、Uninstallまたは、Updateクリックで行います。

旧版STM32CubeMXプラグイン削除
旧版STM32CubeMXプラグイン削除

Uninstallの方が確実です。削除後、新しいSTM32CubeMX version 5プラグインを再インストールすれば、スタンドアロンと同じ初期画面が示されます。SW4STM32のUpdate checkでは、STM32CubeMXの更新を検出できませんので、手動でプラグイン削除、更新された新プラグインのインストールが必要です。

STM32CubeMX version 5改善点

version 5のユーザマニュアルUM1718 Rev 27から、以下の点がversion 4から改善されました。
関連投稿:MCU更新情報取得方法と差分検出ツール、の “2PDF資料を比較するDiffPDF” の章参照

・MCUパラメタ設定にマルチパネルGUI採用(UM1718、5章)
・CMSIS-Packサポート(UM1718、7章)
・X-Cube-BLE1ソフトウェアパック(UM1718、14章)
・ST-TouchGFX追加(UM1718、17章)

一言で言うと、5章:カラフルになったパラメタ設定、7章:CMSIS-Pack追加が可能、14章と17章:2チュートリアル追加です。CMSIS-Packとチュートリアルは、必要に応じて理解すれば良いでしょう。

そこで、基本操作の5章STM32CubeMX version 5のパラメタ設定を、弊社STM32F0シンプルテンプレートで用いたSTM32CubeMX version 4プロジェクトファイルを使って説明します。
※STM32F0シンプルテンプレート(¥1,000販売中)をご購入頂いてない方のために、上記プロジェクトファイルのみをコチラから無料でダウンロードできます(zipファイルですので解凍してご利用ください)。

マルチパネルGUIによるMCUパラメタ設定改善の実例

Open Existing Projectsで上記STM32F0シンプルテンプレートプロジェクトファイル:F0SimpleTemplate.iocを選択すると、旧versionで作成されていること、FWも更新されていて、最新環境へ更新(Migrate)するか、FWはそのままSTM32CubeMXのみ更新(Continue)かの選択肢が表示されます。
※MigrateとContinueの差は後述します。

旧版プロジェクトファイルを開いた時のメッセージ
旧版プロジェクトファイルを開いた時のメッセージ

今回は、Migrateを選択すると、見慣れたPinout & Configuration画面が現れます。

STM32F0シンプルテンプレートのプロジェクトを開いた画面
STM32F0シンプルテンプレートのプロジェクトをversion 5で開いた画面

Connectivity >を開くと、STM32F0シンプルテンプレートで使用中USART2の各種パラメタ設定値がマルチパネルで表示されます。

STM32F0シンプルテンプレートプロジェクトのUSART2マルチパネル画面
STM32F0シンプルテンプレートプロジェクトのUSART2マルチパネル画面

このマルチパネル表示がversion 5で最も改善された機能です。従来版では、複数タブで分離表示されていた設定が、1画面のユーザインタフェース:UIに集約されました。より解りやすく、より簡単にMCUパラメタ設定ができます。

その他の機能は、カラフルな見た目になってはいますが、旧versionと殆ど同じと考えて良いと思います(開発元には失礼ですが…😅)。不明な点は、HelpでUM1718が直に表示されるので調べられます。

また、販売中の弊社STM32Fxテンプレート付属説明資料のSTM32CubeMXは、version 4で説明しておりますが、この程度の改版ならば、説明資料をversion 5用に作り直さなくても、ご購入者様に内容をご理解頂けると思います。

旧版プロジェクトファイルを開いた時のMigrateとContinueの差

STM32CubeMXは、UIをつかさどる共通部分と、STM32MCUファミリ毎の個別ファームウエア:FW部分の2つから構成されています。本稿は、UI共通部分の更新を説明しました。FWもバグとりや、ファミリへの新MCU追加などで更新されます。周辺回路の初期化CコードやHAL:Hardware Abstraction Layer library 、LL: Low-Layer library利用のAPI生成は、FW部分が担います。

Migrateは、このUIとFWを同時に最新版へ更新します。一方、Continueは、UI部分のみ更新しFWは既存のままです(安全側更新とも言えます)。FW更新で既製ソフトウェアへ悪影響がでる場合には、Continueを選択することもあるでしょう。しかし、基本的にはUI、FWともに最新版へ更新するMigrateが本来の更新方法です。

万一FW更新でトラブルが発生した時は、デフォルトでSTM32Cube>Repositoryフォルダに新旧FWがzipファイルで保存されていますので、FWのみ元に戻すことも容易です。

*  *  *

Postscript:24日午前3時~午前4時5分に実施されたSTM32G0 and STM32CubeMX 5.0ウェブナーどうでしたか? 解りやすいスライドが豊富で、STM32G0の良さがより理解できました。全機能無償のKeil uVision5対象デバイスにSTM32L0、STM32F0とSTM32G0も加わりました。STM32CubeMX 5.0と評価ボードNUCLEO-G071RBを使ったLチカコード生成も解りやすかったですね😃。
※タイムリーなことに、1月25日STM公式ブログ上で上記一連の処理がYouTubeに投稿されました。

さて、ウェブナー参加で目から鱗が落ちたのは、STM32G0の広い応用範囲と低電力動作を活かすには、デバイス間移植に優れるHAL APIよりも、デバイス最適化のLL API利用が適してかもしれない点です。
HAL利用のSTM32Fxテンプレートとは異なるアプローチ、例えば、STM32Gxテンプレートの新開発が必要になりそうです👍。

関連投稿:HALとLLの違いは、STM32CubeMXの使い方、“STM32CubeMXの2種ドライバライブラリ”の章参照
関連投稿:STM32Fxテンプレートのアプローチは、STM32評価ボードNUCLEO-F072RB選定理由参照

2018 IoT MCUを振り返る

今年も多くの方々に本HappyTechブログをご覧いただき、また、多くの方々にマイコンテンプレートをご購入いただいたことに心より感謝いたします。ありがとうございました。

2018年の弊社ブログ投稿を振り返って、IoT MCUの2018動向を総括します。

ノードとエッジに2層化するIoT MCU

IoT時代には、数十億個以上もの膨大な数が必要と言われるIoTエッジMCU、これが本ブログ対象マイコンです。低コスト、低消費電力、効率的ハードウェア/ソフトウェア生産性が求められます。

これらIoTエッジMCUを束ね、クラウドと無線通信するのがIoTノードMCU。IoT MCUは、ノードとエッジの2層化傾向があります。

IoT MCU日本ベンダー動向

ルネサス エレクトロニクス:アナログフロントエンド強化の買収継続
NXPセミコンダクターズ:クアルコム買収断念で独自性維持
サイプレス・セミコンダクター:超低電力Cortex-M0+製品強化
STマイクロエレクトロニクス:日本語資料強化

自動車と産業、セキュリティがIoT MCUを牽引

超高性能、セキュリティ、CAN FD、低電力が自動車向け要求、同じくセキュリティ重視だが、コストパフォーマンスも重視、低電力が産業向け要求、両要求ベクトルがIoT MCUベンダー開発を牽引中。

MCUコアのこだわり不要

要求を満たすには広いMCUカバー能力と低電力動作が必要で、Cortex-M0+とCortex-M4のマルチコアや、シングルコア動作周波数の引上げが見られます。製造プロセス微細化も進むでしょう。

エンドユーザ(顧客)は、いわゆるソリューション(解)を求めていて、要求を満たせばMCUコアが何でも構わないので、開発者は、手段であるMCUコアにこだわる必要性を少なくすることが求められます。

つまり、最適ソリューションのハードウェア/ソフトウェアを、様々なベンダー、MCUから自ら選択し、効率的に解を提供できるIoT MCU開発者がプロフェッショナルです。

そこで、ソリューション提供・提案をする開発者個人向けツールとして、弊社マイコンテンプレートを発展させる予定です。ブログ対象IoT MCUも、この基準にフォーカスし情報提供します。

以上簡単ですが2018年のIoT MCUを総括しました。2019年も引き続きよろしくお願いいたします。

Cortex-M0/M0+/M3比較とコア選択

デバイスが多く選択に迷う方も多いマイコン:MCU。周辺ハードウェアも異なるので、最初のMCUコア選択を誤ると、最悪の場合、開発のし直しなどに繋がることもあります。

本稿は、STマイクロエレクトロニクスのSTM32マイコンマンスリー・アップデート10月号P8のトレーニング資料、STM32L0(Cortex-M0+)掲載のARM Cortex-M0/M0+/M3の比較資料を使ってMCUコア選択方法についての私案を示します。

STM32L0(Cortex-M0+)トレーニング資料

各種STM32MCU(Cortex-Mx)毎の非常に良くできた日本語のテクニカルスライド資料が入手できます。例えばSTM32L0(Cortex-M0+)は194ページあり、1ページ3分で説明したとしても、約10時間かかる量です。他のMCU(Cortex-Mx)資料も同様です。

開発に使うMCUが決まっている場合には、当該資料に目を通しておくと、データシート読むよりも解りやすいと思います。しかし、Cortex-Mxコア差を理解していない場合や、開発機器の将来的な機能拡張や横展開等を考慮すると、どのMCU(Cortex-Mx)を現状開発に使うかは重要検討項目です。

ここで紹介するSTM32L0(Cortex-M0+)トレーニング資料には、Cortex-M0+特徴説明のため、通常データシートには記載が無いCortex-M0やCortex-M3との違いも記載されています。

そこで、STMマイコンのみでなく一般的なARMコアのMCU選択に重要な情報としても使えるこの重要情報ページを資料から抜き出しました。

Cortex-M0/M0+/M3比較

バイナリ上位互換性

Cortex-Mxのバイナリ互換性(出典:STM32L0(Cortex-M0+)トレーニング資料)
Cortex-Mxのバイナリ互換性(出典:STM32L0(Cortex-M0+)トレーニング資料)

先ず、P22のCortex-Mプロセッサのバイナリ互換性です。この図は、Cortex-Mxコアの命令セットが、xが大きくなる方向には、上位互換であることを示しています(ただし再コンパイル推薦)。逆に、xが小さくなる方向は、再コーディングが必要です。

つまり、Cortex-M0ソースコードは、M0+/M3/M4へも使えるのです。Cortex-Mxで拡張された命令セットの特徴を一言で示したのが、四角で囲まれた文章です(Cortex-M3なら、“高度なデータ処理、ビットフィールドマニピュレーション”)。
さらに、STM32MCU内臓周辺ハードウェアは、各シリーズで完全互換なので、同じ周辺ハードウェア制御ソースコードはそのまま使えます。

もちろんxが大きくなるにつれコア性能も向上します。しかし、よりCortex-Mx(x=+/3/4)らしい性能を引き出するなら、この四角文章のコーディングに力点を置けば、それに即した命令が用意されているので筋が良い性能向上が期待できる訳です。

超低電力動作Cortex-M0+、39%高性能Cortex-M3

P22ではCortex-M0とM0+の違いが解りません。そこで、P19のCortex-M0/0+/3機能セット比較を見るとCortex-M0+が、Cortex-M0とCortex-M3の良いとこ取り、中間的なことが解ります。また、Cortex-M3が、M0比39%高性能だということも解ります。

Cortex-M0_M0+_M3セット比較(出典:STM32L0(Cortex-M0+)トレーニング資料)
Cortex-M0_M0+_M3セット比較(出典:STM32L0(Cortex-M0+)トレーニング資料)

具体的なCortex-M0+とCortex-M0との差は、P20が解りやすいです。Cortex-M0+は、性能向上より30%もの低消費動作を重視しています。また、1サイクルの高速GPIOも特徴です。Cortex-M0+は、M0の性能を活かしつつより既存8/16ビットMCU市場の置換えにチューニングしたからです。

Cortex-M0とCortex-M0+の比較(出典:STM32L0(Cortex-M0+)トレーニング資料)
Cortex-M0とCortex-M0+の比較(出典:STM32L0(Cortex-M0+)トレーニング資料)

さらにP21には、低電力化に寄与した2段になったパイプラインも示されています。Cortex-M0/M0+は、今年初めから話題になっている投機的実行機能の脆弱性もありません。

Cortex-M0とCortex-M0+のブランチ動作(出典:STM32L0(Cortex-M0+)トレーニング資料)
Cortex-M0とCortex-M0+のブランチ動作(出典:STM32L0(Cortex-M0+)トレーニング資料)

関連投稿:Cortex-Mシリーズは、投機的実行機能の脆弱性はセーフ

共通動作モード:Sleep

Cortex-M0とCortex-M0+の低消費電力モード(出典:STM32L0(Cortex-M0+)トレーニング資料)
Cortex-M0とCortex-M0+の低消費電力モード(出典:STM32L0(Cortex-M0+)トレーニング資料)

低電力化は、Cortex-M0+で追加された様々な動作モードで実現します。この一覧がP70です。つまり、Cortex-M0+らしさは、M0にない動作モード、LP RUNやLP sleep (Regulator in LP mode)で実現できるのです。

逆に、SleepやSTANBYの動作モードは、Cortex-M0/M0+で共通です。さらに、Cortex-M3でも、アーキテクチャが異なるので数値は異なりますが、SleepとSTANBY動作モードはM0/M0+と共通です。

ここまでのまとめ:Cortex-M0/M0+/M3の特徴

Cortex-M0/M0+/M3の特徴・違いを一言で示したのが、下表です(関連投稿より抜粋)。

各コアの特徴は、MCUアーキテクチャや命令セットから生じます。但し、M0/M0+/M3でバイナリ上位互換性があるので、全コアで共通の動作モードがあることも理解できたと思います。

ARM Cortex-Mx機種 一言で表すと…
Cortex-M0+

超低消費電力ハイパフォーマンスマイコン

Cortex-M0

低消費電力マイコン

Cortex-M3

汎用マイコン

Cortex-M4

デジタル信号制御アプリケーション用マイコン

関連投稿:ARMコア利用メリットの評価

MCUコア選択方法

  1. Cortex-M0またはCortex-M0+コアでプロトタイプ開発を行い、性能不足が懸念されるならCortex-M3コア、さらなる消費電力低下を狙うならCortex-M0+コアを実開発で選択。
    プロトタイプ開発に用いるソースコードは、そのまま実開発にも使えるように、全コアで共通の動作モードで開発。
  2. 早期にプロトタイプ開発を実開発に近い形で作成するために、弊社マイコンテンプレートを利用。

1.は、本稿で示した内容を基に示したMCUコア選択指針です。低消費電力がトレンドですので、プロトタイプ開発の段階から超低消費電力のCortex-M0+を使うのも良いと思います。しかし、初めから超低消費動作モードを使うのでなく、全コアで共通動作モードでの開発をお勧めします。

理由は、万一Cortex-M0+で性能不足が懸念される時にCortex-M3へも使えるソースコードにするためです。プロトタイプ開発の段階では、ソースコードの実開発流用性と実開発の評価を目的にすべきです。チューニングは、実開発段階で行えばリクスも少なくなるでしょう。

2.は、プロトタイプ開発実現手段の提案です。マイコンテンプレートは、複数のサンプルソフトを結合して1つにできます。実開発に使える(近い)サンプルソフトさえ見つけられれば、それらをバラック的にまとめて動作確認できるのです。これにより、当該コアのプロトタイプ評価が早期にできます。

また、マイコンテンプレートで使用したSTM32評価ボードは、ボードレベルでピンコンパチなのでCortex-M0/M0+/M3への変更も簡単です。

関連投稿:マイコンテンプレートを使ったアプリケーション開発手順

MCUコア選択の注意事項:重要度評価

ARMコア向けの弊社マイコンテンプレートは、全てCortex-M0/M0+/M3共通の動作モードで開発しています。
その理由は、テンプレートという性質・性格もありますが、本稿で示した他のARMコアへのソースコード流用性が高いからです。試しに開発したソースコードであっても、無駄にはならないのです。

最後に、P184、P185に示されたCortex-M0(STM32F0)とCortex-M3(STM32L1)、Cortex-M0+(STM32L0)のADCの差分を示します。

Cortex-M0/M0+/M3のADC比較1(出典:STM32L0(Cortex-M0+)トレーニング資料)
Cortex-M0/M0+/M3のADC比較1(出典:STM32L0(Cortex-M0+)トレーニング資料)
Cortex-M0/M0+/M3のADC比較2(出典:STM32L0(Cortex-M0+)トレーニング資料)
Cortex-M0/M0+/M3のADC比較2(出典:STM32L0(Cortex-M0+)トレーニング資料)

STM32MCU内臓周辺ハードウェアは、各シリーズで完全互換と先に言いましたが、スペックを細かく見るとこのように異なります。

このハードウェア差を吸収するのが、STM32CubeMXで提供されるHAL(Hardware Abstraction Layer)です。つまり、STMマイコンを使うには、コア選択も重要ですが、STM32CubeMX活用も同じように重要だということです。もちろん、STM32FxマイコンテンプレートもSTM32CubeMXを使っています。

ARMコアは、バイナリ上位互換ができる優れたMCUコアです。MCUベンダーは、同じARMコアを採用していますが、自社のMCU周辺ハードウェアレベルにまで上位互換やその高性能を発揮できるような様々な工夫・ツールを提供しています。

開発MCUを選択する時には、コア選択以外にも多くの選択肢があり迷うこともあるでしょう。多くの場合、Core-M0/M0+/M3などの汎用MCUコアでプロトタイプ開発を行えば、各選択肢の重要度評価もできます。スペックだけで闇雲に選択するよりも、実務的・工学的な方法だと思います。