STM32マンスリー・アップデートHTML化

STマイクロエレクトロニクスのSTM32マンスリー・アップデートが、6月からスマホ閲覧に好適なHTML配信に変わります。2020年5月号が最後のメール配信でした。HTML配信はブラウザで「絵的」に見るのには確かに適していますが、「字的」な記憶や記録に残りにくい気がするので、個人的には残念です。

そこで、これまでのメール配信版の全マンスリー・アップデートから、5月30日発売のSTM32G0xテンプレートVersion2対象STM32G0シリーズ関連部分を忘れないようピックアップしました。

STM32G0シリーズ特徴

STM32G0シリーズ(出典:マンスリー・アップデート2019年10月)
STM32G0シリーズ(出典:マンスリー・アップデート2019年10月)
Dead Battery機能デフォルト有効(出典:マンスリー・アップデート2019年7月)
Dead Battery機能デフォルト有効(出典:マンスリー・アップデート2019年7月)

※テンプレートで使うNucleo-G071RBは、USB Power Delivery機能(Dead Battery機能)が「デフォルト無効」となっています。

STM32G042/G031/G030新登場(出典:マンスリー・アップデート2020年1月)
STM32G042/G031/G030新登場(出典:マンスリー・アップデート2020年1月)
STM32マイコンでRoot of Trust実現のX-CUBE-SBSFU(出典:マンスリー・アップデート2020年3月)
STM32マイコンでRoot of Trust実現のX-CUBE-SBSFU(出典:マンスリー・アップデート2020年3月)
SBSFU機能(出典:STM32_Security-Introduction)
SBSFU機能(出典:STM32_Security-Introduction)

報告は、A4で1枚以内にまとめろとOJTで学びました。今風に言うと、Twitterのような短文で報告せよということです。記事に、70nm新製造プロセス、64ピンパッケージでも1ペア電源ピン説明が無いのは、少し不満ですが、少ない文字量でSTM32G0特徴をまとめる良い見本になりました。

これは、読者にソフトウェア開発者が多いからでしょうか🤨? 黄色ハイライトは筆者加筆です。

STM32G0xテンプレートV2変更内容

さて、このSTM32G0シリーズ向けSTM32G0xテンプレートV2は、下記3項目がV1からの変更内容です。

  • IoT必須セキュアブート、セキュアFWアップデート実装STM32G0特徴を活用(詳細は、コチラの関連投稿を参照してください。V1は、この特徴を活かしきれていませんでした😂)
  • 高性能専用LL API利用から、汎用HAL API利用アプリケーション開発用テンプレートへ変更
  • SW4STM32統合開発環境から、STM32CubeIDEへ変更

項目2と3をVersion2で対応します。余裕があれば項目1にも対応するかもしれません。

STM32G0/G4のRoot of Trust(3)

STM32G0/G4シリーズRoot of Trust実現(3)は、第2回で示したSTM32G4評価ボード:NUCLEO-G474RE 利用STM32G4テンプレート開発環境と、デュアルファームウェアイメージのサンプルアプリケーションを使って、セキュア・ブート(SB)、セキュア・ファームウェア更新(SFU)のための準備、その具体的動作の説明をします。

初めに本稿(3)のまとめを示し、最後の章でRoot of Trust実現(1)~(3)全体のまとめを示します。

STM32G0/G4のRoot of Trust(3)まとめ

  • セキュア・ブート(SB)、セキュア・ファームウェア更新(SFU)に、評価ボード毎にSTM32CubeProgrammerを使ったオプションバイト設定必要。
  • Root of Trust(SBSFU)実装MCUは、VCP経由アクセスのみ可能。
  • SBSFUローカルVCPダウンロードのために、Tera TermとYMODEM送信機能利用。
  • STM32G4評価ボード:NUCLEO-G474REで、SBSFU実装デュアルファームウェアイメージアプリケーション動作説明。
  • STM32G0評価ボード:NUCLEO-G071RBでも、STM32G4評価ボードと同じRoot of Trust(SBSFU)実装動作を確認。

STM32G4評価ボード準備

SB、SFUサンプルアプリケーションの動作確認のために評価ボード:NUCLEO-G474REの事前準備が必要です。これには、STM32CubeProgrammerを使います。STM32G4の場合は、UM2262 図18ですが、オプションバイト等の設定は不要(デバイスデフォルトOK)です。

8.1.3のFlash全消去(Full chip erase)処理をします。また、評価ボードのST-LinkファームウェアをV2J29以上に更新します。更新は、評価ボードとUSB接続後、STM32CubeProgrammerのFirmware Updateクリックで最新版ST-Linkファームウェアへ更新されます。

STM32CubeProgrammerのST-Linkファームウェア更新
STM32CubeProgrammerのST-Linkファームウェア更新

Root of Trust(SBSFU)準備

図17. ステップバイステップ実行から判るように、最初のStep1:SBSFUダウンロード以外は、全て評価ボードのVirtual COMポート(VCP)経由でアプリケーションをダウンロードします。STM32CubeIDEがプログラミングやデバッグで使うST-Link接続(SWD接続)は、外部からのMCU攻撃とSBSFUが解釈するからです。

セキュア・ブート(SB)が攻撃と判断した時は、当然、アプリケーションを起動しないためMCUは動作停止します(SB処理は、第2回2章を参照してください)。

図17. ステップバイステップ実行(出典:UM2262)
図17. ステップバイステップ実行(出典:UM2262)

つまり、ファームウェアイメージのアプリケーションがディアル/シングルに関係なくRoot of Trust(SBSFU)実装MCUは、VCP経由アクセスのみ可能となります。また、VCP経由でのアプリケーションデバッグは非効率なため、十分なデバッグ済みアプリケーションをダウンロードする必要もあります。

このVCP経由ダウンロードのために、Tera TermとそのYMODEM送信機能の準備が必要です。

SBSFUサンプルアプリケーション

図17. Step-by-stepを使ってデュアルファームウェアイメージのSBSFUサンプルアプリケーション動作を説明します。

Step1:Flash全消去後のNUCLEO-G474REに、STM32CubeIDEを使って第2回3章で示した順番でコンパイル済みのSBSFUプロジェクト出力(SBSFU.elf)を、STM32CubeIDEを使わずにSTM32CubeProgrammerでダウンロードします。

STM32CubeIDEでは、ダウンロード後自動的にデバッガ接続に変わるため、この時点でSBSFUが攻撃を受けたと判断し使用できません。

STM32CubeProgrammerを使うとNUCLEO-G474REのFlashに、セキュアエンジンとSBSFUが書込まれます。これ以降は、Tera TermのVCP経由MCUアクセスのみが可能です。
※従って、STM32CubeIDEを使ったST-Link経由MCUデバッグ開発へ戻る時は、STM32CubeProgrammerでSBSFUが入ったFlashを全消去する必要がありますので注意してください。

次に、パソコンとNUCLEO-G474RE接続中のUSBケーブルを、2回挿抜します。これで、ST-Linkに代わりSBSFUとTera TermのVCP通信が開始します。

Step2:NUCLEO-G474RE とTera Termは、8-Non-1 115200bpsでシリアル接続します。接続後、NUCLEO-G474REリセットボタン(黒ボタン)を押すと、SBSFUが図24(白黒反転済み)のWelcome画面をTera Termへ出力します。

図24. SBSFUがTera Termへ出力するWelcome画面
図24. SBSFUがTera Termへ出力するWelcome画面

Welcome画面を確認後、Tera Termのファイル(F)>転送(T)>YMODEM>送信(S)をクリックし、UserApp.sfb(暗号化ファームウェア)を選択します。
※UserApp.sfbは、NUCLEO-G474RE_2_Image _UserApp¥Binaryフォルダ内(UserApp オブジェクト出力先フォルダ)にあります。

プログレスバーは、1秒ほど動きません。この間は、SBSFUがダウンロードファームウエアヘッダの有効性を検証し、格納するFlashスロット#0/#1領域を消去しているからです。

送信完了でNUCLEO-G474REのFlashが、Step2の状態になります。

Step3:NUCLEO-G474REが自動的に再起動し、SBSFUにより復号化されたUserAppが動作します。この時のTera Term出力が図27(白黒反転済み)です。NUCLEO-G474REのLD2は、ゆっくり点滅します。

図27. 暗号化ファームウェア転送後のSBSFU再起動
図27. 暗号化ファームウェア転送後のSBSFU再起動

画面のUser App #Aは、2_Images_UserApp>main.cのL51:UserAppId = ‘A’の出力です。Main Menu:1/2/3は、インストールしたアプリケーションに記述されたSBSFUテスト機能です。

CN7真ん中よりやや下あたりを指で触るとTamper機能が動作し、ボードリセットが掛かります。

実際では、この段階で我々ユーザが開発したアプリケーションが動作中となります。

Step4:ユーザ開発アプリケーションに何らかのバグがあり、これをデバッグ済みの新しいアプリケーションへ更新(SFU)するのがこの段階です。

STM32CubeIDE でL51:UserAppId=‘B’へ変更し、コンパイルします。ここでは、これをデバッグ済みの新しいアプリケーションとします。

再び、Tera Termのファイル(F)>転送(T)>YMODEM>送信(S)をクリックし、UserApp.sfb(UserAppId=‘B’に変更し、コンパイルした暗号化ファームウェア)を選択し、ダウンロードします。ダウンロード完了でNUCLEO-G474REは再起動します。

Step5:再起動後の動作中アプリケーションは、図27の下線部が変更したUser App #Bに変わっていることで確認できます。

これで、新しいアプリケーションへの更新が完了しました。

*  *  *

図17を使ってRoot of Trust実現STM32G4シリーズMCUのセキュア・ブート(SB)、セキュア・ファームウェア更新(SFU)ローカル動作例を説明しました。

実際は、この動作が図2. ②通信チャネル経由で行われます。

図2.セキュアファームウェア更新プロセス(出典:UM2262)
図2.セキュアファームウェア更新プロセス(出典:UM2262)

通信チャネル利用時は、本稿のローカル動作で使ったTera TermのYMODEM送信を誰が行うのか、鍵の管理やサーバ提供など、筆者がUM2262から読み切れない不明な部分があります。これらはいずれ、明らかにする予定です。

また、UM2262図18. 評価ボード準備とSTM32CubeProgrammer設定方法が解りづらく、単なるサンプルアプリケーション動作にかなり「苦戦」しました。この部分は、通常アプリケーション開発とRoot of Trust実現開発の切換えとなる重要ポイントです。STM32G4テンプレート発売時には、添付資料にもっと解りやすい説明を加えます。

UM2262 Rev6/5の評価ボード:NUCLEO-G474RE設定記述ミス

もう1つの「苦戦」理由は、UM2262 Rev6/5の8.1評価ボード:NUCLEO-G474RE設定記述に間違いがあるからです。

UM2262 8.1には、STM32G4のDBANKビット有効化と記述されていますが、これは「無効化が正しい」です。STM32CubeProgrammerで無効化に設定してください。

STM32G0評価ボード:NUCLEO-G071RBに関しては、記述にミスはありません。本稿の関連部分をNUCLEO-G071RBへ読替えると、全て正常動作します。

STM32G4シリーズは、STM32G0シリーズよりも約1年後に発売されました。新しいMCUのためUM2262に記述ミスがあるのだと思います。

STM32G0/G4のRoot of Trust全体まとめ

STM32G0/G4のRoot of Trust(1)~(3)、いかがでしたでしょうか? セキュリティ機能の実装は、IoT MCUでは必須です。従来のMCU開発へ追加する機能や手間、セキュリティ知識も当然必要になります。

これら追加分は、一般的な開発者が、オリジナリティを加えるべき部分では無いと思います。そこで、これら追加分を、できるだけ簡潔に解り易く説明したつもりです。Root of Trust (1)~(3)で、下記STM32マイコンマンスリー・アップデート2020年3月号P4のX-CUBE-SBSFU説明内容が、より解り易くなれば先ずはOKとします。

STM32マイコンマンスリー・アップデート2020年3月号P4のX-CUBE-SBSFU説明
STM32マイコンマンスリー・アップデート2020年3月号P4のX-CUBE-SBSFU説明

結局、STM32G0/G4シリーズMCUの場合は、通常のMCUアプリケーション開発が第1段、次に、これをIoT MCU化し、Root of Trust機能(SBSFU)を追加実装するのが第2段という、2段階開発になりそうです。この第2段SBSFU実装時に、本稿で用いたデュアル/シングルファームウェアイメージのアプリケーションサンプルが、枠組みとして使えそうです。

STM32G4テンプレートも、弊社通常テンプレート同様、RTOSを使わない疑似マルチタスク実装用(第1段テンプレート)と、開発済みアプリケーションのRoot of Trust SBSFU実装用(第2段テンプレート)の2つに分けてパックで提供しようと考えています。

セキュリティ(盾)は、常に脅威(鉾)との競争です。STM32G0/G4シリーズよりも更にセキュリティを強化したSTM32L5シリーズ(Cortex-M33)など最新MCUの方が、IoT MCU開発には向いているのかもしれません。

この終わりなき競争が続いてセキュリティ時代遅れにならないように、開発中MCUのより早く、かつ、万一より強いセキュリティMCUが必須となった場合でも、MCUコアに依存しない流用性の高いアプリケーション開発が求められます。



STM32G0/G4のRoot of Trust(2)

STM32G0/G4シリーズRoot of Trust実現の第2回目は、初めにRoot of Trustを実現するセキュア・ブートの説明にトライし、直にセキュア・ブートとセキュア・ファームウェア更新を実装するSTM32G4テンプレート開発環境の構築方法を示します。

セキュア・ブート説明をこまごま続けるよりも、具体的なRoot of Trust実現開発環境を示す方が、実務的(短絡的?)だからです。

セキュア・ブート

第1回紹介の日本語版UM2262、P1概要:セキュア・ブート説明を抜粋したのが以下です。

‘セキュア・ブート(信頼の起点となるサービス)は、システムリセット後に必ず実行される改変不可のコードで、無効なコードや悪意のあるコードを実行しないために、実行前に毎回STM32の静的保護を確認し、STM32実行時保護を有効化してから、ユーザアプリケーションコードの認証および整合性を検証します。’

英語直訳で難解です(各単語の事前理解が必要なセキュリティ関連説明は、殆どがこんな感じですが…)。

ただ、下線部:「必ず実行される改変不可のコード」なので、理解不足や多少間違って解釈しても、セキュア・ブートコードを実装すれば、それで十分かもしれません😅。

セキュア・ブート解釈

図1.セキュアブートの信頼の起点(出典:UM2262)
図1.セキュアブートの信頼の起点(出典:UM2262)

要は、ユーザが開発したアプリケーション実行前に、MCUが勝手に行うブート処理のセキュリティを高度にしたものがセキュア・ブート(SB)だと解釈します。

従来のブート処理は、リセット後、MCU内蔵クロック発振器の安定化待ちやRAM領域初期化などの処理を何の疑いもなく実行し、その後、ユーザ開発アプリケーションを起動していました。

セキュア・ブート処理は、前章のセキュア・ブート処理を行い(図1.①)、その結果をUM2262:9章の表6. 起動時エラーメッセージ(下表)で示すように認証し②、「エラーなし。成功。」時のみ、③ユーザ開発アプリケーションを起動します。

表6. セキュア・ブート起動時のエラーメッセージ(出典:UM2262)
表6. セキュア・ブート起動時のエラーメッセージ(出典:UM2262)

パソコンで例えると、従来ブートがBIOS起動、セキュア・ブートがUEFI起動に相当すると考えれば良いのかもしれません。

X-CUBE-SBSFUはHAL API補完

Root of Trust実現で使うSTM32Cube拡張パッケージ:X-CUBE-SBSFUは、STM32MCU間の移植性を重視しているためHAL(Hardware Abstraction Layer)ベースです。

弊社発売中のSTM32G0xテンプレート(Version1)は、高速性を活かすエキスパート向けLL(Low layer)APIが「主」、HAL APIは「従」としてSW4STM32で開発しました。しかし、STM32G0でのRoot of Trust実現には、HALベースのソフトウェア開発が適しています。

LL/HAL混在利用は、関連投稿:STM32CubeMXのLow-Layer API利用法 (2)の4章で示した注意が必要です。X-CUBE-SBSFUは、アプリケーション起動前のHAL利用で、起動後のユーザアプリケーションのLL利用の場合は、問題ないかもしれません。この点は、今後明らかにしていきます。

いずれにせよSTM32G0xテンプレートは、IDEをSW4STM32から新しいSTM32CubeIDEへ移設すると同時に、Root of Trust実現に向けHAL APIも「主」とし、STM32CubeIDEで「再開発」してVersion 2に改版する予定です。

セキュリティ関連の説明はここまでにして、STM32G4シリーズでRoot of Trust実現の具体的方法に移ります。

Root of Trust実現STM32G4テンプレート開発環境

Root of Trust実現にセキュア・ブート(SB)機能とセキュア・ファームウェア更新(SFU)機能を実装する汎用STM32G4シリーズのテンプレート開発環境は、以下とします。

  • 統合開発環境:STM32CubeIDE v1.3.0、2020/02/26
  • STM32Cube拡張パッケージ:X-CUBE-SBSFU v2.3.0、2020/01/17
  • STM32G4評価ボード:NUCLEO-G474RE(Cortex-M4/170MHz、Flash/512KB、RAM/128KB)

この環境で実現するセキュリティ機能が、UM2262の6.1概要に記載されたものです。これら機能理解に不明確な部分もありますが、内容把握済み、これら機能実現ためX-CUBE-SBSFUを使うと割切ります。開発環境を使っているうちに、(多分)理解度が上がるでしょう😅。

なおUM2262日本語版は、英語版Rev5からの翻訳なのでサポートIDEにSW4STM32はありますが、新しいSTM32CubeIDEがありません。しかし、最新英語版UM2262 Rev6に、STM32CubeIDEが追加されましたので本ブログでもSTM32CubeIDEを使います。

また、セキュリティ機能をテストするNUCLEO-G474RE用サンプルアプリケーションもX-CUBE-SBSFUに添付されていますので、これを以降の説明に使います。

UM2262では、STM32CubeIDEを使ったRoot of Trust開発環境の構築手順が判りにくいので、以下に説明を加えます。

構築手順1:STM32CubeIDEへのRoot of Trust SW4STM32プロジェクトインポート

X-CUBE-SBSFU v2.3.0には、SW4STM32プロジェクトが添付されていますが、未だSTM32CubeIDEプロジェクトの添付はありません。

そこで、STM32CubeIDEのInformation CenterからImport SWSTM32 projectをクリックし、X-CUBE-SBSFU添付SW4STM32プロジェクトを変換(Import)し、STM32CubeIDEプロジェクトを新規作成します。

STM32CubeIDEのSW4STM32プロジェクトインポート
STM32CubeIDEのSW4STM32プロジェクトインポート

STM32G4評価ボード:NUCLEO-G474REのSW4STM32プロジェクト6個を、STM32CubeIDEへインポートする時のダイアログです。

Finishクリックで、プロジェクト毎に下図2回の同意を求められますので、OKをクリックします。

STM32CubeIDE Projects Converter
STM32CubeIDE Projects Converter

構築手順2:Root of Trustサンプルアプリケーションのコンパイル

インポートした6個のプロジェクトは、シングルファームウェアイメージ:NUCLEO-G474RE_1_Imageとデュアルファームウェアイメージ:NUCLEO-G474RE_2_Imageの2種類のサンプルアプリケーションです。

2種類のRoot of Trustサンプルアプリケーション
2種類のRoot of Trustサンプルアプリケーション

シングル/デュアルファームウェアイメージの違いは、次章で説明します。

このサンプルアプリケーションは、それぞれ図15のように、_SECoreBin、_SBSFU、_UserAppの順番でプロジェクトをコンパイルする必要があります。図示のように前段コンパイル生成出力を、次段コンパイル入力に使うからです。

図15. アプリケーションのコンパイルステップ(出典:UM2262)
図15. アプリケーションのコンパイルステップ(出典:UM2262)

この順番を守ってコンパイルした時のみ_UserAppの出力オブジェクトが生成されます。

Windowsセキュリティソフト(Avastなど)によっては、コンパイル途中でワーニングを出力することがありますが、暫く待つとコンパイルを継続します。

シングルファームウェアイメージとデュアルファームウェアイメージ

図15は、SBSFU処理後のFlashメモリ配置を示しています。

図15の右側黄色部分:アクティブなイメージ領域だけをSFU処理で使うサンプルアプリケーションが、シングルファームウェアイメージです。右側黄色部分の上側、イメージのダウンロード/バックアップ領域に、図2のネットワーク(②通信チャネル)経由の新しいファームウェアを一旦入れるのが、デュアルファームウェアイメージです。

図2.セキュアファームウェア更新プロセス(出典:UM2262)
図2.セキュアファームウェア更新プロセス(出典:UM2262)

デュアルファームウェアイメージは、SFU処理中に電源断で中断しても、電源復帰後にSFU継続が可能です。また、アクティブなイメージ領域で動作中アプリケーションと並行してダウンロードが可能です。

シングルファームウェアイメージは、新しいファームウェアを、アクティブなイメージ領域上へ直接更新します。

デュアルファームウェアイメージは、フェールセーフな分、Flash容量はシングル比、倍必要になります。一方、シングルファームウェアイメージは、ユーザが使えるFlash容量が大きいので、デュアルよりも大きなアプリケーション開発ができます。

※ここで使ったセキュリティ用語:ファームウェアイメージとは、STM32CubeIDEのコード生成ツールSTM32CubeMXがデバイス毎に用いるファームウェア(弊社ならFW_F0/F1/G0/G4)とは別物です。図15の黄色部分を示します。

*  *  *

以上で、STM32CubeIDEを使ったRoot of Trust実現のセキュア・ブート(SB)、セキュア・ファームウェア更新(SFU)機能を持つSTM32G4テンプレート開発環境の構築と、SBSFUに使うシングル/デュアルファームウェアイメージの2種サンプルアプリケーションを説明しました。

次回、このSTM32G4テンプレート開発環境とデュアルファームウェアイメージのサンプルアプリケーションを使って、Root of Trust実現の動作説明を予定しています。

STM32G0/G4のRoot of Trust(2)まとめ

  • 信頼の起点:セキュア・ブート(SB)は、リセット後に必ず実行される改変不可能コード。
  • SB処理後、エラーなし認証時のみ、ユーザアプリケーション起動。
  • STM32Cube拡張パッケージ:X-CUBE-SBSFUは、HAL API補完。
  • STM32CubeIDEでRoot of Trust実現のセキュア・ブート(SB)、セキュア・ファームウェア更新(SFU)機能実装STM32G4テンプレート開発環境と構築手順説明。
  • SBSFUアプリケーションのデュアルファームウェアイメージとシングルファームウェアイメージの特徴説明。

SB、SFU実現には、暗号化や図1/2/15掲載の鍵、セキュアエンジンなど、本稿で説明を省いた(すっ飛ばした)様々なセキュリティ処理が必要です。UM2262付録の章に、これら詳細が記載されています。

本質的なセキュリティ理解には、これら各処理の理解積重ねが必要だと思います。付録の章を一読しておくと、今後いろいろな場面で役立ちます。

STM32G0/G4のRoot of Trust(1)

2020年3月号STM32マンスリー・アップデートのP4に、STM32マイコンでRoot of Trustを実現するセキュリティ・ソフトウェア・パッケージ:X-CUBE-SBSFUが紹介されています。

セキュア・ブート、セキュア・ファームウェア更新、Root of Trust…などIoT MCUセキュリティ用語満載で、投稿:総務省によるIoT機器アップデート機能義務化に関連しそうな内容です。

解りにくいこれらセキュリティ関連の用語解説と、本ブログ対象STマイクロエレクトロニクスのSTM32G0/G4シリーズのRoot of Trust実現方法を、今回から数回に分けて投稿します。

Root of Trust とX-CUBE-SBSFU、STM32G0/G4

マンスリー・アップデートの説明は、エッセンスのみを抽出した代物なので、リーフレットを使って説明します。

一言で言うと、「Root of Trust実現には、X-CUBE-SBSFUが必要で、対応中STM32MCUが下表」です。

Root of Trust対応中のSTM32マイコン一覧(出典:FLXCUBESBSFU0819J)
Root of Trust対応中のSTM32マイコン一覧(出典:FLXCUBESBSFU0819J)

つまり、Root of Trustは全てのSTM32MCUで実現できる訳ではなく、表中のMCU、メインストリーム(汎用)・マイコンの場合は、STM32G0とSTM32G4がセキュア・ブート(SB)とセキュア・ファームウェア更新(SFB)に対応しておりRoot of Trustを実現しています。

X-CUBE-SBSFUの下線部SBはセキュア・ブート、SFUはセキュアFW更新を示します。X-CUBEは、STM純正ソフトウェアツールの総称です。

信頼性を実現するハードウェア/ソフトウェアの根幹部分を、Root of Trustと呼びます。

汎用MCUでRoot of Trustの実現には、ハードウェア/ソフトウェア両方に相応の能力が必要で、従来からある汎用STM32Fxシリーズではなく、新しい汎用STM32G0/G4にSBとSFUが実装されたのだと思います。

ということは、総務省のIoT機器アップデート機能義務化が実施されると、IoTエッジで使う汎用MCUは、必然的にSTM32G0/G4シリーズになるかもしれません。
※X-CUBE-SBSFUは、移植性の高いHAL API利用のため、従来汎用STM32Fxへも流用可能かもしれません。しかし、現時点では、表記STM32G0/G4のみ対応と解釈しています。

STM32汎用MCUラインナップ
STM32汎用MCUラインナップ(出典:STM32 Mainsterm MCUsに加筆)

用語を説明したのみですが、Root of Trust とX-CUBE-SBSFU、汎用マイコンSTM32G0/G4の関係が、マンスリー・アップデートエッセンスより見えてきたと思いますがいかがでしょう。

さらに、一歩踏み込んで、STM32G0/G4のセキュア・ブート、セキュア・ファームウェア更新方法やセキュリティの背景などの詳細は、次回以降説明します。

X-CUBE-SBSFUユーザマニュアル:UM2262

次回以降の説明は、X-CUBE-SBSFUユーザマニュアル日本語版(2019 年 11 月14日):UM2262を基に行います。

UM2262は、X-CUBE-SBSFU対応中の全てのSTM32マイコン(ハイパフォーマンス/超低消費電力/メインストリーム(汎用)/ワイヤレス)が併記されています。

そこで、STM32G0とSTM32G4関連のみを抜粋し、特にセキュア・ブート(SB)とセキュア・ファームウェア更新(SFU)の設定方法と背景を中心に説明します。販売中のSTM32G0xテンプレートと、開発予定のSTM32G4テンプレートに関連するからです。

本稿で示したRoot of Trustを、STM32G4テンプレートに実装するかは未定です。しかし、IoTエッジマイコンのSTM32G4らしさを出すには、Root of Trust実現は必須だと思います。

また、STM32G0xテンプレートは、まずVersion 2改版で新統合環境:STM32CubeIDE v1.3.0への対応を予定しております(現行版は、SW4STM32開発のVersion 1)。
※STM32G0関連の投稿は、本ブログ右上のSearch窓へ、“STM32G0”と入力すると、効率よく投稿が集まります。新汎用STM32G0の特徴、STM32G0xテンプレートのことが解ります。

STM32G0へのRoot of Trust実装も未定ですが、対応する場合でもVersion 2より後にするつもりです。

従って、具体的なRoot of Trust実現方法は、STM32G4シリーズで先行、その後にSTM32G0シリーズが続くという順番になります。

TrustZone対応STM32マイコン体験セミナー(セキュリティ編)

5月22日(品川)と7月31日(大阪)に、2020年2月発売STM32L5マイコン(Cortex-M33/110MHz)を使ったSTM主催、定員30名、4時間半のTrustZone対応STMマイコン体験セミナー(セキュリティ編)が開催されます。

STM32L5は、PSA Certifiedレベル2認証を取得済みのTrustZoneマイコンです。PSA認証は、関連投稿:ARM MCU変化の背景の2章の3:セキュリティ対応をご覧ください。STM32L5のTrustZone実現は、専用のSTM32Cube拡張パッケージ:STM32CubeL5を使っています。

セミナー概要の冒頭に、「IoTセキュリティに関する法令やガイドラインの整備が進んでいます」とあり、具体的にIoTセキュリティ機能のSTM32L5への実装と必要性が解ると思います。セミナーに参加し、エキスパートから色々な情報を仕入れたいのですが、COVIC-19の影響で出張ができるか?…、Webinarなら嬉しいのですがね😅。

評価ボード付き無料セミナーです。ご興味がある方は、参加してはいかがでしょう。

STM32G0/G4のRoot of Trust(1)まとめ

  • Root of Trust実現に、STM32Cube拡張パッケージ:X-CUBE-SBSFUが必要。Root of Trust対応中の汎用マイコンは、STM32G0/G4シリーズ。
  • 信頼性実現のハードウェア/ソフトウェア根幹部分をRoot of Trustと呼ぶ。
  • IoT機器アップデート機能義務化なら、IoTエッジ汎用MCUは、STM32G0/G4シリーズになる可能性あり。
  • STM32G0/G4シリーズのRoot of Trust実現方法、SB(セキュア・ブート)とSFU(セキュア・ファームウェア更新)は、UM2262を使い次回以降説明。

ここまでは、比較的簡単にRoot of Trust、X-CUBE-SBSFU、STM32G0/G4が説明できたと思います。ここからが、セキュリティの難解なところで、SBだけでも次回上手く説明できるか自信がありません。結果は、次回のブログ更新で判ります。

中国製STM32互換MCU

1月28日、EE Times Japanに“互換チップが次々と生まれる中国、半導体業界の新たな潮流”という記事が掲載されました。スイス・ジュネーヴ本社のSTマイクロエレクトロニクス(以下STM)のSTM32互換MCUが、中国で製造プロセス縮小、ローコスト化し販売中だそうです。

STM32F030、STM32F103互換MCU

記事記載の互換デバイスは、STM32F030(Cortex-M0、64KB Flash、8KB RAM)と、STM32F103(Cortex-M3、72MHz、128KB Flash、20KB RAM)の2種。どちらもSTM純正180nmプロセス製造MCUを、130nmプロセスで製造しており、ローコスト化、低電力化、動作周波数アップが狙いです。

STM32F103搭載のNucle-F103RB評価ボード
STM32F103搭載のNucle-F103RB評価ボード

さらに、ARM Cortex-Mコア部分のみをオープン仕様RISC-Vコアへ変えた、STM32互換RISC-V MCUもあるそうです(記事、図4参照)。

記事筆者の清水氏(テカナリエ)は、これら中国製互換デバイスを否定するのが目的ではなく、現状の事実、互換製造ができる高い技術力、STM32MCUが汎用MCUデファクトスタンダードであること、中国半導体業界のこの方向性が、ますます加速する可能性があると報告しています。

日本が見習うべきもの

RISC-Vはオープン仕様ですが、Cortex互換MCU販売には、ARMライセンスフィーなど気になる事柄もあります。但し、本ブログ筆者も清水氏と同じく、その背景にある技術力、ビジネスセンスについて見習うべきものが多いと思います。

STM互換MCUは、純正品よりも安く、しかも高性能です。開発環境や評価ボード、開発ソフトウェアはそのまま互換MCUでも動作します。欧州ベンダのSTM互換MCU開発・販売は、米国ベンダ互換よりもハードルが低いでしょう。世界情勢なども反映された成功事例だと思います。

例え安く高性能な部品(BOM:Bill Of Matrix)が提供されても、それを使って開発できる技術者がいなければ製品化はできません。技術者スキルが最も伸びるのは、開発中です。中国技術者は、高性能製品を低価格で、次々と提供できている事実があります。

もちろん失敗事例もたくさんあるハズです。しかし、技術者にとっては、成功失敗を問わずどんな事例でも開発経験はスキルに直結します。

一方、日本の環境は、時短や効率化など見た目の生産性や成功例のみに注目しがちです。ただ、技術者スキルは世界レベルで評価されるので、このままの環境では、先々の日本開発案件は無くなるのではと危惧しています。

例えば自動車は、日本メーカを選択する人はいても、それが日本開発かは問題にしません。むしろ世界各地で開発されています。
※日産の先進自動運転技術(ADAS)は、米国女性技術者が中心で開発されたと、何かで読んだ記憶があります。

5G、6G世代のネット高速化、自動翻訳やAIなどの環境変化で、日本開発に拘るユーザは、減少の一途となるでしょう。

日本技術者は、次世代の自分自身のため、世界で通用するスキルを身に付ける必要があります。

弊社STM32F0/F1に使えるSTM32FxテンプレートSTM32G0xテンプレートその他ベンダのMCUテンプレートは、初心者~中級レベルソフトウェア技術者向きです。初級~中級技術を効率的に習得し、さらに高度なスキル獲得に少しでもお役立てれば幸いです。と、最後は自社広告になってしまいました😌。

STM32G071RBとAlexaを繋ぐ

1月9日STマイクロエレクトロニクス(以下STM)公式ブログに、STM32G0とAlexa(アレクサ)を接続する開発キット:Alexa Connect Kit(ACK)モジュールが紹介されました。アレクサに話しかけ、STM32G0評価ボードのNucleo-G071RB 経由でスマートホーム制御が簡単に実現できます。

システム構成

STM32G071RBとAlexaを接続するAlexa Connect Kit (ACK)のシステム構成
STM32G071RBとAlexaを接続するAlexa Connect Kit (ACK)のシステム構成

システム構成の公式ブログ掲載が無いので、自作したのが上図右側です(左側出典:STMサイト、Cortex-M7 MCUでアレクサ接続)。

USI MT7697HがACKモジュールで、Nucleo-G071RBとはArduinoコネクタで接続します。スマートスピーカに話しかけると、クラウド内で音声解析→制御コマンド生成を行い、このコマンドがACKへ無線送信され、STM32G0評価ボードNucleo-G071RBへ届き、STM32G071RBがスマートホーム機器などを制御します。

費用とSTM32G0用ACKドライバ、ファームウェア

費用:Nucleo-G071RBが約$10、ACKがUS Amazonで$197、(日本アマゾンで¥38,202)。

STM32G0用ACKドライバ、ファームウェア:公式ブログリンク先は、今日現在、提供されていません。

2018年6月頃は、STM32F7やSTM32H7などの高性能Cortex-M7 MCUでアレクサ接続がSTM公式ブログで投稿されましたが、今回Cortex-M0+のSTM32G0とACKでも簡単に接続可能になりました。

STM32G0特徴

2018年12月新発売のSTM32G0シリーズは、初の90nmプロセス製造MCUで低消費電力と高速動作、従来のSTM32F0 (Cortex-M0)~F1 (Cortex-M3)性能をカバーする新しい汎用MCUです。セキュリティハードウェア内蔵、低価格、64ピンパッケージでも1ペアVDD/VSS給電がSTM32G0の特徴です。
関連投稿:STM新汎用MCU STM32G0守備範囲が広いSTM32G0

STM32マイコンマンスリー・アップデート2020年1月のP4に、「STM32G0 シリーズのラインナップ拡充 STM32G041/ G031/ G030 新登場」記事もあります。筆者も、STM32G0シリーズは、STMの汎用MCUとしてお勧めデバイスです。

LL APIかHAL API、混在?

残念ながら今は未提供ですが、筆者は、ACKドライバとファームウェアのAPIに興味があります。

理由は、STM32G0シリーズの高性能を引き出すには、HAL:Hardware Abstraction Layer APIよりもエキスパート向けLL:Low Layer API利用ソフトウェア開発が適すからです。

HALとLL比較(出典:STM32 Embedded Software Overvire)
HALとLL比較(※説明のため着色しています。出典:STM32 Embedded Software Overvire)

生産性や移植性の高いHAL APIとLL APIの混在利用は、注意が必要です(関連投稿:STM32CubeMXのLow-Layer API利用法 (2)の4章)。

ACKドライバ、ファームウェアが、LL APIかHAL APIのどちらを使っているか、または混在利用かを確認し、ノウハウを取得したかったのですが…😥。

LL API利用STM32G0xテンプレートとHAL API利用STM32Fxテンプレート

弊社は、LL API利用STM32G0x専用テンプレートと、HAL API利用STM32Fx汎用テンプレートの2種類を、それぞれ販売中です(テンプレートは同一、テンプレートを使うAPIのみが異なる)。

STM32汎用MCUラインナップ
STM32汎用MCUラインナップ(出典:STM32 Mainsterm MCUsに加筆)

もちろん、STM32G0でもHAL APIを利用することは可能です(STM32G0x専用テンプレートにもHAL API使用例添付)。LL API利用ソフトウェアは、性能を引き出す代償に対象MCU専用になります。

HAL APIとLL APIの混在は避けた方が無難で、STM32G0はLL API専用でテンプレート化しました。添付資料も、LL APIを中心に解説しています。STM32Fxテンプレート添付資料は、HAL API中心の解説です。

両テンプレートをご購入頂ければ、LL/HAL双方のAPI差が具体的に理解できます。開発するアプリケーション要求性能や発展性に応じて、LL APIかHAL APIかの選択判断も可能になります。
※両テンプレート同時購入時は、2個目テンプレート50%OFF適用で、1500円(税込)です😀。

FYI:日本語コメント文字化け継続

STMマイコン開発環境にソースコード日本語コメントの文字化けが発生中であることを、昨年11月に投稿しました。この文字化け発生のSTM32CubeIDE v1.1.0/CubeMX v5.4.0開発環境が、STM32CubeIDE v1.2.0STM32CubeMX v5.5.0に更新されました。

更新後のSTM32CubeIDE v1.2.0/CubeMX v5.5.0でも、旧版同様に文字化けします。
一方、SW4STM32では、STM32CubeMX v5.5.0更新後も日本語コメント文字が正常表示されます。

他社の最新版EclipseベースIDE、NXPのMCUXpresso IDE v11.1.0や、CypressのPSoC Creator 4.2では、ソースコードText Font変更をしなくても文字化けはありませんので、STM特有問題だと思います。

ワールドワイドでの日本相対位置低下、今年から始まる小学校英語教育…、日本ものつくりは、英語必須になるかもしれません。

SW4STM32アプリケーションのSTM32CubeIDE移設

SW4STM32で開発した2017年9月発売STM32Fxテンプレートと2019年6月発売STM32G0xテンプレートを、STM32MCU最新統合開発環境STM32CubeIDE v1.1.0へ移設しました。

移設は成功し、STマイクロエレクトロニクス最新統合開発環境:STM32CubeIDE v1.1.0(以下、CubeIDE)、STM32CubeMX v5.4.0(以下、CubeMX)、最新ファームウェアと弊社テンプレートを使って、効率的で最新のSTM32MCUプロトタイプ開発、アプリケーション開発ができます。

本稿は、STM32CubeIDE v1.1.0更新と文字化け対策投稿(その1)、(その2)のその3に相当します。説明が重複する箇所は、リンク先を参照してください。

移設成功結果

G0AdcTemplateのSTM32CubeIDE移設成功結果
G0AdcTemplateのSTM32CubeIDE移設成功結果

STM32Fxテンプレートは「ひと手間」、STM32G0xテンプレートは「そのまま」で最新統合開発環境へ移設でき、評価ボードにてテンプレート動作を確認しました。G0AdcTemplateのCubeIDE移設後と評価ボード動作例です。

既にSTM32Fx/G0xテンプレートご購入者様は、本稿の方法で最新STマイクロエレクトロニクス開発環境へ乗換えることができます。

※現状のCubeMX v5.4.0でコード生成後、CubeIDE v1.1.0の日本語コメントは文字化けしますので注意してください(詳細は、投稿その2参照)。

最新開発環境ファームウェアとアプリケーション開発時ファームウェア

最新開発環境ファームウェアとテンプレート開発時ファームウェア
最新開発環境ファームウェアとテンプレート開発時ファームウェア

投稿その2で示したように、MCU開発ソフトウェア(=アプリケーション)に最も影響を与えるのは、ファームウェア更新です。

STM32FxテンプレートのF0用ファームウェアFW_F0は、開発当時のv1.8.0からv1.11.0へ、F1用ファームウェアはv1.4.0からv1.8.0へ、G0用ファームウェアFW_G0はv1.2.0からv1.3.0へそれぞれ更新されています。
※STM32G4テンプレートは、これから開発着手しますので最新のv.1.1.0のままです。

次章3から5章までを使って、STM32F1テンプレート:F1BaseboardTemplateを例に、当時の開発環境から最新開発環境への移設作業、ファームウェア変更、トラブルシューティングを「詳細に説明」します。但し、結果として行う処理は、6章まとめに示す簡単なものです。途中の章は読み飛ばしても構いません。

開発済みMCUアプリケーションを暫くたってから更新、または本稿のようにIDE自体が変わり最新開発環境へ移設することはよくあります。F1BaseboardTemplateをお持ちでない方も、(手前みそですが)次章から5章の内容は参考になると思います。

ファームウェア更新でコンパイルエラー発生:3章

先ず、ファームウェア起因のコンパイルエラーが発生するまでを示します。

1.SW4STM32で開発したF1BaseboardTemplateプロジェクトをCubeIDEへインポートします(インポート方法は、投稿その1-3章参照)。インポートソースコードの日本語コメントに文字化けが発生しますので、その1で示したShift-JISからUTF-8へのエンコード変換で解決します。

2.インポート済みのCubeMXプロジェクトファイルを、CubeIDEプラグイン版CubeMXで開き、Project Managerタブをクリックし、Toolchain/IDEがSTM32CubeIDEであることを確認します。インポートIDE変換が成功していれば、SW4STM32から自動的にSTM32CubeIDEへ変わっているハズです。

SW4STM32プロジェクトインポート後、プラグイン版STM32CubeMXで開いたプロジェクトファイル
SW4STM32プロジェクトインポート後、プラグイン版STM32CubeMXで開いたプロジェクトファイル

ファームウェアは、最新版STM32Cube FW_F1 V1.8.0になっています。そのままProject>Generate Codeをクリックし、コード生成を実行します。

3.CubeIDEへ戻ると、(デフォルトの自動コンパイル設定だと)Lcd.cなど数か所に赤下線のコンパイルエラーが発生します。

ファームウェア起因のコンパイルエラー(赤下線)
ファームウェア起因のコンパイルエラー(赤下線)

例えば、L236のLCD_EN_Pinは、CubeMXでGPIO_PIN_8をUser Label付けしたものです。LCD_EN_Pinへカーソルを持っていき、F3をクリックすると、定義ファイルmain.hのL103へ飛び、User Label付けは問題ないことが判ります。この段階では、コンパイルエラー原因は不明です。

4.コンパイルエラーがファームウェア起因かを確認するため、ファームウェアだけをFW_F1 V1.8.0からF1BaseboardTemplate 開発当時のFW_F1 V1.4.0へ戻します。但し、CubeIDE「プラグイン版CubeMX」は、ファームウェアを旧版へ戻す機能がありません。そこで、「スタンドアロン版CubeMX」を使ってファームウェアをFW_F1 V1.4.0へ戻し、再度コード生成を行うと、コンパイルエラーは発生しません。
※スタンドアロン版CubeMXでファームウェアを元の版数へ戻す方法は、4章で説明します。

以上の作業で、コンパイルエラー原因は、ファームウェア起因であることが判りました。

STM32CubeMXコード生成ファームウェア変更方法:4章

トラブルシューティングの前に、CubeMXでコード生成ファームウェア版数を変える方法を示します。CubeMXは、旧版ファームウェアをRepositoryフォルダへ自動保存し、いつでも旧版へ戻せる準備をしています。

1.スタンドアロン版CubeMXのProject Managerクリックで表示されるダイアログ一番下のUse Default Firmware Locationの☑を外し、BrowseクリックでRepositoryフォルダ内の旧版ファームウェア:STM32Cube_FW_V1.4.0を選択します。

スタンドアロン版STM32CubeMXでファームウェア版数を変える方法
スタンドアロン版STM32CubeMXでファームウェア版数を変える方法

2.そのままCubeMXでコード生成を実行すると、ファームウェア版数のみを変えたソースコードが生成されます。

※CubeIDEプラグイン版CubeMX(2つ前の図)は、Use Default Firmware Location自体有りません。つまり、最新ファームウェアでのみコード生成が可能です。
※CubeMXのGenerate Reportは、コード生成時の各種パラメタをPDF形式で出力する優れた機能です。しかし、肝心のコード生成ファームウェア版数が現状では出力されません。PDF出力へ手動で使用ファームウェア版数を追記することをお勧めします。

トラブルシューティング:5章

3章コンパイルエラー発生後、つまり最新ファームウェアFW_F1 V1.8.0でのコード生成後からトラブルシューティングします。

1.CubeIDEのエラーメッセージは、Symbol ‘LCD_EN_Pin’ could not be resolvedです。main.hで定義済みなので、なぜresolveできないのか不可解です。

2.そこで、Lcd.cの#include関連を見ると、#include “UserDefine.h”はあります。
※弊社テンプレートは、UserDefine.hでツール生成以外の全てのユーザ追加定義を記述し、全ソースファイルへincludeする方式を用いています。
※一方、CubeIDEは、CubeMXで生成するmain.cソースファイル1つへ、全ての制御を記述する方式を用いています。小規模なサンプルプロジェクトなどでは、解り易い方法です。
※但し、規模が大きくなると、ソースファイルを機能毎に分離し、ファイル単位の流用性やメンテナンス性を上げたくなり、弊社は、このファイル分離方法をテンプレートに採用中です。

3.UserDefine.hに、#include “main.h”の1行を追加します。

UserDefine.hへ#include "main.h" 追加
UserDefine.hへ#include “main.h” 追加

4.Clear Project後、Build Projectでコンパイルエラーは解消し、コンパイル成功します。評価ボード:STM32F103RBでF1BaseboardTemplate の最新開発環境での正常動作確認ができます。

最新ファームウェアは、全てのユーザ追加ソースファイルに、#include “main.h”が必須なことがトラブル原因でした。

最新開発環境への移設まとめ:6章

2017年9月にSW4STM32で開発完了したSTM32Fxテンプレートは、UserDefine.hに、#include “main.h”追記で、2019年11月STM32MCU最新開発環境:STM32CubeIDE v1.1.0、STM32CubeMX v5.4.0、STM32Cube FW_F1 V1.8.0/FW_F0 V1.11.0へ移設できます。

2019年6月にSW4STM32で開発完了したSTM32G0xテンプレートは、なにもせずに、2019年11月最新開発環境:STM32CubeIDE v1.1.0、STM32CubeMX v5.4.0、STM32Cube FW_G0 V1.3.0へ移設できます。
※STM32G0xテンプレートは、初めからUserDefine.hに、#include main.hが追記済みです。

Build Analyzer

SW4STM32からCubeIDEへ移設後、最初に目に付くIDE画面の差分は、ビルド成功時、右下表示のBuild Analyzerだと思います。

STM32CubeIDEのBuild Analyzer
STM32CubeIDEのBuild Analyzer

最初の図で示したG0AdcTemplate移設後のCubeIDE Build Analyzerを示します。RAM、FLASH使用率が一目で解ります。その他のIDE画面や操作は、旧SW4STM32と殆ど同じです。

Serial Console

CubeIDEは、Serial Console画面を持っています。従来環境では別途必要であったVirtual COM Port (VCP)用のTera Termなどのツールが不要となり、IDEだけでVCP入出力が確認できます。高まるVCP重要性が最新IDEへ反映されたと思います(関連投稿:STLINK-V3の4章)。

但し、バックグラウンドが、Tera Termの黒からSerial Console画面では白になったため、テンプレートで用いたVCP出力文字色を、デフォルトの白から黒へ変更した方が見易いです。この色変更後のSerial Consoleが下図右側です。

TeraTerm画面とSTM32CubeIDEのSerial Console画面
TeraTerm画面とSTM32CubeIDEのSerial Console画面

最新開発環境移設の課題と対策、テンプレート改版予定

現状のCubeIDE v1.1.0は、コード生成後、日本語コメントに文字化けが発生します。また、エディタタブ幅が2のまま変更できません。これら以外にも細かな不具合があります。このままでは、筆者には使いにくいIDEです。一方、Build AnalyzerやSerial Consoleは、とても役立ちます。
CubeIDEプラグイン版CubeMX v5.4.0は、Repository旧ファームウェアへの変更機能が無く、最新ファームウェアのみ利用可能です。

これら移設課題に対して、投稿その1から本稿で対策を示しました。

現状は、従来SW4STM32からCubeIDEへの「IDE移設過渡期」です。筆者は暫く両IDEを併用するつもりです。そして、新環境の使いにくい箇所が解消された時点でCubeIDEへ完全移設し、同時に汎用MCU第2位、シェア20%超のSTM32MCU向けテンプレートとしてSTM32FxテンプレートとSTM32G0xテンプレートを、本稿変更などを加え最新開発環境対応へ全面改版する予定です。

既に弊社テンプレートをお持ちの方や全面改版を待てない方は、まとめ6章の方法で移設可能です。但し、投稿その2で示した多くのリスクがありますのでお勧めはしません、自己責任で行ってください。

なお、新開発のSTM32G4テンプレートは、初めから最新CubeIDE、CubeMXで開発着手します。

*  *  *

STマイクロエレクトロニクスのSTM32CubeIDE v1.1.0改版により、旧SW4STM32開発アプリケーションを新環境へ移設する連続3回の投稿、いかがでしたでしょうか? 詳細説明がリンク先となり、筆者にしては長文投稿でしたので、解りづらかったかもしれません😌。

IoTによりMCU開発環境は、より急ピッチで変わります。最新デバイスと最新API利用が、その時点で最も効率的で優れたMCUアプリケーション開発手段です。環境急変にも柔軟対応できる開発者が求められます。

最新開発環境に上記のような課題が多少あっても、従来SW4STM32開発済みアプリケーションの最新STM32CubeIDE移設は、6章で示した1行追記のみで成功しました。

但し、顧客や管理者の方には、開発環境更新、移設の危うさや開発者の心理的負担、何よりもそれらへの対応時間は、あまり表に出てこない部分、また移設してみて初めて判る部分で理解されづらいものです。

本稿がMCUアプリケーション顧客、管理者、開発者の方々のご参考になれば幸いです。

P.S:2019年11月12日、2か月遅れでWindows 10 1909配布が始まりました。年2回のWindows 10大型更新トラブル話は多数あります。MCU開発環境は、年2回どころか度々更新されます。開発者は、その度にトラブル対処をしているのです👍。ちなみに本稿は、全てWindows 10 1903での結果です。

STM32G0動画と専用テンプレート

STマイクロエレクトロニクス(以下STM)の公式ブログで、STM32G0を理解できるPart.0~10の動画(英語版)を紹介しています。
各動画は、休憩時間に視聴するのに丁度良い6分から15分程度の長さです。

動画リスト

13:13     Pt. 0, Install Procedure

6:05       Pt. 1, Saving Content of the Flash of the STM32

13:47     Pt. 2, Blinky

13:09     Pt. 3, PWM

9:10       Pt. 4, External Interrupt

14:20     Pt. 5, Low Power (Pt. 1)

6:23       Pt. 6, Low Power (Pt. 2)

13:19     Pt. 7, Printf

13:27     Pt. 8, Low Layer Drivers

17:37     Pt. 9, DMA

15:14     Pt. 10, Flashing STM32

少し聞きにくい英語ですが、スライドを見るだけでも内容は解ると思います。

開発環境

動画のIDEは、KeilのSTM32G0/F0/L0専用無償版を使っています。既にSTM32CubeIDEやSW4STM32を利用中の方は、これらIDEとKeil専用版を同時インストールすると、STM32G0/F0/L0のみコンパイル可能となるトラブルが発生するらしいので注意してください。

IDE以外は、コード生成ツール:STM32CubeMX、評価ボード:Nucleo-G071RB、通信アプリ:Tera Termなどおなじみの環境での解説です。

STM32G0のSTM32F0/F1をカバーする広い守備範囲、Low Layer API開発メリットや重要性などが理解できると思います。残念なのは、STM32G0x全シリーズ搭載の最新ADC解説が無いことです。ADCに関しては弊社関連投稿を参照ください。

STM32G0x専用テンプレート

動画Part8紹介のLL APIを活用したSTM32G0x専用テンプレートを発売中です。

STM32G0xシリーズのプロトタイプ開発着手時に必要となるLPUARTやLED制御などの複数サンプルソフトがあらかじめ実装済みで、評価ボードADC入力変換値のTera Term出力も実装済みです。

STM32G0xシリーズ性能をフルに発揮したアプリケーション早期開発や、STM32G0習得に最適です。

ご購入、お待ちしております。

訂正のお知らせ:STM32CubeMX 5.1.0でSTM32G0 1.1.0公式サンプルプロジェクト生成可能

前投稿で2019年3月末時点ではSTM32G0 V1.1.0の公式サンプルプロジェクト内の付属STM32CubeMX全プロジェクトファイルが未完成と書きましたが、一部改善されました。
つまり、公式サンプルプロジェクトExamples_LLがSTM32CubeMXで生成可能になりました。

お詫びして😔、訂正いたします。

STM32CubeMXは、起動毎に更新チェックやインストール済みのMCUパッケージを自動更新します。STM32G0 1.1.0のままプロジェクトファイルからの生成が可能に変わりましたので、STM32CubeMX本体が更新されたと思うのですが、版数はVersion 5.1.0のままで変わりません(何回か起動を繰返すと正常化するのかもしれません😅、同じ症状の方はお試しを…)。

なんにせよ、STM32G0x専用テンプレートで使うSTM32CubeMXのLL(Low-Layer) API開発には朗報に変わりありません。めでたしめでたしです。

朗報:STM32G0公式サンプルプロジェクトがSTM32CubeMXで生成可能

STマイクロエレクトロニクス(以下STM)の新MCU:STM32G0xシリーズだからこそできた快挙です。AN5110 – Rev 3 – February 2019で、STM32G0公式サンプルプロジェクトが、付属STM32CubeMXプロジェクトファイル(拡張子.ioc)で生成できるようになりました(Table 1のMXアイコン部分)。

AN5110のTable 1
AN5110掲載のTable 1(一部抜粋)

従来サンプルプロジェクトとSTM32G0サンプルプロジェクト比較

例えば、従来のSTM32F0公式サンプルプロジェクトは、エキスパート自作のもの(多分、むかしの標準ペリフェラルライブラリ利用)でした。STM32ソフトウェア開発は、今はSTM32CubeMXコード生成出力へユーザコードを追加する方式です。

従って、従来サンプルソースコードを利用するには、エキスパート作成の必要部分を解読後カットし、STM32CubeMXで生成した自分のソースコードへペーストして流用してきました。

AN5110は、この公式サンプルプロジェクトが、付属STM32CubeMXで直接生成できることを示しています。サンプルプロジェクト流用・活用が、これまで以上に簡単・便利になります。従来のソースコードカット&ペーストから、付属STM32CubeMX変更と生成コードへユーザコードを追加すれば済むからです。

STM32ソフトウェア開発の最重要ツール:STM32CubeMX活用に即した方法がAN5110と言えます。

2019年3月末時点では付属STM32CubeMXプロジェクトファイル未完成

重要なのは、ここからです。

3月末時点では、公式サンプルプロジェクト内のSTM32CubeMXプロジェクトファイルが未完成です。例えば、Table 1一番上のNucleo-G071RBのADC_AnalogWatchdogプロジェクト付属STM32CubeMXプロジェクトファイルを開いた様子が下図です。

ADC_AnalogWatchdogの.ico
図1 ADC_AnalogWatchdogサンプルプロジェクト付属STM32CubeMXプロジェクトファイルの.iocを開いた様子

このままコード生成してもADC_AnalogWatchdogサンプルプロジェクトはできません😴。

ADC_AnalogWatchdogプロジェクトだけではなく、全ての公式サンプルプロジェクトで同様です。

つまり、現時点では、残念ながら公式サンプルプロジェクト内の付属STM32CubeMXプロジェクトファイルは未完成です。公式サンプルプロジェクトの素:STM32G0 1.1.0改版を待たねば、AN5110は実現しません。
前投稿で書いたようにSTM32G0 1.1.0(2019/02/26)は、STMに買収されたAtollic TrueSTUDIOへも未対応でした(図1にTrueSTUDIOフォルダが無いことからも判る)。

新しいMCU発売にはありがちですが、開発に一番重要なツール完成には、開発元ベンダーであっても年単位の時間が必要です(AN5110 Revision historyより)。

STM32CubeMXを使って公式サンプルプロジェクトを生成するAN5110の方向性は、正しいと思います。
新MCU:STM32G0シリーズSTM32G0だけでなく、他の既存MCU:STM32F0/F1シリーズSTM32F0/F1などもこの方向の対応を期待します。

まとめ

以上のように、STM32G0x専用テンプレート開発環境は整いつつありますが、少し待ってから、具体的には、STM32CubeMXへインストールするSTM32G0xシリーズMCUパッケージ、STM32G0 V1.1.0改版を待ってから先へ進めた方が良さそうです。

この改版までの待ち時間は、STM32G0x専用テンプレート開発で使うLL(Low-Layer)APIの習得に充てます。