MCUXpresso IDE v11をLPC845 Breakout boardで試す

まとめ

NXPのMCUXpresso IDE v11.0.0 [Build 2516] [2019-06-05]を使い、LPC845の評価ボードLPC845 Breakout boardの動作を確認し、サンプルプロジェクト赤LED点滅を緑LEDへ簡単に変更できる、SDK:Software Development Kitメリットを示しました。

LPCOpenライブラリなどを使った旧IDEに比べ、SDKを使うMCUXpresso IDE v11は、より早く簡単にソフトウェア開発が可能です。また、IDE更新とSDK更新が別々なため、常に最新ドライバ、BSP:Board Support Packageでの開発ができます。これもSDKメリットの1つです。

SDKは、ソフトウェア開発速度を上げる専用ライブラリ集です。MCUXpresso IDE v11のSDKを習得し、効率的なソフトウェア開発に慣れる必要があります。
これには、実際に評価ボード専用SDKを作成し、サンプルプロジェクトへ変更/修正を加え、SDKメリットを実感するのが早道です。本稿で用いたLPC845 Breakout boardは、SDK習得に好適です。

LPC8xxをアップグレートしたLPC845(64KB Flash、16KB RAM)評価ボード:LPC845 Breakout boardは、タッチパッド+デバッガ付きで低価格(¥697)、少サイズ(65x18mm)です。このサイズならそのまま装置へ実装も容易です。現場での短時間制御系アップデートや修理交換などに応用できます。

LPC845 Breakout board

LPC845 Breakout board
LPC845 Breakout board(出典:LPC84X MCU TECHNICAL OVERVIEWへ加筆)

LPC8xxシリーズは、アップグレートしたLPC84xとコストダウンしたLPC80xの2方向へ発展しました(関連投稿:NFCを使うLPC8N04のOTA)。LPC845評価ボード:LPC845 Breakout board (Cortex-M0+/30MHz)を入手しましたので、最新のLPCXpresso IDE v11を使って動作確認します。

LPCXpresso IDE v11.0.0 [2019-06-05]

最新LPCXpresso IDEは、v11.0.0 [2019-06-05]です。旧IDEからSDK:Software Develipment Kit追加、Pin設定方法が変わりました。既に旧IDEを使い慣れた方は、SDK活用の新LPCXpresso IDE v11に少し驚きを感じると思います。

LPCXpresso IDE v11ダウンロードとインストール

LPCXpresso IDE v11のダウンロードとインストールは、普通のPCアプリケーションと同じです。旧IDEではインストール後、アクティベーション手順が必要でしたが、v11は不要です。

また、デフォルトではプログラム/workspace共に専用フォルダ:MCUXpressoIDE_11.0.0_2516へ展開されます。つまり、旧IDEと共存します。ストレージ使用量は多くなりますが、共存するので安心して新旧IDEを試すことができます。

インストール後、Help>Check for Updatesを実行しIDEの更新有無を確認します。

また、最初のMCUXpresso IDE v11起動時にセキュリティソフトが警告を出すことがあります。お使いのセキュリティソフトに応じて対応してください(筆者Windows 10 Pro 1903のAvastは警告を出しましたので、例外追加で対応しました)。

LPCXprsso IDE v11インストール起動画面
LPCXprsso IDE v11インストール後、最初の起動画面

SDK Builder

SDKは、周辺回路ドライバ、サンプルプロジェクト、評価ボードサポートパッケージ:BSPなどを含む開発支援ツールです(SDKユーザガイドはコチラ)。インストールしたMCUXpresso IDEとは別に、ネット上のSDK BuilderでLPC845 Breakout board専用SDKを作成します(要ログイン)。

SDK BuilderのSelect Development Boardをクリックし、LPC845BREKOUTを選択します。後は、Build MCUXpresso SDKをクリックすると、作成したSDKの圧縮ファイル:SDK_2.6.0_LPC845BREAKOUT.zipがダウンロードされます(2.6.0は版数)。
※評価ボードによっては、Amazon-FreeRTOS、Azure IoTなどのミドルウェアもSDKへ追加可能です。

SDK設定

ダウンロードしたSDK圧縮ファイルを、LPCXpresso IDEのInstalled SDKsビューへドラッグ&ドロップするだけでSDK設定は完了です。

LPC845 Breakout boardの赤LED点滅動作

SDKにはLPC845 Breakout boardの赤LED点滅させる、いわゆるLチカサンプルプロジェクトがあります。このLチカソフトで評価ボードの動作確認をします。

IDEのQuickstart Panelビュー、Import SDK example(s)…をクリックします。Lpc845breakoutを選択後Nextをクリックします。Examplesのdemo_appsを開くとled_blinkyが現れます。これがLチカサンプルです。

Led_blinkyに☑を入れFinishをクリックすると、workspace内にlpc845breakouty_led_blinkyプロジェクトが展開されます。

LPC845 Breakout boardのLED点滅サンプルプロジェクトのインポート
LPC845 Breakout boardのLED点滅サンプルプロジェクトのインポート

何も変更せずに、Quickstart PanelビューのBuildをクリックするとコンパイルが成功します。評価ボードをPCと接続しDebugのクリックでCMSIS-DAPプローブを自動認識し、デバッグモード画面へ変わります。

後は実行などで赤LEDが1秒毎に点滅する動作が確認できます。

SDKサンプルプロジェクトそのものの動作確認は、以上のように簡単です。SDKのメリットは、プロジェクト変更や機能追加が簡単にできることです。例を次に示します。

LPC845 Breakout boardの赤→緑LED点滅の変更

赤LEDへの制御を緑LEDへ変更するには、IDEをDevelop画面からPin画面へ切替えます。切替は、Open Pinsクリック、またはIDE右上のデバイスアイコンのクリックどちらでもOKです。

LED_LED点滅からGREEN_LED点滅変更のPin画面
LED_LED点滅からGREEN_LED点滅変更のPin画面

Pin画面は、プロジェクト使用中のピン名、周辺回路などがハイライト表示されます。

lpc845breakouty_led_blinkyプロジェクトの場合は、PIO1_2とGPIOで、IdentifierにLED_REDとあります。Identifireは、ソースコード中で使えるマクロです。LED_GREENやLED_BLUEが既にあるのも解ります。このように評価ボード実装済みのハードウエアが、あらかじめSDKで定義済みです。

赤LED→緑LED変更は、Pin11のLED_GREENに☑を入れ、表示されるPIO1_0選択肢からデフォルトのGPIO,PIO_1_0を選びます。次にUpdate CodeをクリックすればPin画面の変更がソースコードへ反映されます。

LED_RED点滅からLED_GREEN点滅へのピン変更
LED_RED点滅からLED_GREEN点滅へのピン変更

ソースコード表示のDevelop画面へ切替えるには、右上のDevelopアイコンをクリックし、L16をコメントアウト、代わりにL17の追記で赤→緑LED点滅への変更完了です。ビルドして緑LED点滅動作を確認してください。

LED_RED点滅からLED_GREEN点滅へのソースコード変更
LED_RED点滅からLED_GREEN点滅へのソースコード変更

このようにサンプルプロジェクトの変更は、SDKに評価ボード実装ハードウエアが定義済みなので、ボード回路図を確認せずにすぐにできます(回路図を確認すれば万全ですが…😅)。

さて、緑LED点滅動作が確認できた後にソースコードへ下記3か所の変更を加えてください。

BSPを使った赤LEDの点滅
BSPを使った赤LEDの点滅

これは、board.hで定義済みのBSPを使った赤LED点滅へのソースコード変更です。追記したLED_RED_INIT(0)とLED_RED_TOGGLE()は、board.hに記述があります。L80:GPIO_PortToggle()よりもL81:LED_RED_TOGGLE()の方が、ソースコード可読性が高いことが解ります。

BSPは、評価ボードで使用頻度が高い関数やマクロを定義します。BSP活用でソースコード可読性が高まりケアレスミスも減ります。BSPは、SDK作成時に生成されます。

LPC845 Breakout boardのSDK活用例を示しました。SDKメリットも実感できたと思います。

LPCOpenライブラリを使ったLPC8xxテンプレートも、新しいSDK対応へUpgradeする必要があるかもしれません。SDKは、新しい評価ボードから対応中なので、残念ながら少し待つ必要があるかもしれませんが…😅。

独自開発ボードのMCUXpressoプロジェクト作成方法

今回はNXP評価ボード以外の“独自開発マイコンボード”を使って、MCUXpressoの新規プロジェクトを作成する方法を、LPC810を例に示します。

New Project by Available boards
New Project by Available boards

上図NXP評価ボードを使ったMCUXpressoの新規プロジェクト作成は簡単です。現在LPC8xxマイコンには、6種のNXP評価ボードがあり、これらの中から使用ボード選択し、Nextクリックでダイアログに従っていけば新規プロジェクトが作成できます。

Preistalled MCUsプロジェクト作成

一方、LPC810(ROM/RAM=4KB/1KB)で独自開発したマイコンボードへ新規プロジェクトを作成する場合は、Preinstalled MCUsからLPC810を選びます。

New Project by Preinstalled MCUs
New Project by Preinstalled MCUs

Nextクリック>LPCOpen – C Project>Project name追記>Import>BrowseでLPCOpenライブラリをImportします(最新版LPCOpenライブラリはv3.02ですが、ここではMCUXpresso IDE v10.1.1 にプリインスト済みのv2.19を使っています)。

Import LPCOpen Library
Import LPCOpen Library

Importするのは、lpc_chip_8xx (lpc_chip_8xx/)です。lpc_board_nxp_lpcxpresso812は、NXP評価ボード利用時、lpc_chip_8xx関数を利用したマクロ関数です(マクロ関数は後述)。

インポートが完了するとNew Projectダイアログに戻ります。ここでLPCOpen Chip Library Projectのlpc_chip_8xx_libの_lib部分を削除すると、Nextボタンが“有効”になるのでクリックします。ポイントは、_libを削除することです。削除しないと、Nextは無効のままで先に進めません。

Import lpc_chip_8xx
Import lpc_chip_8xx

この後は、デフォルト設定のままでNextを何回かクリックすれば、独自開発ボードでの新規プロジェクトが作成できます。

なおLPC810は、ROM4KB、RAM1KBと極少ですのでデフォルトで使用となっているMTBやCRPは未使用に変更すると良いでしょう。

ちなみに、MTB、CRP未使用でLPC810へ弊社LPC8xxマイコンテンプレートのみを実装した時のメモリ使用量は、ROM88%、RAM2%です(debug configuration時)。これでは、残り部分へユーザ処理を追加するとすぐに容量オーバーになります。

対策は、コンパイラ最適化をデフォルトの“最適化なし(O0)”から“、1段階最適化(O1)”へ変更することです。
Project >Properties>C/C++ Build>Settings>Tool Settings>Optimization>Optimization Levelで最適化レベルが変更できます。O1レベルでも、かなりの使用量空きが確保できます。

Optimize for Debug
Optimize for Debug

但し、最適化には副作用も伴います。変数にvolatile宣言を付記するなどして、ツールが行う勝手な最適化への対策をしましょう。対策の詳細は、コチラなどを参照してください。

マクロ関数

LPCOpen Library Stack
LPCOpen Library Stack

LPCOpenライブラリは、層構成になっています。BOARD layerは、CHIP layerを使って上位の各ExampleへAPIを提供します。例えば、LPC812評価ボード実装済みのLED出力の初期化関数:Board_LED_Init()が、chip layerのChip_GPIO_…()を使っているなどです。

Macro Function
Macro Function

本投稿では、Board_LED_Init()をマクロ関数と呼びます。NXP評価ボードは、NXPから多くのマクロ関数が提供されますが、独自開発ボードでは、これらも必要に応じて自作する必要があります。

また、自動生成ソースコードにインクルードされるファイルも、NXP評価ボードでは無いためboard.hからchip.hに代わっていることにも注意しておきましょう。

MCUXpresso Generated Source
MCUXpresso Generated Source

ベンダ提供評価ボード活用の独自開発ボード

独自開発マイコンボードと、NXP評価ボードのIO割付が同じならば、MCUXpressoの新規プロジェクト作成時に本投稿で示したような神経を使う必要はありません。多くのマクロ関数もそのまま利用できます。独自開発ボードの新規プロジェクト作成でも、NXP評価ボードと全く同じになるからです。

独自にマイコンボードを開発する前に、ベンダ提供の評価ボードIO割付を調査し、独自開発へ適用できるか否かの検討をすることをお勧めします。

ベンダ提供評価ボードは、標準的なIO割付ですが、最も応用範囲が広い割付とも言えます。さらに、上述のようにソフトウェア開発、新規プロジェクト作成に対しても多くのメリットがあるのがその理由です。

半導体メーカM&Aと技術シナジー

本ブログでも関心があったFreescaleをNXPが買収し、そのNXPをQualcommが買収するという半導体メーカのM&Aは、終息に向かうようです。Runesasもアナログ、ミックスドシグナル半導体を得意とするIntersil(インターシル)の買収を完了しました。
※QualcommのNXP買収は、未だに決着がついていない買収案件だそうです。

一方で、AtmelとMicrochipに見る、半導体企業M&Aの難しさという記事を読むと、M&A完了後も企業の技術的シナジーが生まれるには時間がかかりそうです。

以前記載しましたが、NXP)LPC8xxのLPCOpenライブラリv3.01の状況を観ると、この記事内容は頷けるものがあります。MCU部門だけを比較すると、実はNXPよりもFreescaleの方が規模は大きく、また、Cortex-M0/M0+ MCUで比較すると、2社で重複する製品があるので、既成製品(LPC8xx、LPC111xやKinetisシリーズ)の将来は、明確には判らないのが現状だと思います。

統合開発環境:IDEは、旧FreescaleのKinetis Design Studio+Processor Expertと旧NXPのLPCXpresso+LPCOpenライブラリが、新NXPではMCUXpresso+SDK+Config Toolsとなり、一見、新しい開発環境に統合されたように見えます。

しかし、買収完了後の新発売MCU開発以外は、個人的には旧開発環境の方がどちらの既成製品開発にも適している気がします。

9月28日現在、LPC8xx用のLPCOpenライブラリv3.01は、残念ながら更新されていません

LPC8xxのGPIO制御とデバッグTips

NXP ARM Cortex-M0+マイコンLPCXpresso8xxのLPCOpenライブラリが、v3.01へ更新され、v2.x版から持ち越された多くのバグが修正されたようでした(結論から言うと、LPC81xにはバグが残っています。LPCXpresso8xxのLPCOpenライブラリv3.01は、前回の記事を参照してください)。

今回は、マイコン制御で最も基本となるGPIO制御を、MCUXpressoのサンプルソフトperiph_gpioと最新LPCOpenライブラリv3.01を使って解説し、さらにデバッグTipsを示します。

サンプルソフトperiph_gpioのGPIO API

LPCOpen v3.01のGPIO API数は、GPIO機能初期化、GPIOピン単位制御、GPIOポート単位制御の3種類で35個あります。全部使う必要はありませんので、最も基本的なGPIO APIを抜粋し使っているのがperiph_gpioで下記7個です。

periph_gpioのGPIO API一覧(その1)
GPIO API 概要
1 Chip_GPIO_Init(LPC_GPIO_PORT); GPIO機能初期化(=クロック供給)
2 Chip_GPIO_SetPinDIROutput(LPC_GPIO_PORT, 0, ledBits[i]); ピン(入)出力方向設定
3 Chip_GPIO_GetPinState(LPC_GPIO_PORT, 0, ledBits[LEDNumber]); ピン入力値取得
4 Chip_GPIO_SetPinState(LPC_GPIO_PORT, 0, ledBits[i], true); ピン出力値設定
5 Chip_GPIO_SetPinToggle(LPC_GPIO_PORT, 0, ledBits[LEDNumber]); ピン出力値反転

LPCXpresso8xxは、Portは0しかありませんので、「LPC_GPIO_PORT, 0,」は決まり文句、最後のパラメタは、GPIO0_xyzのGPIO論理ポート番号を示します。物理ピン番号ではない点に注意してください。

periph_gpioのGPIO API一覧(その2)
GPIO API 概要
6 Chip_GPIO_SetPortMask(LPC_GPIO_PORT, 0, ~PORT_MASK); ポートマスクレジスタ設定
7 Chip_GPIO_SetMaskedPortValue(LPC_GPIO_PORT, 0, count); ポート出力値設定(マスクレジスタ経由)

ポート単位のGPIO APIは、複数の出力ピン出力を同時に設定するもので、バス出力時に便利です。これら7個のGPIO APIのみを習得していれば、基本的なGPIO制御ができます。

評価ボード実行結果

LPC81xは、LPCXpresso812、LPC82xは、LPCXpresso824-MAXの評価ボードで実行した結果が下図です。

periph_gpio実行のデバッグ画面
periph_gpio実行のデバッグ画面(赤色がLPC824、青色がLPC812)

LPC81xとLPC82xでは、同じソースでも、ポート出力値が異なります。期待値は、LPCXpresso824-MAXでしか得られません。つまり、LPC81xにはGPIO APIのポート制御にバグがあることが判ります。

デバッグTips

ここで、デバッグのTipsを解説します。

MCUXpressoのローカル変数は、Quick Start ViewのVariablesタブで、周辺回路状況は、Workspace ViewのPeripherals+タブで表示可能です。適当な場所にブレークポイントを設定しF8クリックで、ブレークポイントまで実行します。評価ボード実行結果は、この操作で得られたものです。

現行版MCUXpressoは、デバッグでよく使うファンクションキーのツールチップが一部表示されません。
F8(実行)と、F5(ステップ実行)、F6(ステップオーバー:関数に入って処理「後」停止)、F7(ステップリターン:関数に入った状態で処理「後」停止)を覚えておくとデバッグ効率が良くなります。

LPCOpenライブラリv3.01のLPC81xポート制御、バグ回避方策

LPC812とLPC824はGPIOレジスタ構成が異なります。後で開発されたLPC824の方が、より制御し易いレジスタを備えています(ハードウエアマニュアルより抜粋)。

LPC824とLPC812のGPIOレジスタ比較
LPC824とLPC812のGPIOレジスタ比較

バグがあったLPC81xのポート出力値設定の代替として、他のGPIO API利用または、直接ハードレジスタ操作などを試しましたが、LPCOpen v3.01では、代替方法が見つかりません。思うにLPC81xライブラリの結構深い場所にバグがある可能性があります。

そこで、LPC81x動作には、旧LPCOpenライブラリv2.15を、LPC82x動作には、最新LPCOpenライブラリv3.01を使ってLPC82xテンプレート開発をすることに方針変更しました。当初目標のLPC8xxテンプレート、つまりLPC82xとLPC81xの両方を同じテンプレートソースで実現することは、残念ながら諦めました。

MCUXpressoでの旧LPCOpenライブラリv2.15の使い方

MCUXpressoは、このようなバグの場合に備えて旧LPCOpenライブラリ群も備えています(C:\nxp\MCUXpressoIDE_10.0.2_411\ide\Examplesフォルダ参照)。最新版MCUXpresso IDE v10.0.2_411でもLPCOpenライブラリv3.01が同封されていないのも、本稿で示したバグが理由かもしれません。

旧LPCXpressoプロジェクトをMCUXpressoで開こうとすると、下記ワーニングが出力されます。

Older Workspace Version Warning
Older Workspace Version Warning

旧LPCXpressoとMCUXpresso両方を使い続ける方は、LPCXpressoプロジェクトをコピーして別名のプロジェクトを作成した後に、MCUXpressoで開くと良いでしょう。

LPC81xテンプレートV2.1は、テンプレートプロジェクト内にLPCOpenライブラリv2.15を装着していますので、そのままMCUXpressoで開いても問題なく動作します。

*  *  *

LPCOpenライブラリv3.01を使った新しいLPC82xテンプレートV3の開発は、7E目標で進行中ですが、上記のようなLPCOpenライブラリv3.01バグがあり、予定より難航しています。ちなみにUart関連は、LPCOpenライブラリv3.01でかなり改善されました。

また、MCUXpressoは、Ctrl+スペースキーによる入力補完機能も実装されており、使い勝手は向上しています。旧LPCXpressoを使う必要性は低いと思います。

LPC8xxテンプレートV3完成は、今しばらくお待ちください。

NXP LPC8xx LPCOpenライブラリ更新

NXPのLPX8xxのLPCOpenライブラリが、1年7か月ぶりに更新されv3.01になりました。リリースノートを見ると、多くのバグが修正され、積み残しバグ(Carried Forward)も(現時点では)無くなりました。

なお、7月11日発表のMCUXpresso IDE v10.0.2 [Build 411]に、この最新LPCOpenライブラリv3.01は、未だ同胞されていません。 是非LPCOpenサイトから手動でダウンロードしてください。

v2.15積み残しGPIO APIバグ解消

本ブログ2015年9月記事のGPIO APIバグも解消されました。
このGPIO APIバグは、2年以上前のv2.15から積み残されたものです。GPIO APIは、マイコンAPIのなかで最も重要かつ頻繁に使うものだけに、手動で修正し利用されていた方も多いと思いますが、やっと解決されました。

LPC111xのLPCOpenライブラリは未更新

LPC1100シリーズのLPCOpenライブラリ更新状況がコチラです。残念ながら、弊社LPC111xテンプレートで使用中のLPCOpenライブラリLPC11C24は、v2.00a(2013/09/13)のままです。但し、LPC111xテンプレート動作には特に問題ありません。

LPC82xテンプレート開発再開

LPC8xx LPCOpenライブラリが更新され、GPIO APIバグも無くなりましたので、前述の2015年9月記事で一時停止中であったLPC82xテンプレートの開発を再開します。

開発環境は、旧LPCXpressoを変更し、最新のMCUXpressoとします。リリースは、7月末を予定しております。
勿論、既存LPC81xテンプレートも最新LPCOpenライブラリv3.01を使って再開発し、まとめてLPC81x、LPC82x両方に対応したLPC8xxテンプレートとします。

また、Cortex-M系マイコンのコードテクニックとして有名な、ループ構文には、カウントダウンの方が高速でコードサイズも小さいことをテンプレートへ取り入れた改良も加える予定です。
※上記コードテクニックは、ARMコンパイラバージョン6.6ソフトウエア開発ガイド 7章を参照してください。

*  *  *

LPCOpenライブラリの更新は、NXPの 各種Cortex-Mマイコンへの力の入れ具合を反映したものと思います。

最新マイコンのLPC54xxxのLPCOpen版数は、v3.03.000やv3.00c.001で、LPC8xxよりも更新日も早いのは当然ですが、LPC8xxが、例えばLPC13xxなどの既存他シリーズよりも早くLPCOpen v3.xxへ更新されたのは、反映結果でしょう。これは、2016年12月記事の2017NXPロードマップとも符合します。

既存マイコンの置換え市場を狙った、小ピンでスイッチマトリクスを持つ32ビットLPC8xxマイコンの優位性を示す指標の1つだと言えます。

2016年MCUシェア1位はNXP

2016年主要マイコンシェア/販売額の記事がEE Times Japanに記載されました。2016年は、主要MCUベンダの買収が盛んでしたが、買収後で集計されているので、MCUの現状が示されています。

2016 MCU Share
2016 MCU Share(記事より)

車載半導体はNXPが2015年にルネサスを抜いて1位になっており、2016年のMCUシェア首位とともにNXPの躍進が明確になりました。

NXPの新IDE MCUXpresso

2017年4月時点の最新MCUXpressoIDE_10.0.0_344と、最終LPCXpresso_8.2.2_650の違いは、FreeRTOSタブが追加されたことのみです。残念ながらMCUXpressoのFreeRTOSもv8.0.1のままでした。

FreeRTOS V9はFreeRTOSサイトからダウンロードできます。が、これをMCUXpressoのv8へ手動で上書きインストールして問題なく動作させる自信はありません。FreeRTOS v9がNXPにより提供されるまで待つ方が、トラブルがなく得策と判断しました。
※MCUXpressoは、旧LPCXpressoプロジェクトフォルダがそのまま使えます。
※MCUXpressoに、PE: Processor Expertをアドインし旧Kinetis Design Studio代用とする方法は、調査中です。

マイコンテンプレートラインナップ

MCU Templates Lineup
MCU Templates Lineup

弊社マイコンテンプレートラインナップを、2016 MCUラインキング順に並べたのが上表です。おかげさまでテンプレートは、Runesas>NXP(Freescale含む)>Cypressの順に売れております。が、MCU順位5のSTM向けテンプレートもあれば、と思いました。

STMの場合、Cortex-M0/M0+を対象コアとすると、STM32F0/L0がテンプレートの対象です。しかし、このクラスのMCUへのRTOS適用によるROM/RAM大容量化や、IoT向けMCUの販売個数の増大などを考慮すると、より高性能なCortex-M3クラスも視野に入れた開発も必要か?と思っています。

CMSIS準拠でソフト開発すると、コア差はCMSISで隠蔽されるので、要求性能に応じたMCU選択が可能でクラス別けの必要もなくなります。また、RTOSでマイコンテンプレート相当が本当に必要か?という懸念もあります。

2016MCUシェアから、ルネサスの順位低下傾向が今後気になるところです。また、マイコンテンプレートについても、これらシェアの動きに合わせて、変わり続ける必要性を実感しました。

MCUXpresso概要と当面の開発方法

LPCXpressoとKinetis Design Studioが新しいMCUXpressoへ統合されました。Windows 10 Version 1703で動作確認したMCUXpressoの概要について示します。

MCUXpresso概要

MCUXpressoの概要は、コチラの4分程の英語Videoが良く解ります。ポイント抜粋すると以下になります。

MCUXpressoは、3つのツール:IDE、SDK、CFGから構成され、各機能が下記です。

  • IDE機能:ソースエディト、コンパイル、デバッグ。Eclipse 4.6ベース。ローカルPCで利用。
  • SDK機能:使用デバイスのAPI生成とサンプルソフト提供。クラウドで設定し、結果をIDEにダウンロードして利用。
  • CFG機能:使用ピン、動作周波数など設定。クラウドで設定し、結果をIDEにダウンロードして利用。
MCUXpresso Overview
MCUXpresso Overview

全てが1パッケージのローカルPCで機能した旧IDE(LPCXpressoやKinetis Design Studio)を、MCUXpressoで3ツール構成にしたのは、SDKとCFGをクラウド側で分離提供し、IDEを軽量化することと、CMSIS準拠の開発環境構築が目的だと思います。CMSISはコチラの記事を参照してください。

CMSIS準拠ならMCUハードとソフトの分離が容易になり、開発済みアプリケーション資産を少ない工数で別ハード移植や再利用が可能です。また、CMSIS仕様(CMSIS-COREや-DSPなど)が修正/更新されても、その内容は全てクラウド側のSDKとCFGツールに閉じ込めることができるので、常に最新CMSIS準拠のSDKとCFGを利用したソフト開発が可能です。
ARM Cortex M系のIDEは、今後この分離構成が流行するかもしれません。

注目点は、IDEではコードサイズ制限なし、SDKではFreeRTOS v9提供(LPCXpresso最終版はv8)、CFGでは電力評価やプロジェクトクローナーです。各ツールの概要を以下に示します。

MCUXpresso IDE

MCUXpresso IDE
MCUXpresso IDE

旧LPCXpressoとの差分は、FreeRTOSタブが新設されたこと位です。コードサイズ制限なしで、添付マニュアル類も判り易く、誰にでも使い勝手が良いIDEです。MCU開発は、従来のRTOSを使わないベアメタル開発から、RTOS利用ソフト開発へシフトしつつあり、このMCUXpresso IDEもこの流れに沿った機能が追加されました。

MCUXpresso SDK

MCUXpresso SDK Builder
MCUXpresso SDK Builder

SDK BuilderでBoard、Processor、Kitsなどの対象MCUパラメタを入力し、対応するSDKパッケージをクラウドで作成後、ローカルPCへダウンロードして使います。パッケージの中身は、APIとこのAPIの活用サンプル集です。但し、2017年4月現在は、FreescaleのMCUと2017年に発売されたNXPのLPC54000対応のものしか提供されていません。

その理由は、旧Kinetis Design Studio:KDSのProcessor Expert:PEの代替だからと推測します。MCUXpressoは、KDSのPE機能がSDKとCFGに分離してクラウドへ実装されました。PEをお気に入りだったユーザは、この点に困惑すると思います。

一方旧LPCXpressoのユーザのSDKはというと、これは従来のLPCXpressoに同胞されていたLPCOpenライブラリなどがそのままMCUXpressoにも実装されています。つまり、MCUXpressoは旧LPCOpenライブラリなどが従来同様使えます。

従って、LPC54000開発とKDSユーザ以外は、MCUXpresso SDKを使うことは、今のところありません。

MCUXpresso CFG

MCUXpresso CFG Settings
MCUXpresso CFG Settings

CFGも現状はSDKと同様、FreescaleのSDKとNXPのLPC54000対応のみが提供中です。

MCUXpressoのまとめと当面の開発方法

MCUXpressoは、旧LPCXpressoと旧Kinetis Design Studioを統合した新しいIDEで、現状「フレームワークは出来たものの、完全な移行完了とは言い難い」ものです。以下に特徴を示します。

  • IDEとSDK、CFGの3ツールに分離するフレームワークは、CMSIS準拠ソフト開発に適している。
  • KDSのPE代替機能をSDKとCFGに割振っている。2017年NXP発売のLPC54000開発にも使えるが、既存NXPのMCUはSDK、CFGともに未対応。
  • LPCXpressoとKDSの今後の更新は、期待できない。将来的には、NXP/FreescaleのMCU開発にMCUXpressoを使う必要あり。
  • LPCXpressoユーザは、当面SDKとCFGを使わずにMCUXpresso IDEを旧LPCXpressoと殆ど同じ使用法で使える。
  • KDSユーザは、MCUXpresso IDEとSDK、CFGを使い開発する方法と、当面はMCUXpressoにPEをプラグインし開発する方法の2通りの開発方法が取りえる。但し、PEの更新が期待できないので、将来はMCUXpresso SDK、CFGを使わざるをえない。

当面の目安としては、LPCXpressoユーザならば、既存MCUのSDK、CFGが提供されるまで、KDSユーザならば、PE更新が必要になるまで、でしょう。

もう1つの目安が以下です。Windows 10 1703更新に相当するIDEベースEclipse 4.6(Neon)の次版4.7(Oxygen)への更新は、2017年6月の予定です。IDEベース更新から約半年でこの4.7ベースの最新IDEが各社からリリースされるとすると、2017年末から2018年初め位にはMCUXpressoへの完全移行完了となる可能性があります。

MCUのIDEは開発スピードを左右する部分だけに、仕様変更や更新が定期的に発生する部分と、各社独自の部分を分離し、トータルでパッケージ化すると、以上で示したフレームワークが重要となります。開発者は、フレームワーク要素更新にも注意を払う必要があるでしょう。

MCUXpreosso IDEリリース

3月22日、NXPより旧LPCXpresso IDEとKinetis Design Studio IDEを統合した新しいMCUXpresso IDEがリリースされました。見た目や操作感は、LPCXpressoに近く、Kinetis Design Studio:KDSユーザには、かなり違和感があるかもしれません。

MCUXpresso IDE
MCUXpresso IDE

LPCXpressoやKinetis Design Studioと共存可能

LPCXpresso v8.2.2_650やKinetis Design Studio 3 IDEと、新しいMCUXpresso IDE v10.0.0_344は、Windows 10 PC上に共存可能です。MCUXpresso_IDE_Installation_Guideに詳細が記載されています。

LPCXpressoユーザは、旧プロジェクトの移行方法などもこのガイトに記載されていますので参照してください。

KDSユーザは、Processor Expert: PEが実装されていませんので、Software Development Kit: SDKサイトへアクセスし、Build your SDKで評価ボードまたはMCU毎に構成設定し作成後、APIのダウンロードが必要です。しかし、PEほど使い勝手は良くないでしょう。この方法に慣れるか、または、PEのアドインも可能かもしれません。詳細判明しましたら、本ブログに記載します。

LPCXpresso に近いAPI提供方法

IDEのAPI生成/提供方法で示した3方法では、私の予想に反して最も旧LPCXpressoに近く、オンラインで構成設定→IDEへダウンロードしてのAPI利用となりました。このオンラインSDKをIDEへ直接インストールすることもできますが、FreescaleとNXPの合併で多数のMCUをサポートするので、軽いIDEのために、API提供SDKをIDEから切り離したと思います。

MCUXpressoでは、LPCXpressoで使っていたLPCOpenライブラリも内包されており、そのまま使えます。

両社合併で新IDEも折衷的なものです。旧環境に慣れた開発者には、オンラインSDKに慣れるか悩みどころです。特に今春発売されたMCU以外の開発にはメリットが少ないので、Windows 10 1703を待ってからインストールするのが良いかもしれません。

NXPの新統合開発環境MCUXpresso

LPCマイコンとKinetisマイコンの2つを同時サポートする新しい統合開発環境(以下IDE)、MCUXpressoが2017年3月リリースに向けて開発中です。

LPCXpressoとKinetis Design StudioをMCUXpressoに一本化

Freescaleを買収したNXPのLPCマイコンにはLPCXpresso、旧FreescaleのKinetisマイコンにはKinetis Design Studio(以下KDS)が、それぞれの開発用IDEとして提供されてきました。どちらもEclipseベースのIDEなので、いつかは一本化されると思っていました。

新しいMCUXpressoのサポートマイコンリストは、コチラからダウンロードできます(ログイン必須)。Product Familyでフィルター操作をすると、下例のようにお使いのMCUの詳しい状況が判ります。

LPC1114/5 Support状況
LPC1114/5 Support状況

本ブログ対象のLPC1114/5とKinetis K/Lは、2017年3月にサポートされる予定です。

MCUXpressoもEclipseベースIDEで、無料版でもコードサイズ制限なしで使えるなど、数々の嬉しい特徴を備えています。LPCXpressoとKDSの最も異なる部分、API生成/提供方法がMCUXpressoでどのようになるかは、今のところ不明です。

IDEのAPI生成/提供方法

マイコンテンプレート使用中IDEのAPI生成/提供方法をまとめました。現状は3種類です。

API生成/提供方法
API生成/提供方法 概要 使用IDE
別ライブラリ IDEに別途APIライブラリを追加し利用 NXP:LPCXpresso(LPCOpen)
API生成ツール IDEで周辺回路を設定しAPI生成 Freescale:KDS

ルネサス:コード生成

SCH生成ツール IDE回路図で周辺回路を設定しAPI生成 Cypress:PSoC Creator

API生成ツールを使う方法は、周辺回路の知識が豊富でないと設定しにくいので、SCH生成ツールのCypress:PSoC方式が、動作イメージが把握し易く使い勝手が良いと個人的には思います。また、シンプルなのは、別ライブラリ提供のNXP:LPCXpresso方式ですが、MCUXpressoがこの方式になる可能性は、KDS統合も考えると少ないと思います。

いずれにしても来年は、この新しいMCUXpressoでNXPとFreescaleのマイコンテンプレートを、6月末を目途に作り直す予定です。興味がある方はすぐに現状マイコンテンプレートを購入されても、ご購入後1年以内のテンプレート更新は無償で行いますのでご安心ください。

米Qualcomm、NXPを300億ドルで買収か?

2015年、Freescaleを買収したNXPを、スマートフォンで有名なクアルコムが300億ドル以上で買収するかもしれないというニュースが飛び込んできました。

記事によると、買収目的は、スマホ市場の成長が停滞しつつあるので、組込と車載市場へ参入することで、買収が成立すれば、半導体業界史上、最大規模のM&Aになるそうです。

クアルコム製品でスマホによく用いられているSnapdragonを使ったシングルボードコンピュータ:SBCは、チップワンストップのコチラで参照できます。

個人的観測ですが、このところNXPに限らずマイコンベンダーの新製品開発が鈍っている気がします。IoT無線規格の見極めや、Eclipse Neon対応かなと思ってきましたが、業界再編の可能性も影響しているかもしれません。