NXP MCUXpresso SDKから見るARMコアMCU開発動向

NXP最新IDE:MCUXpresso v11が、SDK:Software Development Kitを使ってMCUソフトウェア開発をすることは、前回投稿で示しました。MCUXpresso SDKがサポートする評価ボード一覧が、SDKユーザガイド最新版:Rev.10、06/2019付録Bにあり、旧Freescale評価ボード:FRDMが多いですが、NXPの新しい評価ボードも追加されつつあります。

オランダ)NXPが、米)Freescaleを買収完了したのは2015年12月です。

本稿は、旧FreescaleとNXP MCU両対応のMCUXpresso SDKから、ARMコアMCU開発動向を調査し対策を示しました。

MCUXpresso SDK

MCUXpresso SDK Laysers(出典:Getting Started with MCUXpresso SDK, Rev. 10_06_2019)
MCUXpresso SDK Laysers(出典:Getting Started with MCUXpresso SDK, Rev. 10_06_2019)

ユーザガイド記載のMCUXpresso SDK層構成です。ユーザが開発するのはApplication Code。このApplication Code以外は、評価ボード:MCU Hardwareと、SDKで提供されます。色付き部分:Middleware、Board Support、FreeRTOS、Peripheral Drivers、CMSIS-CORE…がSDKの中身です。

もちろんMCU性能に応じて、初めからFreeRTOSやMiddlewareが無いSDKもあります。例えば、前回のLPC845 Breakout board SDKリリースノートを見ると、Board Support(前回投稿BSPのこと)とPeripheral Drivers(Author: Freescale)、CMSIS-CORE(Author: ARM)だけが提供中です。

CMSIS:セムシイス

CMSIS:Cortex Microcontroller Software Interface Standardは、リリースノートでAuthor: ARMが示すようにMCUコア開発元ARM作成の規格で、MCUハードウェアを上位層から隠蔽します(関連投稿:mbed OS 5.4.0のLチカ動作、LPCXpresso824-MAXで確認の3章)。

Peripheral DriversやBoard Supportは、 このCMSIS層のおかげでMCUハードウェアに依存しないAPIを、ユーザ開発Application Codeへ提供できる訳です。例えば、下記旧Freescale評価ボード:FRDM-KL25Z用SDKのboard.h記述:赤LED初期設定とトグルマクロ関数は、前回投稿で示したLPC845 Breakout boardと同じです。

FRDM-KL25Z用SDK_SDK_2.2_FRDM-KL25Zのboard.h
FRDM-KL25Z用SDK_SDK_2.2_FRDM-KL25Zのboard.h

従って、LPC845 Breakout boardで開発したアプリケーションコードを、そのままFRDM-KL25Zへも流用できます。

つまり、「SDK利用によりARMコアアプリケーションコードが汎用化」したのです。

同一アプリケーションコードでFreescaleとNXP評価ボード動作の意味

旧FreescaleとNXPのMCU評価ボードが同じアプリケーションコードで動作するのは、どちらもARMコアMCUでCMSIS層付きSDKなので、開発ユーザから見れば当然です。

しかし、従来は同じARMコアであってもApplication CodeはMCUベンダ毎に異なり、ベンダが異なれば常に1から開発していました。NXPでさえ、SDKを使った今回の同一コード動作に、Freescaleを買収後、約3.5年かかっています。
※Freescale 旧IDE:Kinetis Design Studioや、NXP 旧IDE:MCUXpresso IDE v11以前に慣れた開発者は、CMSIS付きSDKの新IDE:MCUXpresso IDE v11に違和感があるかもしれません。というのは、新IDEは、どちらの旧IDEとも異なるからです。

もちろんCMSIS利用はメリットだけでなく、デメリットもあるハズです。例えば、他社と差別化するベンダ独自Peripheral性能を極限まで引出すには、直接Hardwareを制御した方がより効率的です。STマイクロエレクトロニクスのSTM32G0x MCUのLL:Low Layer APIなどにその動向が見られます(関連投稿:STM32G0x専用Edge MCUテンプレート開発)。

しかし、CMSIS利用SDKを使ったアプリケーションコード開発は、ARMコア間のアプリケーションコードやベンダ間をも跨ぐ移植性、開発速度の速さ、ソースコード可読性などの点からユーザメリット大と言えます。
※ベンダを跨ぐ移植性とは、FreescaleとNXPのMCUで同一アプリケーションが動作することを意味します。FreescaleはNXPに買収されたので、実はベンダを跨いでいませんが、CMSIS層があればアプリケーションコード移植可能な実例と思ってください。

ARM MCUコアソフトウェアの開発動向と対策

現在MCUコアは、多数派のARMコアベンダと、少数派のNon ARMコアベンダの2グループに分かれています。

多数派ARMコアベンダは、NXPのMCUXpresso SDKに見られるようにCMSIS層利用アプリケーションコード開発、既存アプリケーション資産流用、差別化Peripheral開発に力点を置くと思います。目的は、より早く、より簡単な環境提供によるソフトウェア開発効率/速度の向上です。

我々ユーザは、この環境変化に応じたアプリケーションコード汎用化手法と、もう一方の差別化機能の性能発揮手法を臨機応変、かつ、それらを混同せず、時には組み合わせて開発する必要があると思います。

P.S.:弊社テンプレートで言えば、アプリケーションコード汎用化手法が、STM32Fxテンプレート他の汎用テンプレート、一方の差別化機能の性能発揮手法が、STM32G0x専用テンプレートです。

MCUXpresso IDE v11をLPC845 Breakout boardで試す

まとめ

NXPのMCUXpresso IDE v11.0.0 [Build 2516] [2019-06-05]を使い、LPC845の評価ボードLPC845 Breakout boardの動作を確認し、サンプルプロジェクト赤LED点滅を緑LEDへ簡単に変更できる、SDK:Software Development Kitメリットを示しました。

LPCOpenライブラリなどを使った旧IDEに比べ、SDKを使うMCUXpresso IDE v11は、より早く簡単にソフトウェア開発が可能です。また、IDE更新とSDK更新が別々なため、常に最新ドライバ、BSP:Board Support Packageでの開発ができます。これもSDKメリットの1つです。

SDKは、ソフトウェア開発速度を上げる専用ライブラリ集です。MCUXpresso IDE v11のSDKを習得し、効率的なソフトウェア開発に慣れる必要があります。
これには、実際に評価ボード専用SDKを作成し、サンプルプロジェクトへ変更/修正を加え、SDKメリットを実感するのが早道です。本稿で用いたLPC845 Breakout boardは、SDK習得に好適です。

LPC8xxをアップグレートしたLPC845(64KB Flash、16KB RAM)評価ボード:LPC845 Breakout boardは、タッチパッド+デバッガ付きで低価格(¥697)、少サイズ(65x18mm)です。このサイズならそのまま装置へ実装も容易です。現場での短時間制御系アップデートや修理交換などに応用できます。

LPC845 Breakout board

LPC845 Breakout board
LPC845 Breakout board(出典:LPC84X MCU TECHNICAL OVERVIEWへ加筆)

LPC8xxシリーズは、アップグレートしたLPC84xとコストダウンしたLPC80xの2方向へ発展しました(関連投稿:NFCを使うLPC8N04のOTA)。LPC845評価ボード:LPC845 Breakout board (Cortex-M0+/30MHz)を入手しましたので、最新のLPCXpresso IDE v11を使って動作確認します。

LPCXpresso IDE v11.0.0 [2019-06-05]

最新LPCXpresso IDEは、v11.0.0 [2019-06-05]です。旧IDEからSDK:Software Develipment Kit追加、Pin設定方法が変わりました。既に旧IDEを使い慣れた方は、SDK活用の新LPCXpresso IDE v11に少し驚きを感じると思います。

LPCXpresso IDE v11ダウンロードとインストール

LPCXpresso IDE v11のダウンロードとインストールは、普通のPCアプリケーションと同じです。旧IDEではインストール後、アクティベーション手順が必要でしたが、v11は不要です。

また、デフォルトではプログラム/workspace共に専用フォルダ:MCUXpressoIDE_11.0.0_2516へ展開されます。つまり、旧IDEと共存します。ストレージ使用量は多くなりますが、共存するので安心して新旧IDEを試すことができます。

インストール後、Help>Check for Updatesを実行しIDEの更新有無を確認します。

また、最初のMCUXpresso IDE v11起動時にセキュリティソフトが警告を出すことがあります。お使いのセキュリティソフトに応じて対応してください(筆者Windows 10 Pro 1903のAvastは警告を出しましたので、例外追加で対応しました)。

LPCXprsso IDE v11インストール起動画面
LPCXprsso IDE v11インストール後、最初の起動画面

SDK Builder

SDKは、周辺回路ドライバ、サンプルプロジェクト、評価ボードサポートパッケージ:BSPなどを含む開発支援ツールです(SDKユーザガイドはコチラ)。インストールしたMCUXpresso IDEとは別に、ネット上のSDK BuilderでLPC845 Breakout board専用SDKを作成します(要ログイン)。

SDK BuilderのSelect Development Boardをクリックし、LPC845BREKOUTを選択します。後は、Build MCUXpresso SDKをクリックすると、作成したSDKの圧縮ファイル:SDK_2.6.0_LPC845BREAKOUT.zipがダウンロードされます(2.6.0は版数)。
※評価ボードによっては、Amazon-FreeRTOS、Azure IoTなどのミドルウェアもSDKへ追加可能です。

SDK設定

ダウンロードしたSDK圧縮ファイルを、LPCXpresso IDEのInstalled SDKsビューへドラッグ&ドロップするだけでSDK設定は完了です。

LPC845 Breakout boardの赤LED点滅動作

SDKにはLPC845 Breakout boardの赤LED点滅させる、いわゆるLチカサンプルプロジェクトがあります。このLチカソフトで評価ボードの動作確認をします。

IDEのQuickstart Panelビュー、Import SDK example(s)…をクリックします。Lpc845breakoutを選択後Nextをクリックします。Examplesのdemo_appsを開くとled_blinkyが現れます。これがLチカサンプルです。

Led_blinkyに☑を入れFinishをクリックすると、workspace内にlpc845breakouty_led_blinkyプロジェクトが展開されます。

LPC845 Breakout boardのLED点滅サンプルプロジェクトのインポート
LPC845 Breakout boardのLED点滅サンプルプロジェクトのインポート

何も変更せずに、Quickstart PanelビューのBuildをクリックするとコンパイルが成功します。評価ボードをPCと接続しDebugのクリックでCMSIS-DAPプローブを自動認識し、デバッグモード画面へ変わります。

後は実行などで赤LEDが1秒毎に点滅する動作が確認できます。

SDKサンプルプロジェクトそのものの動作確認は、以上のように簡単です。SDKのメリットは、プロジェクト変更や機能追加が簡単にできることです。例を次に示します。

LPC845 Breakout boardの赤→緑LED点滅の変更

赤LEDへの制御を緑LEDへ変更するには、IDEをDevelop画面からPin画面へ切替えます。切替は、Open Pinsクリック、またはIDE右上のデバイスアイコンのクリックどちらでもOKです。

LED_LED点滅からGREEN_LED点滅変更のPin画面
LED_LED点滅からGREEN_LED点滅変更のPin画面

Pin画面は、プロジェクト使用中のピン名、周辺回路などがハイライト表示されます。

lpc845breakouty_led_blinkyプロジェクトの場合は、PIO1_2とGPIOで、IdentifierにLED_REDとあります。Identifireは、ソースコード中で使えるマクロです。LED_GREENやLED_BLUEが既にあるのも解ります。このように評価ボード実装済みのハードウエアが、あらかじめSDKで定義済みです。

赤LED→緑LED変更は、Pin11のLED_GREENに☑を入れ、表示されるPIO1_0選択肢からデフォルトのGPIO,PIO_1_0を選びます。次にUpdate CodeをクリックすればPin画面の変更がソースコードへ反映されます。

LED_RED点滅からLED_GREEN点滅へのピン変更
LED_RED点滅からLED_GREEN点滅へのピン変更

ソースコード表示のDevelop画面へ切替えるには、右上のDevelopアイコンをクリックし、L16をコメントアウト、代わりにL17の追記で赤→緑LED点滅への変更完了です。ビルドして緑LED点滅動作を確認してください。

LED_RED点滅からLED_GREEN点滅へのソースコード変更
LED_RED点滅からLED_GREEN点滅へのソースコード変更

このようにサンプルプロジェクトの変更は、SDKに評価ボード実装ハードウエアが定義済みなので、ボード回路図を確認せずにすぐにできます(回路図を確認すれば万全ですが…😅)。

さて、緑LED点滅動作が確認できた後にソースコードへ下記3か所の変更を加えてください。

BSPを使った赤LEDの点滅
BSPを使った赤LEDの点滅

これは、board.hで定義済みのBSPを使った赤LED点滅へのソースコード変更です。追記したLED_RED_INIT(0)とLED_RED_TOGGLE()は、board.hに記述があります。L80:GPIO_PortToggle()よりもL81:LED_RED_TOGGLE()の方が、ソースコード可読性が高いことが解ります。

BSPは、評価ボードで使用頻度が高い関数やマクロを定義します。BSP活用でソースコード可読性が高まりケアレスミスも減ります。BSPは、SDK作成時に生成されます。

LPC845 Breakout boardのSDK活用例を示しました。SDKメリットも実感できたと思います。

LPCOpenライブラリを使ったLPC8xxテンプレートも、新しいSDK対応へUpgradeする必要があるかもしれません。SDKは、新しい評価ボードから対応中なので、残念ながら少し待つ必要があるかもしれませんが…😅。