STM32 Azure RTOS開発ツール拡充

2022年4月20日、STマイクロエレクトロニクス(以下ST)は、Azure RTOS開発ツールを拡充し、より幅広いSTM32MCU対応を発表しました。拡充したSTM32MCUリストが下記です。

List of STM32 with X-Cube-AZRTOS Package(出典:The ST blog)
List of STM32 with X-Cube-AZRTOS Package(出典:The ST blog)

弊社販売中STM32G0xテンプレートで使ったSTM32G0や、テンプレート開発中のSTM32G4も、Azure RTOS開発が容易になりました。

CMSIS RTOSからAzure RTOSへ

今回の発表前までは、販売中のNXP版FreeRTOSアプリケーションテンプレートに続き、STM32G4を使ってST版“CMSIS-RTOS”アプリケーションテンプレートを構想していました。

しかし、今回のAzure RTOS開発ツール充実発表を受け、“CMSIS-RTOS”から“Azure RTOS”対応へ変更することにしました。STのAzure RTOSサンプルコードが活用でき、また、Microsoft公式Azure RTOS情報もあるからです。

※ARM社規定のCMSIS RTOSは、FreeRTOSやAzure RTOSをラップ(wrapper)するRTOSです。同じCMSIS RTOS APIでFreeRTOSまたはAzure RTOSが使え、開発アプリケーション流用性は高まります。但し、ラップ関数分のオーバーヘッドが生じます。詳しくは、構想投稿の4章を参照してください。

STがAzure RTOS開発ツールMCUを拡充した背景は、Microsoft Azureクラウド接続IoT MCUの急増だと思います。リストアップした9種のSTM32MCUが、IoT MCU有力候補と言えます。

Azure RTOS開発ツールインストール方法

STM32G4を例に、Azure RTOS開発ツールインストール方法を示します。現在のSTM32G4開発ツールが、下記版数です。

・STM32CubeIDE v1.9.0               (以下CubeIDE)
・STM32CubeMX v6.5.0               (以下CubeMX)
・STM32Cube FW_G4 v1.5.0        (以下FW_G4)
・X_CUBE_AZRTOS_G4 v1.0.0    (以下AZRTOS_G4)

X-CUBE-AZRTOS-G4が、今回発表したSTM32G4のAzure RTOS開発ツールです。

FreeRTOSは、CubeMXのMiddlewareに実装済みです。一方、Azure RTOS は、ExpansionsパッケージのAZRTOS_G4によりCubeMXへ機能追加します。Expansionsパッケージ追加のため、少し手間がかかります。

① CubeIDEのHelp>Manage Embedded Software Packagesクリック
② Embedded Software Packages ManagerのSTMicroelectronicsタブ選択
③ X_CUBE_AZRTOS_G4のAvailable Version 1.0.0を選択し、Installクリック

X-CUBE AZRTOS-G4のインストール
X-CUBE AZRTOS-G4のインストール

AZRTOS_G4インストール後、使用コンポーネントの選択が必要です。

④ CubeMXのPinout & Configurationタブ内Software Packsをクリック
⑤ Select Components(Alt+O)を開き、Software Packs Component Selectorで追加Azure RTOSコンポーネント:RTOS ThreadX/File system FileX/USB LevelX…などを選択し、OKクリック

STM32G4評価ボード:NUCLEO-G474REを使う場合は、RTOS ThreadXを選択し、Core/Low Power supportを選択すれば十分です。但し、念のため、Performance InfoやTraceX supportも選択しておきます。

インストールしたAzure RTOS ThreadX版数が、6.1.8であることも判ります。

Software Packs Component Selector
Software Packs Component Selector

Azure RTOS ThreadXサンプルコードインポートと動作確認

インストールしたAZRTOS_G4が正常動作するかをAzure RTOS ThreadXサンプルコードと評価ボード:NUCLEO-G474REで確かめます。確認方法が下記です。

① CubeIDEのInformation CenterからImport STM32Cube exampleをクリック
② STM32 Project from STM32Cube ExamplesのExample Selectorタブで、BoardのName:NUCLEO-G474RE、Middleware:ThreadXを選択

STM32G4評価ボード:NUCLEO-G474REのAzure RTOSサンプルコード
STM32G4評価ボード:NUCLEO-G474REのAzure RTOSサンプルコード

STM32G4 Azure RTOS ThreadXサンプルコードは、現在3個です。最も基本的な、

③ Tx_Thread_Creationを選択し、Finishクリック。CubeIDEへTx_ThreadX_Creationサンプルコードがインポート。
④ CubeIDEのTx_Thread_Creation.iocをクリックし、CubeMXで、Generate Code(Alt+K)を実行
⑤ CubeIDEでTx_Thread_Creationをビルドし、評価ボードへダウンロード
⑥ 評価ボードのLED2が、500ms点滅と200ms点滅を3回繰返し、その後1秒点滅に変わる

以上で、STM32G4 Azure RTOS開発ツールのX_CUBE_AZRTOS_G4インストールを、ThreadXサンプルコードで動作確認しました。

使用したTx_ThreadX_Creationサンプルコードの説明は、次週以降に行う予定です。直ぐ知りたい方は、Tx_ThreadX_Creationフォルダ内readme.htmlを参照してください。

まとめ

STが、STM32G0やSTM32G4、STM32U5などのIoT MCUに対し、Azure RTOS開発ツール拡充を発表しました。

STM32G4を例に、CubeMXへExpansionsパッケージのX_CUBE_AZRTOS_G4でAzure RTOS機能の追加方法、Azure RTOS ThreadXサンプルコードインポート、NUCLEO-G474REでThreadXサンプルコードの動作確認をしました。

STM32G0(Cortex-M0+/64MHz)、STM32G4(Cortex-M4/170MHz)、STM32U5(Cortex-M33/160MHz)は、弊社IoT MCUテンプレートの開発対象です。

今回の発表を受け、STM32G4のRTOSを、CMSIS-RTOSからAzure RTOSへ変更し、ST版Azure RTOSアプリケーションテンプレート開発を計画中です。

RAファミリのRTOS

RAファミリは、FreeRTOSとAzure RTOS、両方に対応しています。このうち、FSP v3.6.0でサンプルコードを提供しているのがFreeRTOSです(プロジェクト名:freertos_評価ボード名_ep)。

本稿は、このFreeRTOSサンプルコードを簡単に解説します。

キューとセマフォ利用サンプルコード

freertos_fpb_ra6ep1_epのユーザ追加部分とFSP生成ソースコード
freertos_fpb_ra6ep1_epのユーザ追加部分とFSP生成ソースコード

最新版FSP v3.6.0のRA6E1評価ボードサンプルFPB-RA6E1 Example Project BundleのRTOSサンプルコードが、上図freertos_fpb_ra6e1_epです(freertos_fpb_ra4e1_epも同じ)。

ユーザ追加RTOSタスク:キュー送信タスク、受信タスクと、定期割込みでセマフォ生成し、生成セマフォ取得でRTT Viewerへメッセージ出力するタスクの、合計3タスクを追加(タスクプライオリティ同一)。

ユーザ追加RTOSオブジェクト:キューとセマフォの2オブジェクトを追加。

FSP生成ソースコード:追加タスク毎にFSPが entry.c 生成(中身は、下図右側)。

ベアメタル処理とFreeRTOSタスク処理並列多重
ベアメタル処理とFreeRTOSタスク処理並列多重

基本的には、FreeRTOS公式Hardware independent FreeRTOS exampleや、弊社NXP版FreeRTOSアプリケーションテンプレートと同様の処理。

詳細は、FreeRTOSアプリケーションのQueueデータ送受信FreeRTOSサンプルプロジェクトfreertos_generic詳細などの関連投稿をご覧ください。

RAファミリRTOS現状まとめ

FSPを使ったRAファミリFreeRTOS/Azure RTOSの現状をまとめると、下記です。

・FreeRTOS習得スタートは、キューとバイナリセマフォオブジェクト理解(弊社FreeRTOSアプリケーションテンプレートも同様)。
・ベアメタル開発では使わないObjects窓へ、バイナリセマフォ/ミューティックス/キューなどFreeRTOSの8オブジェクト追加。Azure RTOSは4オブジェクト追加。

FreeRTOSとAzure RTOSの追加可能Objects
FreeRTOSとAzure RTOSの追加可能Objects

・Azure RTOS関連資料は、Microsoft公式のコチラ
・FSP v3.6.0提供FreeRTOSサンプルコード数は、1個。Azure RTOSサンプルコードは未提供。

あとがき

RAベアメタルテンプレートを先週発売した直後に今回RTOSの投稿をしたのは、ベアメタル/RTOSに関係なく「RAファミリ開発の鍵はFSP」を示したかったからです。

FSPは、RAファミリのMCU資源(MCUコア/内蔵周辺回路など)を対象に、HAL APIを生成するツールです。開発者は、FSPが生成したHAL APIを使ってRAファミリのアプリケーションを開発します。

FSP対象は、ベアメタルの場合は、MCUコアやIOポートなど実際の回路、RTOSの場合は、タスクやスレッド、RTOSが提供するセマフォやキューなどの様々なオブジェクト(≒仮想回路)が、ベアメタル対象に加わるだけと考えると判り易いと思います。

FSPは、ベアメタル開発用をベースにRTOS開発へも対応し、プライオリティなどRTOS独特の設定も、ベアメタルと同様のGUIで設定します。

つまり、ベアメタルとRTOS両方対応FSPを上手く使いこなせるかが、RAファミリソフトウェア開発の鍵です。効率的にFSPを習得する最初のツールが、RAベアメタルテンプレートと言えます😄。

RAベアメタルテンプレートでFSP習得
RAベアメタルテンプレートでFSP習得

次の段階、つまりRTOS開発へ対応したRAテンプレートも思案中です。ただ、RAベアメタルテンプレートご購入者様からの様々なフィードバックやFSPのRTOSサンプルコード数が増えた後、暫くしてから実現するつもりです。

先ずは、RAベアメタルテンプレートでRAファミリ開発の鍵、FSPを習得してください。ご購入、お待ちしております。

RAベアメタルテンプレート発売

FPB-RA6E1で動作中のSimpleTemplateとRTT Viewer
FPB-RA6E1で動作中のSimpleTemplateとRTT Viewer
FPB-RA4E1で動作中のBaseboardTemplateとRTT Viewer
FPB-RA4E1で動作中のBaseboardTemplateとRTT Viewer

ルネサスCortex-M33コア搭載RAファミリ向けRAベアメタルテンプレート(税込1000円)を本日より発売します。概要、仕様、テンプレート提供プロジェクト構成は、コチラから無料ダウンロードできますので、ご検討ください。

RAファミリのポジション

RAファミリ位置づけ(出展:記事に加筆)
RAファミリ位置づけ(出展:記事に加筆)

ルネサスのARM Cortex-M系MCUは、競合他社比、発売が出遅れました。RXやSynergyなどの独自32ビットMCUファミリも供給中のルネサスRA位置づけが上図です。詳細は、コチラの関連投稿3章に説明済みです。

まとめると、RAファミリは、外付けE2エミュレータなどが不要の低価格評価ボードと容量制限なし無償コンパイラ利用など、他のルネサス32ビットファミリには無い個人レベルでも開発可能なARM Cortex-M33/M23/M4コア採用IoTセキュリティ強化MCUです。

RAファミリ開発の鍵:FSP

Flexible Software Package構成
Flexible Software Package構成

RAファミリ開発の鍵は、FSP:Flexible Software Packageです。一言で言うと、HAL APIコード生成ツール。MCU動作速度、内蔵周辺回路などのパラメタをGUIにより設定後、RAファミリ間で共通のHAL APIを一括生成します。
※HAL:Hardware Abstraction Layer

FSP活用で、RAファミリ間での移植性に優れたソフトウェア開発ができます。しかしながら、多くのパラメタをGUI上で設定するため、煩雑で特に初心者にとっては取っ付きづらい面もあります。

また、競合他社より後発のIoT向けMCUですので、FreeRTOSやAzure RTOS、TrustZoneなどのIoTセキュリティにも対応しています。RAファミリの拡張性、将来性を提供するツールがFSPです。

つまり、FSP習得が、RAファミリを使いこなす鍵です(コチラの関連投稿で詳細が判ります)。

RA6/4E1グループ選択理由

RAファミリカタログ(出典:ルネサス)
RAファミリカタログ(出典:ルネサス)

様々なラインナップを供給するRAファミリの中で、汎用性と超低価格な評価ボードも供給済みなのが、RA6E1グループ(Cortex-M33/200MHz)とRA4E1(Cortex-M33/100MHz)グループです。

※RA6E1評価ボード:FPB-RA6E1、RA4E1評価ボード:FPB-RA4E1

RA6/4E1グループとFSPで開発したソフトウェアは、RAファミリ間で共通に使える汎用性を持ちます。また、評価ボードで動作するFSPサンプルコードもありますので、FSP習得にも適しています。

RA6とRA4の分岐点は、最大動作周波数です。

240MHz動作のRA6は、大容量Flashを搭載し、高性能で多機能MCUマーケットを狙い、更に高性能なRA8シリーズへの発展性があります。100MHz動作のRA4は、高性能低消費電力MCUマーケット狙いで、Cortex-M23搭載5Vトレラント性も持つRA2シリーズへ高い親和性を持ちます。

従って、RAファミリ開発を始めるMCUとして、RA6/4E1グループいずれも適していると言えるでしょう。

※RA6最大動作周波数は、カタログでは240MHzとありますが、RAベアメタルテンプレートで用いた評価ボードFPB-RA6E1は、最大200MHz動作です。他RA6シリーズも、同様に現在200MHzです。
※RA8シリーズは、未発売です。

実務直結RAベアメタルテンプレートでFSP習得

近い将来、RTOSやTrustZoneなど、多くのIoT MCU技術を学ぶ必要があります。それでも、MCUの基本技術は、ベアメタルです(コチラの関連投稿参照)。

弊社RAベアメタルテンプレートVersion 1は、RAファミリ中核汎用RA6/4E1グループの超低価格評価ボードを使い、基本のベアメタル開発で、効率的にFSPを習得することが目的です。

FSP習得には、評価ボードサンプルコードが適しますが、サンプルコードは、複数処理が当然の実務応用が簡単ではありません。弊社テンプレートは、複数サンプルコードの活用・流用が簡単で、実務にも使えます。

弊社テンプレートと詳細な説明資料、安価で簡単、拡張性にも優れた推薦開発環境を使えば、誰でも簡単にMCUベアメタル開発の高い障壁を乗越えられ、かつ、FSP習得も可能です。

RAベアメタルテンプレート購入方法は、コチラを参照してください。ご購入、お待ちしております。

ツイッター買収

ツイッター買収
ツイッター買収

2022年4月26日、CNN Japanは、米電気自動車大手テスラのイーロン・マスク最高経営責任者(CEO)が、約440億ドル(約5兆6000億円)でツイッター社買収の見通しを報じました。買収には、株主と規制当局の承認が必要になるそうですが、年内買収完了見込みです。

ツイッターはデジタル広場

マスク氏は、「⾃由な⾔論は機能する⺠主主義の要であり、ツイッターは⼈類の未来にとって重要な問題が議論されるデジタル広場だ」と指摘し、「ツイッターには大きな可能性がある。それを解放するために同社やユーザのコミュニティーと協⼒することを楽しみにしている」と表明しています(4月27日、CNN Japan)。

WordPressブログDescription流用

ツイッター投稿中
ツイッター投稿中

弊社も2021年8月からツイッター投稿を始めました。アカウント自体は、2013年から所有しておりましたが、休眠状態でした。

投稿復活の理由は、ツイッターの最大140文字投稿が、ブログ要約表示に適すと思ったからです。

WordPressブログでも要約:Description(120文字前後)作成が、必要です。このDescriptionは、サイト検索時に表示されます。従って、かなり気を配ってDescriptionを作成します。

この気配り結果を、WordPressだけでなく、ツイッターにも流用すれば、ブログ閲覧数上昇になるかも?と考えた訳です。マスク氏表明とは、雲泥の差です…😅。

ツイッター投稿を始めて8ヶ月程経過しましたが、ツイート効果は、見られません😭。

という訳で、暫くは買収の様子見です。しかしながら、ツイッターが有料にでも変われば、ツイッターアカウントは削除するかもしれません。その際でも、弊社WordPressブログ投稿は、引続きよろしくお願いいたします。

RAベアメタルテンプレート完成、次の金曜詳細投稿

FPB-RA4E1で動作中のRAベアメタルテンプレート
FPB-RA4E1で動作中のRAベアメタルテンプレート

昨年末より開発してきましたルネサスCortex-M33コア採用RAファミリのベアメタルテンプレートが、完成しました。最新開発環境のFSP v3.6.0、e2 studio 2022-04を用いました。FPB-RA6E1とFPB-RA4E1両評価ボードで動作確認済みです。詳細は、次の金曜に投稿いたします。

好奇心とMCU開発

好奇心とMCU開発
好奇心とMCU開発

何を楽しい、面白いと感じるかは、人それぞれです。しかしながらMCU開発者の方々は、ソフトウェアやハードウエアを、自分で研究開発することに面白さや好奇心を持つ点は共通だと思います。

MCU開発は、地味です。普通の人からは、動作して当然と見られがち、しかし、その開発には努力や苦労も必要です。MCU開発者は、それら努力を他者へ説明はしません。
専門家へのキャリアアップには、避けては通れないからです。

特に日本のMCU開発者は、他者がどのように自分を見るかを気にし、しかも、同調意識も強いので、面白さを感じる感性を忘れ、自信喪失などに陥るかもしれません。

そんな時は、スマホを生んだSteve Jobs氏の、“Stay hungry, stay foolish” を思い出してください。

“Stay hungry, stay foolish”

様々な日本語訳、その意味解説があります。筆者は、Jobsは、他者の視線や動向より自分の好奇心を忘れるな、と言っているように思います。

2007年発表スマートフォン:iPhoneは、“Stay hungry, stay foolish”のJobsだから生み出せた製品です。

COVID-19、ウクライナ危機

終息が見えないCOVID-19やウクライナ危機による新しい世界秩序は、半導体製造/流通、MCU/PCセキュリティなどMCU開発者が関係する事柄にも多大な影響を与えそうです。今後数年間は、環境激変の予感がします。

既成概念やトレンド、これまでの市場予測なども大きく変わる可能性もあります。アンテナ感度を、個人レベルでも上げて対処しましょう。

MCU開発は楽しい?

行動の源は好奇心です。“Stay hungry, stay foolish”、 自分の好奇心は自ら満たし、MCU開発を楽しみましょう。

本稿の目的は、新年度:4月からMCU開発を新に始める方々へのアドバイスと、好奇心に逆らえず、Windows 11要件を満たさないPCをアップグレードした顛末を次週投稿予定という、前振りです😅。

FSP v3.6.0更新

昨年12月、RAファミリ開発ツールFSP v3.5.0更新から3ヶ月後の3月5日、新FSP v3.6.0付きe2 studio 2022-01最新版がリリースされました。3月25日、各種評価ボードサンプルコードもFSP v3.6.0対応版となり、RAファミリ開発環境が新しくなりました。

※FSP v3.6.0付きe2 studio 2022-01は、コチラからダウンロードできます。
※各種RA評価ボードサンプルコード FSP v3.6.0版は、コチラからダウンロードできます。

新RAファミリ開発環境

弊社RAファミリ向けテンプレートは、FSP v3.5.0で開発し、3月末発売を予定しておりました。ところが、本家ルネサスRAファミリ開発環境の主役FSPがv3.6.0へ更新され、評価ボードサンプルコードもこれに対応しました。

従って、弊社テンプレートも、これら新環境への対応を確認した上で発売する方が、テンプレートご購入者様の更新手間などを避けるため、好ましいと判断しました。

新開発環境で再構築した弊社RAファミリテンプレートV1(ベアメタル版)発売は、4月末に変更致します。

3ヶ月開発

RAファミリ開発環境の主役:FSP、脇役:e2 studio、各種評価ボードサンプルコードの関係は、コチラに投稿済みです。また、RAファミリテンプレート(ベアメタル版)構想は、コチラの4章、昨年12月の頃です。

RAファミリロードマップ(出展:ルネサスセミナー)
RAファミリロードマップ(出展:ルネサスセミナー)

一方、ルネサスFSP更新は、2~3ヶ月間隔で行われます。新発売のRAファミリデバイスが追加されるためでしょう。今回のように、開発製品リリース直前でFSP更新や開発環境が新しくなることは、多々あり得ます。

ルネサスRA6シリーズウェビナーで紹介された、RAファミリロードマップが上図です。今年以降も、圧倒的な製品展開スピードで新デバイスがどんどん追加されます。

殆どの場合、開発製品は、新環境へもそのまま適用できるハズです。が、その確認には、時間と手間が掛かります。

今回発売変更の教訓は、資料作成なども含めた開発開始から終了は、3ヶ月程度で1開発を完了させるスピード開発が必要だと言うことです。

このスピード開発には、開発中のRAファミリテンプレートが役立ちます。0から開発するのに比べ、既に動作確認済みのテンプレートへ実装機能を追加すれば、プロトタイプが出来上がるからです。

このRAファミリテンプレートは、App0を基に開発しています。App0投稿は、コチラを参照ください。

第2のRAサンプルコード

ルネサスRAファミリ開発に評価ボード毎のサンプルコードが重要であることは、過去何回か投稿済みです。今回は、これとは別の、「Stacks毎」に提供される第2のサンプルコード利用方法を説明します。

RAプロジェクトソースコード開発手順

FSPパースペクティブへ追加するLPM Stack
FSPパースペクティブへ追加するLPM Stack

ごく簡単にRAプロジェクトのソースコード開発手順を説明すると、

1) 利用「Stack」をFSPパースペクティブへ追加
2) Generate Project Contentクリック
3) 生成されたDeveloper AssistanceのStack API群から、利用APIをソースコード上へコピー&ペースト

という3手順の繰返しです。Stackとは、MCU周辺回路のことです。

評価ボードサンプルコードは、あらかじめ1)~3)をエキスパートが行い、サンプルで利用するStackとStack APIは、エキスパートが選択済みの実動作プロジェクトです。

一方、開発者自らが、1)~3)手順でソースコード開発する時は、どのStackを追加するか、利用するAPIは何か、を検討する必要があります。この検討に必要な情報は、全てFSPパースペクティブへ配置したStackのℹ️から得られます。

ℹ️をクリックすると、Stack PropertiesのAPI infoタブ相当の英文解説が読めます。内容は、Function、Overview、Exampleなどです。API info表示内容と同じですが、より詳しい説明が得られます。

「Stack毎」に提供される第2のRAサンプルコードとは、このExampleのことです。

Low Power Modes (r_lpm)の例

RAファミリの4低電力動作モード(出展:RA6E1ユーザーズマニュアル)
RAファミリの4低電力動作モード(出展:RA6E1ユーザーズマニュアル)

MCUアプリケーションに、低電力動作は必須です。RAファミリには、スリープ/ソフトウェアスタンバイ/スヌーズ/ディープソフトウェアスタンバイの4低電力動作モードがあります。例えば、RA6E1グループユーザーズマニュアルハードウェア編の10章を参照ください。

電力消費の最も大きいMCUを停止するのが、スリープモードです。スリープからの復帰時間も短く、簡単で効果的な低電力動作が可能です。

RAファミリで低電力動作を行うには、FSPパースペクティブへ、最初の図に示したLow Power Modes (r_lpm)スタックを追加します。

Stackのℹ️とサンプルコード

追加Stack ℹ️クリックで表示されるのが、LPMの詳細説明です。LPMスタック追加で増える5個全てのLPM APIが解ります。また、スリープモードプロパティがデフォルト設定済みなのも解ります。

このスリープモードのExampleが、下記LPM Sleep Exampleです。

LPM Sleep Example
LPM Sleep Example

利用APIは、R_LPM_Open()とR_LPM_LowPowerModeEnter()の2個のみです。assert(FSP_SUCCESS == err)は、次章で説明します。

注意点は、この「Stacks毎」に提供されるサンプルコードは、一般的なサンプルコード構成、つまり、初期設定と無限ループ内処理の記述形式ではないことです(一般的サンプルコード構成については、コチラの関連投稿参照)。

ここで示されているのは、LPMスリープモード時に利用するAPIとその利用順序です。

つまり、最初にR_LPM_Open()でスタックAPI利用可否を判断し、次に、R_LPM_LowPowerModeEnter()でスリープ動作OKの判断をしているだけです。

LPM以外のStack Examplesでも同様です。繰返しになりますが、Stack Exampleは、利用APIとその利用順序を示します。

従って、自分のソースコードへ取込むには、Developer Assistance内に生成された5個のLPM APIから、R_LPM_Open()を初期設定へ、次に、R_LPM_ LowPowerModeEnter()を無限ループ内の適当な個所へ、コピー&ペーストすれば、LPMスリープモードのソースコードが完成です。

assert(FSP_SUCCESS == err)

assert()は、()内が真の時は、何もしません。偽の時は、発生場所や関数名、ファイル名などをコンソール出力し、プログラムを停止します。API利用後の結果判断に活用しています。

「Stacks毎」に提供されるサンプルコードでは、多くのStack API利用箇所で使われています。

lpm_fpb_ra6e1_wpと比較

lpm_fpb_ra6e1_wpのFSPパースペクティブとhal_entry.cのMain loop部分
lpm_fpb_ra6e1_wpのFSPパースペクティブとhal_entry.cのMain loop部分

評価ボード毎のサンプルコードにも、低電力動作サンプルがありますので、前章Stack Exampleと比較します。

RA6E1の場合は、lpm_fpb_ra6e1_epです。このFSPパースペクティブとhal_entryのMain loopの一部抜粋が上図です。多くのLPM関連スタックが追加済みで、Main loopの低電力動作を解読するのも大変です。

これは、評価ボードサンプルコードが、初めに示した4低電力動作モードの状態遷移を示すプロジェクトだからです。スリープ動作のみを実装する時は、前章LPM StackのExampleを参照した方が簡単に理解できます。

勿論、評価ボードサンプルコードとStack Example、両方を参考にしてソースコードを開発する方が良いことは言うまでもありません。

Stack Exampleが、評価ボードサンプルコード理解を助ける第2のサンプルコードとして役立つことを示したかった訳です。

追加Stacks一覧

本稿は、LPM Stackを例に第2のサンプルコードを説明しました。

FSPパースペクティブへ追加可能なStackは、Stackタブを選択後、右上のNew Stack>をクリックすると一覧表示されます。

まとめ

RAファミリのソースコード開発は、FSPパースペクティブへStackを追加後、一括生成されるDeveloper Assistance内の多くのStack API群の中から、利用APIを適切な順序でソースコードへコピー&ペーストすることで進めます。

利用Stackに複数動作モードがあるなど評価ボードサンプルコードが複雑な場合や、開発者自らが利用Stack APIを検討する場合は、第2のサンプルコードとして、追加Stackのℹ️クリックで得られるExampleに示されるStack APIとその利用順序を参考に、ソースコード開発をする方法を示しました。

RAアプリケーション開発の骨格

ルネサスRAファミリ評価ボードの動作テストプログラムと、周辺回路サンプルコードから判るRAファミリアプリケーション開発Tipsを示し、このTipsで開発したアプリケーション:App0を公開します。

評価ボードは、RA6E1を用いましたが、他のRAファミリ評価ボードでも同じです。

RAアプリケーションApp0のRTT Viewer出力
RAアプリケーションApp0のRTT Viewer出力

hal_entry.cとuser_main.c分離

RAファミリは、評価ボード毎にサンプルコードが提供されます。例えば、RA6E1の場合は、FPB-RA6E1 Example Project Bundleがそれで、この中にADCやタイマなどの周辺回路サンプルコードがあります。また、評価ボードテストプログラム:TP(quickstart_fpb_ra6e1_ep)も含まれており、他の周辺回路サンプルコード:EP(Exampleプログラム)とは少し違うファイル構造になっています。

違う原因は、EPが、コード判り易さのため、メイン処理をhal_entry.cに集中して記述するのに対し、TPは、様々な評価ボードへも対応するため、いわば汎用アプリケーション構造となっているからです。

簡単に言うと、FSPが生成するメイン処理:hal_entry.cと、ユーザ追記のメイン処理:user_main.cをファイル分離し、ユーザ開発部分の可搬性を上げた構造を持つのがTPです。

開発したMCUアプリケーションに可搬性があると効率的で生産性もあがります。TP同様、RAアプリケーションも、hal_entry.cとuser_main.cを分離した構造で開発する方法をお勧めします。

※FSP(Flexible Software Package)やサンプルコードの詳細は、コチラの関連投稿を参照ください。

SEGGER RTT Viewer利用

TPとEPには、もう1つ違いがあります。それは、EPには、PC入出力マクロが実装済みの点です。

例えば、gpt_fpb_ra6e1_ep(最初のgptが汎用PWMタイマ、fpb_ra6e1が評価ボード、epがExample Programを示す)ならば、タイマ利用例をPCへ出力し、その設定値をPCから入力できます。

対PC通信にはUSB経由Virtual COMポートを利用する評価ボードが多いのに対し、ルネサスRAファミリは、評価ボード実装デバッガのSEGGER RTT Viewerをこの役目に使います。USARTなどのMCU資産を消費しないメリットがあります。

PCでRTT Viewerを使うには、コチラからJ-Link Software and Documentation Packをダウンロードし、PCへインストール後、J-Link RTT Viewer起動で評価ボードとPC通信ができます(最初の図)。

但し、RA6/4などCortex-M33コアファミリ開発の場合は、ビルド後生成されるmapファイルからRTT Control Block Addressを探し、Viewer起動ダイアログへ入力する必要があります。

プログラム変更やFSP版数が変わると、このBlock Addressも変わるので、生成mapファイルAddress値の再入力が必要です。

RAアプリケーション開発時にも、このPC通信マクロが使えるとprintf/scanfの代用になり便利です。FSP生成プロジェクトでPC通信マクロを利用するには、生成プロジェクトのsrcフォルダへ、SEGGER_RTTとcommon_utili.hの両方を手動で追加します。

追加元のSEGGER_RTTとcommon_utili.hは、どのEPのものでも構いません。

App0特徴

以上から、RAアプリケーション開発時は、FSPが生成するオリジナルファイルに

①HAL生成メインhal_entry.cとユーザ追記メインuser_main.cを分離したファイル構造
②srcへSEGGER_RTTとcommon_utility.hの手動追加

を行うと、ユーザ開発ソースコードのRAファミリ間での可搬性が高く、PC通信も容易なアプリケーションの骨格(Skelton)が完成します。

この方法で開発したアプリケーション:App0を示します。タイトルをPCへ出力するだけのアプリケーション骨格です。この骨格に、開発ソースコードを肉付けしていけば、肉付けソースコードのRAファミリ間可搬性が高く、デバッグ効率も高いアプリケーション開発ができます。

RAファミリアプリケーション開発骨格:App0
RAファミリアプリケーション開発骨格:App0

開発したApp0プロジェクト圧縮ファイルは、コチラよりダウンロード可能です。ご自由にご利用ください。

e2 studioへのインポート方法は、インポート>既存プロジェクトをワークスペースへ>アーカイブ・ファイルの選択で、App0.zip指定です。

App0開発手順

以下にApp0プロジェクトの作成手順を示します。

1)FSPで新規Bare Metal – Minimalプロジェクト生成
2)App0 FSPパースペクティブでGenerate Project Contentクリック
3)他の周辺回路サンプルコードのsrc>SEGGER_RTTとcommon_utility.hをコピーし、App0プロジェクト>srcフォルダへペースト
4)src>hal_entry.cのL3へextern void UserMain(void)追記、L19へUserMain()追記
5)src上で新規>ソース・ファイルをクリックし、UserMain.c追加
6)src上で新規>ヘッダー・ファイルをクリックし、UserDefine.h追加
7)UserMain.cとUserDefine.hへ、前章ソースコード追記
8)ビルドし、Debug>App0.mapファイルから_SEGGER_RTTを検索、そのアドレスを、RTT Viewer起動ダイアログのRTT Control Blockへ入力後OKクリック
9)評価ボードへApp0をダウンロード、実行
10)PCのRTT Viewerで図1のタイトル出力確認

4、5、6の追加ファイル名は、UserMain.c、UserDefine.hなど先頭大文字のPascal形式を用いています。これは、プロジェクト・エクスプローラーでオリジナルのFSP生成ファイルとユーザ追加ファイルの識別が容易になるからです。

また、筆者は、Cソース・ファイル毎にヘッダー・ファイルを追加するより、ソース・ファイル内にプロトタイプ宣言を追記し、個別ヘッダー・ファイルを追加しない方が好みです。4のhal_entry.cへUserMainプロトタイプ宣言を追記したのも、このためです。

UserMain()は、初期設定と無限ループに分け、初期設定にRttInit()とUserInit()を追加しています。RttInit()でタイトルをPCへ出力し、UserIint()は、内容が何もありません。骨格ですので、利用する周辺回路に応じて、ここへ初期設定コードを追記することを想定しています。

App0のプロジェクト構成とRTT Viewerへのmapアドレス設定の様子
App0のプロジェクト構成とRTT Viewerへのmapアドレス設定の様子

まとめ

RAファミリ評価ボードテストプログラムと周辺回路サンプルコードから、hal_entry.cとuser_main.cの分離ファイル構造と、RTT Viewer利用の対PC通信マクロ実装済みのアプリケーションスケルトン(骨格):App0を示しました。

この骨格へ、開発ソースコードを追加していけば、ユーザ追加部分のRAファミリ間可搬性が高く、デバッグ効率も高い、RAファミリアプリケーションが開発できます。

もちろん、3月末を目標に開発中のRAファミリテンプレートも、このApp0へ評価ボード実装LED点滅やチャタリング対策済みSW機能などを追加します。RAファミリテンプレート構想はコチラの4章、RAテンプレートの仕組みはコチラの関連投稿を、参照ください。

最近の組込みCコード書き方

RAファミリFSP生成のBare Metal Blinkyサンプルコードの書き方が、筆者のCコード書き方と違っていて驚いた点を示します(FSP:Flexible Software Packageとは何かは、コチラの関連投稿を参照)。

変数宣言位置

FSP生成Bare Metal Blinkyサンプルコードの変数宣言
FSP生成Bare Metal Blinkyサンプルコードの変数宣言

筆者のC変数宣言は、関数の冒頭、実行文の前に全ての変数宣言を行います。しかし、Bare Metal Blinkyサンプルコードは、変数が必要になった直前で変数宣言をしています。こちらの方が、コードが読み易いですね。

これは、使うC言語規格が異なるからです。筆者は、古いC90(1990年版)、FSPは、C99(1999年版)以降の規格、書き方を採用しています(参考文献:C言語の仕様)。

C言語規格も改良や改版が進み最新規格は、C11(2011年版)です。更に、C17やC2xなどへ進化中だそうです。下位(旧版)互換性は、コンパイラが賢いので保たれています。エッジAIが導入されると、古い書き方は止めなさいとアドバイスが出たりするかもしれません😅。

IoT MCU開発では、従来比、他者が開発したコードやライブラリを読み、理解・利用する機会も格段に増えます。

独立行政法人情報処理推進機構から、組込みソフトウェア開発向けコーディング作法ガイド[C言語版]ESCR Ver. 3.0(2018年)のPDF版がダウンロード可能です。

ガイド想定利用者は、プログラマやレビュー者(P3参照)とありますので、本ブログ読者は目を通しておくのも良いと思います。

新しい規格に縛られる必要は、コンパイラのおかげでありません。しかし、FSP生成サンプルコードに習い、今後はC99以降の書き方を採用します。

いわゆるLチカサンプルコードであっても、なおざりにできない例です。そこで、基になったFSP生成のBare Metal BlinkyとMinimalスケルトン(骨格)の差をまとめます。

Bare Metal Blinky生成方法

各種周辺回路サンプルコードは、FSPとは別に評価ボード毎に提供されます。しかし、Bare Metal Blinkyだけは、FSPで生成可能です(FSPと評価ボード毎の周辺回路サンプルコードは、コチラの関連投稿を参照)。

その狙いは、筆者のような古いC記述者へ新しい記述法を知らせる、または、Blinkyと周辺回路無しのMinimalなスケルトンとの差分を知らせる、などが考えられます。

FSP生成Bare Metal Blinkyは、通常の新規プロジェクト作成方法と同じ、ファイル>新規>Renesas C/C++ Project>Renesas RAクリックが最初の手順です。ダイアログに従って手順を勧めると、最後にBare Metal – BlinkyかMinimalかの選択が可能です。

Bare Metal Blinky生成方法
Bare Metal Blinky生成方法

Blinky選択とFinishクリックで、g_ioport I/O Portスタックだけが配置済みの[Blinky]FSP Configurationパースペクティブが開きます。

[Blinky] FSP Configurationのスタック
[Blinky] FSP Configurationのスタック
念のため、Generate Project Contentをクリック後、src>hal_entry.cを開くと、1章で示したC99以降の書き方で記述したBlinkyサンプルコードが生成されます。

Bare Metal BlinkyとMinimalの差分

Bare Metal Blinky(左)とMinimal(右)の差分
Bare Metal Blinky(左)とMinimal(右)の差分

BlinkyとMinimalスケルトンの差は、hal_entry()のTODO: add your own code hereの下にBlinkyコードが有るか無いかだけです。FSP Configurationも全く同じです。

つまり、IOPORT未使用のアプリケーションは無いので、例えMinimalと言えデフォルトでg_ioport I/O Portスタックは配置済みで、そのスタック利用例がBlinkyという訳です。

FSP生成Bare Metal Blinkyに習い、筆者も今後はC99以降の新しい書き方でCソースコード記述をしていきます。

RAテンプレート仕組み

ルネサスRAファミリテンプレート(ベアメタル編)を3月末目標に開発中です。サンプルコード活用・流用によるアプリケーション開発が容易なことが、弊社テンプレートの特徴です。このテンプレート仕組みを “少しだけ(!?)” 説明します。

全部説明すると、読者ご自身でテンプレートを開発し、購入者数が減るかもしれないからです😂。

仕組みまとめ

MCU開発者の最初の壁に穴をあけるテンプレート
MCU開発者の最初の壁に穴をあけるテンプレート

テンプレートの仕組みを “少し” しか説明しないので、まとめを最初に示します。

MCUアプリケーション早期開発は、ベンダ提供の公式サンプルコード活用・流用が王道です。しかし、単機能の利用例を判り易く示すことが目的のサンプルコードでは、複数機能の並列実装が困難です。

MCU開発の最初の壁が、この「サンプルコードを、どのように実開発へ利用するか」です。

既に弊社テンプレートの購入者様、または上級者は、この壁を突破し効果的サンプルコード活用アプリケーション開発方法を知っています。Know-how(ノウハウ)です。

サンプルコード利用時の課題は、「無限ループ」です。

この課題に、弊社テンプレートは時分割で対応しました。説明を更に加えると、読者がご自分でテンプレート相当を開発される危険性がありますので、仕組み説明はここまでにします。

以降の章は、サンプルコード課題の具体例を示します。また、この課題が生じる原因、特にRAファミリ開発でFSPサンプルコードが重要である訳を説明、最後にテンプレートのメリットを示します。

RAファミリに限らずプロトタイプ開発や早期アプリケーション開発が目的の弊社テンプレートにご興味がある方は、テンプレートサイトに主要ベンダテンプレートが各1000円で販売中、概要は無料ダウンロード可能です。

※RAファミリテンプレート(ベアメタル編)も1000円予定。FreeRTOS対応アプリケーションテンプレートのみ2000円。RAファミリテンプレートもV2以降でRTOS対応予定。

販売テンプレートには、本稿で説明できない多くの工夫も実装済みです。ダウンロード概要を読んで、自作されるよりも、弊社から是非ご購入ください😌。

サンプルコード課題の具体例

評価ボードテストプログラム構造(FPB-RA6E1の例)
評価ボードテストプログラム構造(FPB-RA6E1の例)

サンプルコードを実開発へ利用する時の課題、具体例を示します。

RAファミリ評価ボードのテストプログラム:TPです(プロジェクト名:quickstart_fpb_re6e1_ep)。電源投入後、搭載LEDが点滅し、SW押下げで点滅間隔が変わり、評価ボードの正常性をテストします。

このTPのuser_main部分を抜粋しました。評価ボードにより多少異なりますが、基本動作は同じです。

LED点滅間隔は、無限ループ内のR_BSP_SoftwareDelay(g_delay)が決めます。このR_BSP_SoftwareDelay処理中は、MCUを独占するため、他の処理はできません(割込み処理は除く)。

MCUの並列処理は、RTOS利用が常套手段ですが、RTOS理解やベアメタル比大きな処理能力とRAMが必要です。

そこで、RTOSを使わずにベアメタルで並列処理をするため、LED点滅を時分割処理し、空き時間に別処理を実行するのが、テンプレートの仕組みです。

テンプレートの仕組み
テンプレートの仕組み

サンプルコード課題の原因

サンプルコードの構造は、基本的な「初期設定」+「無限ループ処理」です(基本のキ:組込み処理参照)。

この構造で、①内蔵周辺回路の初期設定 → ②周辺回路の監視(時間消費も含む)→ ③監視結果の処理実行を行います。②と③を、無限ループ内で繰返します。

①初期設定と③結果処理は、開発アプリケーションへそのまま流用ができます。問題は、結果処理以外の無限ループ内が全て監視(時間消費)になる点です。監視中は、他の処理はありません。

つまり、周辺回路のMCU「専用」利用例という訳です。専用ですから、監視結果の処理実行が有ろうが無かろうが問題はありません。

ところが、1つの無限ループ内へ、単純に別周辺回路の「②監視と③結果処理」を入れると、無限ループは、周辺回路「専用」から「共用」へ変ります。

共用する他の周辺回路の監視結果処理の実行有無に応じて、もう1つの周辺回路の監視結果起動間隔も変わります。起動間隔が変わっても問題ない場合もありますが、多くの場合、問題でこれが課題です。

例えば、ウオッチドックタイマ定時リセットや、前章のLED点滅間隔などです。

共用無限ループ内の別サンプルコード処理有無により、当該サンプルコード処理間隔が変わるという問題は、開発初心者には簡単に解決できない大きな壁:課題です。

FSPサンプルコードが重要な訳

FSP構成とGUI設定の様子
FSP構成とGUI設定の様子

RAファミリ共通のHAL API生成ツールがFSPです。FSPのBoard Support Package (BSP)とHardware Abstraction Layer (HAL)Driversが、評価ボードとRA MCU差を隠蔽し、RAファミリ共通APIをGUIで生成します。

Boardは、評価ボードを指しますが、ユーザ独自開発ボードでも、BSPだけを変更すれば、評価ボードを使って開発したソフトウェアが、そのまま独自開発ボード上でも動作します。

つまり、FSPは、プロトタイピング開発に適したツールです。RAファミリアプリケーションの早期開発ポイントは、FSP活用です。但し、FSPソフトウェア開発者は、知っておくべき作法があります。

例えば、2章で示したGPIO制御前後のR_BSP_PinAccessEnable()やR_BSP_PinAccessDisable()などです。これらは、BSP GPIOレジスタの電圧レベルアクセス制御許可/禁止を設定します。

仮に、R_BSP_PinAccessEnable()をコメントアウトすると、ビルドは成功しますがLEDは点滅しません。ワーニングなどもありませんから、作法を知らないと点滅しない原因は、まったく不明になります。

これらは、GPIOアクセスとセットで知るべき作法です。このような作法は、分厚いFSPユーザマニュアルのどこかに記載されているハズですが、ルネサスエキスパートが提供するサンプルコードからセットで抜き出し、そのまま利用する方が簡単です。

※BSP GPIOアクセスの代わりに、上記許可/禁止追記不要なHAL GPIOアクセスもあります。コレも作法の1つです。

また、ルネサス独自内蔵周辺回路:イベントリンクコントローラのサンプルコードなども、同一MCUコア利用の競合他社差別化に役立つかもしれません。
※イベントリンクコントローラは、MCUを介さずに周辺回路間の連携動作が可能なハードウエア。

マニュアルよりもサンプルコードを読み、評価ボードで試す、“習うより慣れよ” です。

FSPサンプルコードは、このような作法や差別化ヒントが詰まった宝庫です。RAファミリアプリケーション開発には、必読書です。

FSP開発例はコチラ、評価ボードサンプルコードは、コチラの関連投稿も参照ください。

テンプレートメリット

本稿では、しばしば “そのまま” という太字キーワードがでてきます。MCUアプリケーション開発は、ベンダ公式サンプルコードが、そのまま利用・活用する部分と、開発者が “工夫を加える部分” とを、素早く見極める目:Know-howも必要です。

Know-how獲得には、弊社テンプレートとMCU評価ボード+Baseboardが、お役に立てると思います。テンプレートもアプリケーションの1つなので、テンプレートへ追記した豊富な日本語コメントで、そのまま流用している部分と、工夫を加えた部分がソースコード上で確認できるからです。

テンプレートを活用し、アプリケーションをプロトタイピング、次ステップでプロトタイプアプリをチューニングし、完成度を上げます。

プロト目的は、アプリ早期開発、この目的に、ベンダ公式サンプルコード流用・活用と弊社テンプレートを利用します。

既製品の流用・活用・利用は、物足りなく感じる方もいるかもしれません。しかし、弊社テンプレートは、チューニング時、開発者が工夫を追加できる余地がいくらでもあります。アプリ完成度向上には、ご購入者独自の工夫も大切ですので、ご安心ください😁。