NFCを使うLPC8N04のOTA

5/31~6/21の4回に渡り行われたNXPセミコンダクターズ LPC80x WebinarでLPC80xシリーズ概要が解ります(8/16ビットMCUの置換えを狙う32ビットARM Cortex-M0+コア採用のLPC80xシリーズ特徴や商品戦略が解るWebinarスライドは、リンク先からダウンロード可能)。

LPC8xx Family History (Source:Webinar Slides)
LPC8xxは、LPC81x/LPC82xから、2017年高集積LPC84x、2018年価格高効率LPC80xへ展開(出典:Webinar Slides)

LPC8xxファミリは、2016年発売のLPC81x/LPC82xをベースに、2017年にLPC84xで高集積大容量化、2018年はLPC80xで価格効率を上げる方向に発展中です。

関連投稿:LPC80xの価格効率化の方法

ベースとなったLPC810、LPC812、LPC824に対して弊社は、LPC8xxテンプレートを提供中です。このテンプレートは、発展したLPC84xやLPC80xへも適用できると思います。

*  *  *

さて、本投稿は、今後IoT MCUの必須機能となる可能性が高いOTA(Over The Air)について、LPC8N04スライドにその説明がありましたので、速報としてまとめます。

NFCを使うLPC8N04のOTA更新

LPC8N04 は、近距離無線通信(NFC)機能を搭載し15MHz動作のLPC802/LPC804よりもコア速度をさらに8MHzへ下げ、NFCアプリケーション開発に適したMCUです。スマホとNFCで連動する温度センサーロガーの動作例がNXPサイトの動画で見られます。

関連投稿:LPC8N04の特徴

無線ペアリングが簡単にできるNFC搭載MCUは、家電や産業機器の故障診断、パラメタ設定などの分野へ急成長しています。Webinarスライドでは、このNFCを使った電力供給やMCUファームウェア更新方法(OTAテクニカルノート:TN00040)も紹介されています。

IoT MCUには、製品化後にも無線更新できるセキュリティ対策は必須です。OTAはこの実現手段の1つで、具体的にどうすればOTAができるのかがTN00040に簡単ですが記載されています。

前提条件として、LPC8N04のブートROMバージョンが0.14以上であること、OTA実行中は電池かUSBでの電力供給などが必要です。Androidを使ったNFC OTA動作例が下図です。

LPC8N04 FW Update Over NFC (Source:TN00040)
LPC8N04のNFCを使ったOTA更新(出典:TN00040)

更新には、LPC8N04のSBL(Secondary Boot Loader)を使い、通信は暗号化されていますので、OTA中のセキュリティも万全です。OTA用のアプリケーション開発には、通常開発にリビジョン番号(図の1.0.0、1.1.0)付与が必須など様々な制約(オーバーヘッド)があります。

OSを使わないアプリケーション開発の場合、開発者自らがこれらOTAオーバーヘッドの追加が必要になるなど煩雑ですが、決まり文句として納得するか、または、IoT MCU用RTOSとして期待されるAmazon FreeRTOS提供のOTAなどを利用するしかなさそうです。

関連投稿:Amazon、IoTマイコンへFreeRTOS提供

今回はLPC8N04のNFCによるOTAを示しました。IoT無線通信がどの方式になっても、おそらく今回のような方法になると思います。SBL利用や暗号化、更新NG時の対処など留意事項が多く、現場へ行ってIDEで再プログラミングする従来方法よりも洗練されている分、リスクも高くなりそうです。

NXP LPC80xの新しい動き

NXPからNFC機能搭載LPC8N04発表に続き、新たにLPC802とLPC804がLPC800 MCUファミリに追加されました。従来LPC8xxファミリのLPC810やLPC824から仕様の新しい変化が感じられます。

わずか30秒のLPC802評価ボードLPC804評価ボードの綺麗な動画を見るだけでもキーポイントが解ります。

LPC80x評価ボード価格(価格は全てDigiKey調べ)

仕様の変化

LPC8xxファミリのラインアップが下記です。

LPC8xx Family (Source:NXP)
LPC8xxファミリラインアップと新規追加LPC80x (Source:NXP)

15MHzコア速度

LPC8xxファミリは、32ビット ARM Cortex-M0+コアを用います。Cortex-M0+は、8/16ビットMCUの置換えが目的の低消費電力コアです。従来は最大動作周波数30MHzでしたが、LPC80xはこれが15MHzになっています。

最大動作のスペックで、運用時は必要に応じ消費電力を抑えため動作周波数を下げるのが常套手段ですが、LPC80xではこの最大スペックが初めから15MHzになっています。これは、性能と電力消費のバランスを見直し、32ビットコアならばこのスペックでも8/16ビットMCUに十分対抗できると判断したためと思われます。

8/16ビットMCU市場を32ビットMCUで獲得するには、「従来以上に消費電力の低さが必要」なのです。

EEPROM based Flash

従来はFlashと記述されたユーザプログラム領域が、EEPROM Flashに変わっています。
※LPC8xxファミリは、Flashがユーザプログラム領域、SRAMはユーザデータ領域、ROMはデバイスに始めから実装済みのNXP提供プログラム領域(簡単に言うとライブラリ)です。弊社LPC8xxテンプレートに使用例があります。
※LPC8N04の4KB EEPROMは文字通りデータ保存用のEEPROMデバイスをSoCでMCUへ内蔵したものです。LPC8N04はコチラの投稿を参照してください。

LPC802 and LPC804 Block (Source:Mouser Electorinics Japan)
LPC802 and LPC804 Block (Source:Mouser Electorinics Japan)

このEEPROM based Flashと明示の意味するところ、従来との差、目的など、現時点ではよく解りません。しかし、明示する訳があるハズです。判明次第、投稿予定です。

Programmable Logic Unit(PLU)内蔵

LPC804ブロック図では、ピンク色のProgrammable Logic Unit(PLU)、ユーザ変更可能なディスクリートロジック機能も内蔵しています(簡単に言うとPLD:Programmable Logic Deviceです)。

PLU Tool Schematic design (Stource:Part 3 PLU Tool Schematic design Video)
PLU利用のロジック例 (Stource:Part 3 PLU Tool Schematic design Video)

このPLUを使うと、WS2812 LEDやDCモータ制御、パターンジェネレータなどが簡単に実装できるようです。

レジスタプログラミング方式のサンプルソフト提供

ARMコアのソフトウェア開発は、CMSIS:Cortex Microcontroller Software Interface Standardで流用性を高める記述が標準的です。しかし、8/16ビットMCUのソフトウェアは、ハードウェアレジスタを直接アクセスするレジスタプログラミングが主流でした。このレジスタプログラミングを好む開発者も多いと聞いています。

LPC80xのサンプルソフトは、このレジスタプログラミング方式のCode Bundleで提供されます。

関連投稿:CMSIS構造や目的は、コチラの投稿の、“CMSIS”章を参照してください。

8/16ビットMCU市場置換えと開発者ニーズへの最適化LPC80xデバイス

8/16ビットMCUの市場置換えとその開発者ニーズを満たすという目的に、従来LPC8xxファミリよりもさらに最適化した32ビットMCU、これがLPC80xだと思います。評価ボードも低価格で提供中です。

また、日本時間、金曜午前0時~午前1時の1時間に、全4回のWebinarが予定されております。本投稿以降は、6月15日(金)と6月22日(金)の午前0時からです。英語ですが、使用スライドは4回全てダウンロードできますので興味がある方は登録し御覧ください。

NXP LPC8xxテンプレートV2.5改版

小ROM/RAM向けに従来マイコンテンプレートの必須機能のみを実装したTiny(小さな)テンプレートは、テンプレート本体処理が解り易いと好評です。ルネサスRL78/G10やSTM32Fxテンプレートには既に適用済みで、販売各マイコンテンプレートの改版を機に、順次この好評なTinyテンプレートへ変更したいと考えています。

LPC8xxテンプレートV2.5は、Tinyテンプレートの適用、対象マイコンの追加、シールドテンプレートの開発予告、この3つを目的に改版しました。

RL78/G10(ROM/RAM=4KB/512B または 2KB/256B)とLPC810(ROM/RAM=4KB/1KB)

小ROM/RAMで本ブログ対象のマイコンは、ルネサスRL78/G10とNXPのLPC810です。
※RL78/G10へ適用済みのTinyテンプレートは、コチラの投稿を参照してください。

16ビットのルネサスS1コアRL78/G10と違い、LPC810は僅か8ピンDIPパッケージですが、中身は32ビットARM Cortex-M0+コアですので、RL78/G1xのように500B以下でテンプレート実装はできません。

テンプレート本体は同じ単純なC言語ですが、機能させるための必須ライブラリ量が、ルネサス独自開発S1コアとARM Cortex-M0+コアでは大きく異なるからです。

そこで、LPC810テンプレートに限り前回投稿のコンパイラ最適化を“最適化なし(O0)”から“1段階最適化(O1)”へ変更したところLPCOpenライブラリv2.15利用debug configuration時、ROM=2460B、RAM=12Bに収めることができました(テンプレート応用例としてWDT:ウオッチドックタイマ制御は実装)。

LPC810 Template by LPCOpen v2.15 (Optimize -O1)
LPC810 Template by LPCOpen v2.15 (Optimize -O1)

残りのROM1.6KB、RAM1KBへユーザ処理を追加すればアプリケーション開発が可能です。この残り量でも、最適化(O1)の結果、結構なユーザ処理を記述できます。

LPC810は、入手性の良いNXP評価ボードがありません。そこでLPC810テンプレートのみは、上記1段最適化でコンパイル成功したLPC810テンプレートプロジェクトを提供します。LPC810独自開発ボードへの実装方法は、前回投稿を参照してください。

LPCOpenライブラリv2.15採用理由

LPC8xxテンプレートV2.5では、LPCOpenライブラリv2.15(2015/01/08)を用いました。主な採用理由は、2つです。勿論これ以外の開発環境は、最新版MCUXpresso IDE(v10.1.1_606)、Windows 10(1709)です。

  1. LPCOpenライブラリv2.15の方が、同じソースコードでもコンパイル出力が小さい
  2. 原因不明のリンカーエラーが発生する時がある

先に示したLPC810ソースコードでLPCOpenライブラリのみv2.19に変更した最適化結果が、ROM=3024B、RAM=16Bです。

LPC810 Template by LPCOpen v2.19 (Optimize -O1)
LPC810 Template by LPCOpen v2.19 (Optimize -O1)

また、v2.19では、v2.15でコンパイル成功するソースコードでも、下記原因不明のリンカーエラーが発生することがあります。

LPCOpen v2.19 Linker Error
LPCOpen v2.19 Linker Error

LPCOpenライブラリv2.19起因のこの1/2の現象は、同じソースコードでv2.15と比較しないと判明しません。

LPC8xxマイコン開発でつまずいている開発者の方は、是非LPCOpenライブラリv2.15で確かめてください。※LPCOpenライブラリは、v3系が最新版ですが、v2.9からのバグは継続していると思います。

LPC824(ROM/RAM=32KB/8KB)テンプレート応用例はシンプルテンプレート

LPC824は、十分なROM/RAM=32KB/8KBがありますので、MCUXpressoデフォルトの“コンパイラ最適化なし(O0)”でテンプレート実装ができます。

テンプレート応用例として、NXPのLPCXpresso824-MAX評価ボード実装の3色LEDとユーザSWで動作するシンプルテンプレートを提供します。Baseboardテンプレートは、LPCOpenライブラリバグのため、今回は提供を見合わせます。
※LPC824のLPCOpenライブラリバグに関してはコチラの投稿を参照してください。

LPCXpresso824-MAXは、Arduinoシールドコネクタを実装しています。ここへ今後のマイコン開発で必要性が高いSPIインタフェースのシールドを使ったテンプレート応用例の方が、Baseboardで応用例を示すより実用的だと考えています。これが、今回LPC824をシンプルテンプレートのみで見切り発車的に発売するもう1つの理由です。シールドテンプレートは、次版で提供予定です。

NXP LPC8xxマイコンテンプレートV2.5のまとめ

V2.5改版のLPC8xxマイコンテンプレート構成一覧を示します。

テンプレート名 対象マイコン(ベンダ/コア) テンプレート応用例 評価ボード:動作確認ハードウェア
LPC8xxテンプレートV2.5
(LPCOpen v2.15利用)
LPC810(NXP/Cortex-M0+) WDT実装(1段最適化プロジェクト) なし(テンプレートプロジェクト提供)
LPC812(NXP/Cortex-M0+) シンプルテンプレート
Baseboardテンプレート
LPCXpresso812
+ Baseboard
LPC824(NXP/Cortex-M0+) シンプルテンプレート
(シールドテンプレート※次版予定)
LPCXpresso824-MAX
(+SPIシールドテンプレート※次版予定)

前版V2.1と比べると、以下の特徴があります。※V2.2~2.4は、欠番です。念のため…。

  • 対象マイコンにLPC810とLPC824が加わり、LPC8xxテンプレートらしくなった(テンプレート本体はLPC8xxで共通)
  • テンプレート本体処理が解り易く、ご購入者様の応用や変更が容易となった
  • LPC824はテンプレート応用例がシンプルテンプレートのみだが、LPCXpresso824-MAX評価ボード単独で全ての動作確認可能
  • 今後LPCXpresso824-MAXのようなArduinoシールドコネクタ付き評価ボードは、SPIインタフェースシールドで機能拡張予定(従来はBaseboard機能拡張)

あとがき

マイコン内蔵周辺回路とGPIOをマトリクススイッチで接続するLPC8xxシリーズマイコンの狙いは、8/16ビットマイコンのARM32ビット置換え市場です。

そのためか、または前述のLPCOpenライブラリバグのためかは不明ですが、LPCOpenライブラリ利用よりもレジスタ直接アクセス方式のCode Bundleライブラリ利用がNXP推薦(SDK)です。

テンプレート本体は、利用ライブラリに依存しないC言語開発ですので、どのライブラリを利用しても適用可能です。しかし弊社は、他のCortex-Mシリーズコアと同様、LPC8xxシリーズもLPCOpenライブラリ利用が本来の開発姿だと思いLPCOpenライブラリのバグが取れるのを昨年から待っていました。

今回LPC8xxテンプレートV2.5への改版に際し、このバグ解消を待つよりも、LPC810とLPC824への対象マイコンを増やすこと、高速なSPIインタフェース利用テンプレートの開発予告の方が重要だと判断しました。

ベンダ提供のマイコン評価ボードは、Arduinoシールドコネクタ付きが一般的になりました。弊社も従来のBaseboard応用例よりも、SPIシールドを利用したテンプレート応用例の提供へ移行します。SPIインタフェースの重要性はマイコン技術動向(SPI/I2C)コチラの投稿を参照ください。

近日中にLPC8xxテンプレートご購入者様で、無料アップグレード対象者様には、お知らせとLPC8xxテンプレートV2.5の無償配布を行います。暫くお待ちください。

独自開発ボードのMCUXpressoプロジェクト作成方法

今回はNXP評価ボード以外の“独自開発マイコンボード”を使って、MCUXpressoの新規プロジェクトを作成する方法を、LPC810を例に示します。

New Project by Available boards
New Project by Available boards

上図NXP評価ボードを使ったMCUXpressoの新規プロジェクト作成は簡単です。現在LPC8xxマイコンには、6種のNXP評価ボードがあり、これらの中から使用ボード選択し、Nextクリックでダイアログに従っていけば新規プロジェクトが作成できます。

Preistalled MCUsプロジェクト作成

一方、LPC810(ROM/RAM=4KB/1KB)で独自開発したマイコンボードへ新規プロジェクトを作成する場合は、Preinstalled MCUsからLPC810を選びます。

New Project by Preinstalled MCUs
New Project by Preinstalled MCUs

Nextクリック>LPCOpen – C Project>Project name追記>Import>BrowseでLPCOpenライブラリをImportします(最新版LPCOpenライブラリはv3.02ですが、ここではMCUXpresso IDE v10.1.1 にプリインスト済みのv2.19を使っています)。

Import LPCOpen Library
Import LPCOpen Library

Importするのは、lpc_chip_8xx (lpc_chip_8xx/)です。lpc_board_nxp_lpcxpresso812は、NXP評価ボード利用時、lpc_chip_8xx関数を利用したマクロ関数です(マクロ関数は後述)。

インポートが完了するとNew Projectダイアログに戻ります。ここでLPCOpen Chip Library Projectのlpc_chip_8xx_libの_lib部分を削除すると、Nextボタンが“有効”になるのでクリックします。ポイントは、_libを削除することです。削除しないと、Nextは無効のままで先に進めません。

Import lpc_chip_8xx
Import lpc_chip_8xx

この後は、デフォルト設定のままでNextを何回かクリックすれば、独自開発ボードでの新規プロジェクトが作成できます。

なおLPC810は、ROM4KB、RAM1KBと極少ですのでデフォルトで使用となっているMTBやCRPは未使用に変更すると良いでしょう。

ちなみに、MTB、CRP未使用でLPC810へ弊社LPC8xxマイコンテンプレートのみを実装した時のメモリ使用量は、ROM88%、RAM2%です(debug configuration時)。これでは、残り部分へユーザ処理を追加するとすぐに容量オーバーになります。

対策は、コンパイラ最適化をデフォルトの“最適化なし(O0)”から“、1段階最適化(O1)”へ変更することです。
Project >Properties>C/C++ Build>Settings>Tool Settings>Optimization>Optimization Levelで最適化レベルが変更できます。O1レベルでも、かなりの使用量空きが確保できます。

Optimize for Debug
Optimize for Debug

但し、最適化には副作用も伴います。変数にvolatile宣言を付記するなどして、ツールが行う勝手な最適化への対策をしましょう。対策の詳細は、コチラなどを参照してください。

マクロ関数

LPCOpen Library Stack
LPCOpen Library Stack

LPCOpenライブラリは、層構成になっています。BOARD layerは、CHIP layerを使って上位の各ExampleへAPIを提供します。例えば、LPC812評価ボード実装済みのLED出力の初期化関数:Board_LED_Init()が、chip layerのChip_GPIO_…()を使っているなどです。

Macro Function
Macro Function

本投稿では、Board_LED_Init()をマクロ関数と呼びます。NXP評価ボードは、NXPから多くのマクロ関数が提供されますが、独自開発ボードでは、これらも必要に応じて自作する必要があります。

また、自動生成ソースコードにインクルードされるファイルも、NXP評価ボードでは無いためboard.hからchip.hに代わっていることにも注意しておきましょう。

MCUXpresso Generated Source
MCUXpresso Generated Source

ベンダ提供評価ボード活用の独自開発ボード

独自開発マイコンボードと、NXP評価ボードのIO割付が同じならば、MCUXpressoの新規プロジェクト作成時に本投稿で示したような神経を使う必要はありません。多くのマクロ関数もそのまま利用できます。独自開発ボードの新規プロジェクト作成でも、NXP評価ボードと全く同じになるからです。

独自にマイコンボードを開発する前に、ベンダ提供の評価ボードIO割付を調査し、独自開発へ適用できるか否かの検討をすることをお勧めします。

ベンダ提供評価ボードは、標準的なIO割付ですが、最も応用範囲が広い割付とも言えます。さらに、上述のようにソフトウェア開発、新規プロジェクト作成に対しても多くのメリットがあるのがその理由です。

NXPマイコンのNXP推薦開発環境

NXPは、Freescaleを買収しARMコアのマイコンラインアップが増えました。昨年発表の新しい統合開発環境MCUXpressoで増加ラインアップに対応中です(MCUXpressoサポート状況Excel表がコチラ)。

IDE、SDK:Software Development Kit、CFG:Config Toolsの3ツールから構成されるMCUXpressoのサポート状況から、新生NXPのARMマイコン開発環境を考察します。

もっと早く気が付いていれば…

このExcel表を見つけたのは、今年1月中。LPC824の最新LPCOpenライブラリv3.02に、昨年から継続するバグ解消が無いことが理由でした。何か変だと思い、NXPサイト検索で発見したのが同表です。

2017年7E目標のLPC824対応マイコンテンプレート開発前にこの表を見つけていれば、対応が変わっていただけに残念です(orz)。LPC800でフィルタリングしたのが下図です。

LPC8xx Recommended SDK
LPC8xx Recommended SDK (Source: Version 14)

LPC8xxシリーズは、LPCOpenライブラリはAvailableなものの、NXPはCode BundleがRecommended SDK:推薦Software Development Kitです。推薦環境以外でテンプレート開発したことになります。

Change Logページを見てもいつCode Bundleへ変わったか不明です。しかし、LPC8xxテンプレートV1開発時の2014年5月10日時点では、「LPCOpenがLPC812のSDK」でした(Legacyフォルダはあっても、Code Bundleなどありませんでした)。

LPC8xxシリーズは、IDEのみMCUXpresso IDEでSDK、CFGの計画はありません。つまり、NXP推薦Code BundleかLPCOpenを使いソフト開発が必要です。

Code BundleとLPC8xx

Code Bundleは、C:\nxp\MCUXpressoIDE_10.1.1_606\ide\Examples\CodeBundlesにあります。特徴は、ハードレジスタを直接アクセスするLegacyスタイルなので、従来の8/16ビットマイコン開発者に馴染み易く、これらマイコン置換え狙いのLPC8xxには、このスタイルの方が歓迎される可能性があります。

但し、LPC81x、82x/83x、84xとハードレジスタが微妙に変化していますので制御ソフトも変化します。LPCOpenのようにAPIでハード差を吸収する思想は少ない(無い)ようです。

気になる点が2つあります。最初は、サンプルソフトのヘッダーが簡素なことです。

ベンダ提供のサンプルソフトヘッダーは、細かな注意点などが30行程度記載されているのが普通です(左:Code Bundle、右:LPCOpen)。

Sample Software Hader
Sample Software Hader

Code BundleのHeaderは弊社マイコンテンプレートと同様簡素(上図は9行)で、間に合わせで開発した感があります。また、ソース内コメントも数人のエキスパート:上級者で分担してサンプルソフトを作成したように感じました。

Code Bundleの全サンプルソフトを動作テストした訳ではありませんが、LPCOpenのようなバグは(今のところ)ありません。SDKとしてLegacyスタイルに慣れた8/16ビットマイコンユーザが使うのは問題なさそうです。

2点目は、NXP推薦開発環境でCode Bundleなのが、LPC8xxシリーズのみの点です。

他のARMマイコンは、LPCOpenかまたはMCUXpresso SDKが大半です。旧NXPマイコンは、LPCOpenまたはMCUXpresso SDK、旧FreescaleマイコンはMCUXpresso SDKが主流です。

LPC8xxシリーズのみ今後もCode Bundleにするのか、または、他の旧NXPマイコン同様LPCOpenになるのかは、ハッキリ言って判りません。

LPC8xxマイコンテンプレートの対処

現在LPCOpenライブラリを使いLPC812のみ対応中のLPC8xxマイコンテンプレートV2.1を今後どうするかの案としては、

  1. LPC812、LPC824ともにLPCOpenライブラリバグ解消を待って改版
  2. LPC812、LPC824ともにCode Bundleを使い改版
  3. LPC812は現状LPCOpen維持、LPC824は、Code Bundleを使い改版(中途半端)

いずれにするか、検討中です。決定には、もう少し時間が必要だと思っています。

ミスリード(Mislead)のお詫び

これまで弊社は、LPC8xxシリーズのSDKはLPCOpenと思い投稿してきました。この投稿で、読者の方に誤った開発方向へ導いた場合には、お詫び申し上げます。申し訳ございません。

LPC8xxテンプレートをご購入頂いた方のテンプレート本体は、C言語のみでライブラリは使っておりませんし、マイコンにも依存しません。ご購入者様は、他マイコンも含めて流用/活用はご自由です。

LPCOpenで開発された関数を、Code Bundleへ変えたとしても、テンプレート本体はそのまま使えます。

あとがき

Code Bundleは、ハードレジスタをユーザ開発ソフトで直接いじる20世紀マイコン開発スタイルです。21世紀の現在は、ハードウェアに薄皮を被せAPI経由で開発するスタイルに変わりました。メリットは、ハードが変わってもユーザ開発ソフト側変更が少なく、マイグレーションに有利です。

ARMコアのマイコンは、全てこの21世紀スタイル:ARMスタイルです。ARMがCMSISなどを発表しているのは、ARMコアに依存しないユーザ開発ソフトを、資産として活用することが目的です(CMSISはこちらの投稿を参照)。

マイコンRTOSがWindowsのようにハードアクセスを全面禁止にすることはあり得ませんので、20世紀スタイルでRTOS化しても問題ありません。が、スイッチマトリクスが気に入っているLPC8xxシリーズだけが20世紀スタイルを使い続けるとは思えません。つまり、Code Bundleは、NXPサポート体制が整うまでの暫定措置だと思います。

この混乱の原因が、QUALCOMMによるNXP買収に絡んでないことを祈っています。

QUALCOMMのNXP買収、EUで一歩前進

2018年1月19日、米QUALCOMMの蘭NXPセミコンダクター買収計画がEU(欧州連合)当局で承認の記事が日経電子版に掲載されました。残るのは、中国の独占禁止法当局の承認だけです。遅れていた買収成立が一歩前進しました。

QUALCOMMのNXP買収
QUALCOMMのNXP買収

半導体メーカM&Aと技術シナジー

本ブログでも関心があったFreescaleをNXPが買収し、そのNXPをQualcommが買収するという半導体メーカのM&Aは、終息に向かうようです。Runesasもアナログ、ミックスドシグナル半導体を得意とするIntersil(インターシル)の買収を完了しました。
※QualcommのNXP買収は、未だに決着がついていない買収案件だそうです。

一方で、AtmelとMicrochipに見る、半導体企業M&Aの難しさという記事を読むと、M&A完了後も企業の技術的シナジーが生まれるには時間がかかりそうです。

以前記載しましたが、NXP)LPC8xxのLPCOpenライブラリv3.01の状況を観ると、この記事内容は頷けるものがあります。MCU部門だけを比較すると、実はNXPよりもFreescaleの方が規模は大きく、また、Cortex-M0/M0+ MCUで比較すると、2社で重複する製品があるので、既成製品(LPC8xx、LPC111xやKinetisシリーズ)の将来は、明確には判らないのが現状だと思います。

統合開発環境:IDEは、旧FreescaleのKinetis Design Studio+Processor Expertと旧NXPのLPCXpresso+LPCOpenライブラリが、新NXPではMCUXpresso+SDK+Config Toolsとなり、一見、新しい開発環境に統合されたように見えます。

しかし、買収完了後の新発売MCU開発以外は、個人的には旧開発環境の方がどちらの既成製品開発にも適している気がします。

9月28日現在、LPC8xx用のLPCOpenライブラリv3.01は、残念ながら更新されていません

LPC8xxのGPIO制御とデバッグTips

NXP ARM Cortex-M0+マイコンLPCXpresso8xxのLPCOpenライブラリが、v3.01へ更新され、v2.x版から持ち越された多くのバグが修正されたようでした(結論から言うと、LPC81xにはバグが残っています。LPCXpresso8xxのLPCOpenライブラリv3.01は、前回の記事を参照してください)。

今回は、マイコン制御で最も基本となるGPIO制御を、MCUXpressoのサンプルソフトperiph_gpioと最新LPCOpenライブラリv3.01を使って解説し、さらにデバッグTipsを示します。

サンプルソフトperiph_gpioのGPIO API

LPCOpen v3.01のGPIO API数は、GPIO機能初期化、GPIOピン単位制御、GPIOポート単位制御の3種類で35個あります。全部使う必要はありませんので、最も基本的なGPIO APIを抜粋し使っているのがperiph_gpioで下記7個です。

periph_gpioのGPIO API一覧(その1)
GPIO API 概要
1 Chip_GPIO_Init(LPC_GPIO_PORT); GPIO機能初期化(=クロック供給)
2 Chip_GPIO_SetPinDIROutput(LPC_GPIO_PORT, 0, ledBits[i]); ピン(入)出力方向設定
3 Chip_GPIO_GetPinState(LPC_GPIO_PORT, 0, ledBits[LEDNumber]); ピン入力値取得
4 Chip_GPIO_SetPinState(LPC_GPIO_PORT, 0, ledBits[i], true); ピン出力値設定
5 Chip_GPIO_SetPinToggle(LPC_GPIO_PORT, 0, ledBits[LEDNumber]); ピン出力値反転

LPCXpresso8xxは、Portは0しかありませんので、「LPC_GPIO_PORT, 0,」は決まり文句、最後のパラメタは、GPIO0_xyzのGPIO論理ポート番号を示します。物理ピン番号ではない点に注意してください。

periph_gpioのGPIO API一覧(その2)
GPIO API 概要
6 Chip_GPIO_SetPortMask(LPC_GPIO_PORT, 0, ~PORT_MASK); ポートマスクレジスタ設定
7 Chip_GPIO_SetMaskedPortValue(LPC_GPIO_PORT, 0, count); ポート出力値設定(マスクレジスタ経由)

ポート単位のGPIO APIは、複数の出力ピン出力を同時に設定するもので、バス出力時に便利です。これら7個のGPIO APIのみを習得していれば、基本的なGPIO制御ができます。

評価ボード実行結果

LPC81xは、LPCXpresso812、LPC82xは、LPCXpresso824-MAXの評価ボードで実行した結果が下図です。

periph_gpio実行のデバッグ画面
periph_gpio実行のデバッグ画面(赤色がLPC824、青色がLPC812)

LPC81xとLPC82xでは、同じソースでも、ポート出力値が異なります。期待値は、LPCXpresso824-MAXでしか得られません。つまり、LPC81xにはGPIO APIのポート制御にバグがあることが判ります。

デバッグTips

ここで、デバッグのTipsを解説します。

MCUXpressoのローカル変数は、Quick Start ViewのVariablesタブで、周辺回路状況は、Workspace ViewのPeripherals+タブで表示可能です。適当な場所にブレークポイントを設定しF8クリックで、ブレークポイントまで実行します。評価ボード実行結果は、この操作で得られたものです。

現行版MCUXpressoは、デバッグでよく使うファンクションキーのツールチップが一部表示されません。
F8(実行)と、F5(ステップ実行)、F6(ステップオーバー:関数に入って処理「後」停止)、F7(ステップリターン:関数に入った状態で処理「後」停止)を覚えておくとデバッグ効率が良くなります。

LPCOpenライブラリv3.01のLPC81xポート制御、バグ回避方策

LPC812とLPC824はGPIOレジスタ構成が異なります。後で開発されたLPC824の方が、より制御し易いレジスタを備えています(ハードウエアマニュアルより抜粋)。

LPC824とLPC812のGPIOレジスタ比較
LPC824とLPC812のGPIOレジスタ比較

バグがあったLPC81xのポート出力値設定の代替として、他のGPIO API利用または、直接ハードレジスタ操作などを試しましたが、LPCOpen v3.01では、代替方法が見つかりません。思うにLPC81xライブラリの結構深い場所にバグがある可能性があります。

そこで、LPC81x動作には、旧LPCOpenライブラリv2.15を、LPC82x動作には、最新LPCOpenライブラリv3.01を使ってLPC82xテンプレート開発をすることに方針変更しました。当初目標のLPC8xxテンプレート、つまりLPC82xとLPC81xの両方を同じテンプレートソースで実現することは、残念ながら諦めました。

MCUXpressoでの旧LPCOpenライブラリv2.15の使い方

MCUXpressoは、このようなバグの場合に備えて旧LPCOpenライブラリ群も備えています(C:\nxp\MCUXpressoIDE_10.0.2_411\ide\Examplesフォルダ参照)。最新版MCUXpresso IDE v10.0.2_411でもLPCOpenライブラリv3.01が同封されていないのも、本稿で示したバグが理由かもしれません。

旧LPCXpressoプロジェクトをMCUXpressoで開こうとすると、下記ワーニングが出力されます。

Older Workspace Version Warning
Older Workspace Version Warning

旧LPCXpressoとMCUXpresso両方を使い続ける方は、LPCXpressoプロジェクトをコピーして別名のプロジェクトを作成した後に、MCUXpressoで開くと良いでしょう。

LPC81xテンプレートV2.1は、テンプレートプロジェクト内にLPCOpenライブラリv2.15を装着していますので、そのままMCUXpressoで開いても問題なく動作します。

*  *  *

LPCOpenライブラリv3.01を使った新しいLPC82xテンプレートV3の開発は、7E目標で進行中ですが、上記のようなLPCOpenライブラリv3.01バグがあり、予定より難航しています。ちなみにUart関連は、LPCOpenライブラリv3.01でかなり改善されました。

また、MCUXpressoは、Ctrl+スペースキーによる入力補完機能も実装されており、使い勝手は向上しています。旧LPCXpressoを使う必要性は低いと思います。

LPC8xxテンプレートV3完成は、今しばらくお待ちください。

NXP LPC8xx LPCOpenライブラリ更新

NXPのLPX8xxのLPCOpenライブラリが、1年7か月ぶりに更新されv3.01になりました。リリースノートを見ると、多くのバグが修正され、積み残しバグ(Carried Forward)も(現時点では)無くなりました。

なお、7月11日発表のMCUXpresso IDE v10.0.2 [Build 411]に、この最新LPCOpenライブラリv3.01は、未だ同胞されていません。 是非LPCOpenサイトから手動でダウンロードしてください。

v2.15積み残しGPIO APIバグ解消

本ブログ2015年9月記事のGPIO APIバグも解消されました。
このGPIO APIバグは、2年以上前のv2.15から積み残されたものです。GPIO APIは、マイコンAPIのなかで最も重要かつ頻繁に使うものだけに、手動で修正し利用されていた方も多いと思いますが、やっと解決されました。

LPC111xのLPCOpenライブラリは未更新

LPC1100シリーズのLPCOpenライブラリ更新状況がコチラです。残念ながら、弊社LPC111xテンプレートで使用中のLPCOpenライブラリLPC11C24は、v2.00a(2013/09/13)のままです。但し、LPC111xテンプレート動作には特に問題ありません。

LPC82xテンプレート開発再開

LPC8xx LPCOpenライブラリが更新され、GPIO APIバグも無くなりましたので、前述の2015年9月記事で一時停止中であったLPC82xテンプレートの開発を再開します。

開発環境は、旧LPCXpressoを変更し、最新のMCUXpressoとします。リリースは、7月末を予定しております。
勿論、既存LPC81xテンプレートも最新LPCOpenライブラリv3.01を使って再開発し、まとめてLPC81x、LPC82x両方に対応したLPC8xxテンプレートとします。

また、Cortex-M系マイコンのコードテクニックとして有名な、ループ構文には、カウントダウンの方が高速でコードサイズも小さいことをテンプレートへ取り入れた改良も加える予定です。
※上記コードテクニックは、ARMコンパイラバージョン6.6ソフトウエア開発ガイド 7章を参照してください。

*  *  *

LPCOpenライブラリの更新は、NXPの 各種Cortex-Mマイコンへの力の入れ具合を反映したものと思います。

最新マイコンのLPC54xxxのLPCOpen版数は、v3.03.000やv3.00c.001で、LPC8xxよりも更新日も早いのは当然ですが、LPC8xxが、例えばLPC13xxなどの既存他シリーズよりも早くLPCOpen v3.xxへ更新されたのは、反映結果でしょう。これは、2016年12月記事の2017NXPロードマップとも符合します。

既存マイコンの置換え市場を狙った、小ピンでスイッチマトリクスを持つ32ビットLPC8xxマイコンの優位性を示す指標の1つだと言えます。

NXP LPC84x発表、2017/3Qより供給予定

6月27日、NXP LPC8xxロードマップ2017掲載のLPC84xが発表されました。

LPC84xは、従来のLPC8xx(小ピン+スイッチマトリクス)に、新たな特徴が追加されました。

・高速アクセス初期設定メモリ(FAIM)により、電源オン時クロック低周波数モード起動が可能でスタートアップ消費電流を最小化
・GPIOポートの設定構成による即時起動が可能で、MOSFETなどの付属デバイスによる潜在的な終端問題を解消

データシート6章のブロック図を示します。

LPC84x Block Diagram
LPC84x Block Diagram(データシートより)

スタートアップ消費電流の最小化を実現するのが、FIAM:Fast Initialization Memoryでこれを使うことで1.5MHzブートが可能です。起動を繰り返してもバッテリー消費が抑えられ、より長い期間の動作が期待できます。

また、容量式タッチセンシングやライブラリーによる自動キャリブレーションなどのアプリケーション向きの機能も追加されています。

LPC8xx MCU Lineup
LPC8xx MCU Lineup(ファクトシートより)

2017/3Q(7~9月)に評価ボードLPCXpresso845-MAXとともに供給開始の予定だそうです。

RTOSへの備え:最終回、FreeRTOSサンプルソフト

FreeRTOSの要点を第1回~第3回でなるべく簡潔に解説してきました。簡潔にし過ぎて部分的には不正確な記述もあります。

しかし、正確さに拘って記述すると分(文)量が増え、参考書の和訳になりかねません。ポイントとなる点をざっと掴んで、開発環境で試し、参考書やマニュアルなどで開発者自ら考える、これにより新しい技術を本当に身に付けることができます。私は、これを食物の消化に例えます。

これには、出だしでつまずかず、多少間違えてもスムースに学習を進めること(=先ずは食べること)が大切です。食べたものの消化には、時間が掛かります。後で振り返ると、内容や詳細が解るということはよくあります。

開発者への「開発スピードを上げよ」というプレッシャーは、益々強まります。この状況で技術を身に付けるには、効率的に頭の中の整理、これこそが消化、が必須です。

最良の解説書は、「サンプルソフト+評価ボード」

ソフト開発は、つまるところ、ソースコード+評価ボードによる開発環境に勝る解説書は無いと思います。ソースコードを読み理解するのに最低限必要な知識と、実際のマイコンで使えるFreeRTOSサンプルソフトを示す、これが今回のRTOS関連記事の目的です。

そこで、第3回のタスク間データ通知、同期、排他制御の自作サンプルソースや、NXPオリジナルのLチカサンプルに、より解りやすい日本語コメントを付加した第1回のLチカサンプルソースを弊社サイトのRTOSページで公開します。

このサンプルソフトを使えば、より具体的に、日本語コメント付きソースコードを参照しながらRTOS習得や理解ができます。評価ボードで動作が即確認できますので、出だしのつまずき回避にも有効です。

FreeRTOSのAPIは、多くのパラメタを含みます。パラメタを変えた時に、どのように動作が変わるかをサンプルソースに修正を加え、評価ホードで試すことができます。これは、結構重要です。食べ方を自分で変えて消化することに相当するからです。また、このパラメタ変化を事細かに記述する術は(多分)ありません。

しかし実際の開発では、この事細かな事柄を知っていないと、トラブルやバグ回避ができません。このことが「サンプルソフト+評価ボード」が最上の解説書とする理由です。

FreeRTOSサンプルソフト

FreeRTOSサンプルソフトは、NXP製LPCXpresso824-MAXで動作します。
RTOSへの備え:第1回に予定していたLPCXpresso812/812-MAX、LPCXpresso1114/5の動作確認結果が下表です。

FreeRTOSサンプルソフト動作確認状況
FreeRTOSサンプルソフト動作確認状況

LPCXpresso824-MAXで動作するソースを使い、IO割付と使用LPCOpenライブラリのみを変更し、他評価ボードへ適用しました。LPCXpresso812は824-MAXと同様に動作しますが、LPCXpresso1114/5は、Lチカ以外の動作確認ができません。また、LPCXpresso824-MAXもMutexは、希望の動作をしません。代用として2個のセマフォを使って疑似的に実現しました(Mutex2)。MutexとLPCXpresso1114/5の動作NG原因は不明です。原因が判明しましたら、弊社サイトへ記載します。

以上のように出来が良くありませんので、LPCXpresso824-MAXのFreeRTOSサンプルソフトのみをサイトで公開いたしました。
※2020年3月、このFreeRTOSサンプルソフトをLPCXpresso54114対応へ更新し、LPCXpresso824-MAXサンプルソフトは削除しました。

当初目的の全ボードでのFreeRTOS動作確認は出来ていませんが、これも、(かなり無理があることは承知の上で)評価ボード検証のあかしと考えることにします(Orz)。

※動作しない原因がお判りの方は、info@happytech.jpへまで教えていただけると助かります。