PSoC 4とPRoC BLE概要

アプリケーションの広い範囲を、一般的なマイコンよりも少ないデバイスでカバーできる」、これがCypressのPSoCです。

  • PSoC:     Programmable System-On-Chip
  • PRoC:     Programmable Radio-On-Chip
  • MCU:      Micro Controller Unit
  • BLE:        Bluetooth Low Energy

PSoCの特徴

一般的なマイコン:MCUは、制御コアとADCやUARTなどのアプリケーションに必要なコンポーネントがセットになったデバイスです。必要なコンポーネントが無い、または不足する場合には、制御コアとコンポーネントの選択肢が記載されたセレクションガイドからアプリに合うMCUを選びます。
つまり、元々アプリケーション起因なので、MCUのアプリ適用範囲は限定的です。

一方、PSoCのコンポーネントは、コンポーネント単体でプログラマブルです。1つのコンポーネントで複数の異なる機能を実現でき、これはデジタル回路だけでなく、アナログ回路のコンポーネントも同じです。また、コンポーネント間接続も、プログラマブルです。これら機能は、動作中でも変えることができるリコンフィグラブルです。

PSoC 4ブロック図(データシートより抜粋)
PSoC 4ブロック図(データシートより抜粋)

PSoCを「カメレオンIC」とトラ技2013年7月特集で呼んだのは、制御コア以外のアナログ/デジタルコンポーネントがこのように状況に応じて変わるからです。
ゆえにPSoCは、MCUよりもアプリケーションの対応自由度が高いのです。

PSoC 4デバイス価格調査

プログラマブルなコンポーネントを持つPSoCはMCUより高価です。制御コアをARM Cortex-M0/M0+とした時のPSoCとMCU価格差をDigikeyで調査した結果が下表です(※ほぼ同じスペックの比較)。

ベンダ
型式
 

CYPRESSCY8C4245AXI-483

 

NXPLPC1114FBD48/302

 

FREESCALEMKL05Z32VLF4

制御コア Cortex-M0 Cortex-M0+
コア最大速度 48MHz 50 MHz 48 MHz
ROM/RAM 32kB/4kB
デジタルコンポーネント 4SPI, 2I2C, 4UART 2SPI, I2C, UART SPI, I2C, UART
アナログコンポーネント 12b ADC, 2OP AMP, 4CMP 10b ADC 12b ADC、12b DAC
GPIO 36 42 41
パッケージ 44-TQFP 48-LQFP 48-LQFP
2015/9 Digikey価格 526 414 339

 

アプリへの柔軟性や部品の共用化へデバイスコストアップをどれだけ許容するか、マイコン選定時の永久課題です。個人的には、面白い機能盛りだくさんのPSoC 4を活用したいと思います。

PSoC 4 BLE動画

PSoC 4に、IoTセンサマイコンのトレンド、Bluetooth 4.1のBLEコンポーネントを追加したのがPSoC 4 BLEです。BLE Pioneer Kitの動画(英語)で、IoTマイコンPSoC 4 BLEの動作や特徴が解ります。

BLE機能を一体化したPSoC 4 BLEやPRoC BLE(後述)と、MCUにBLEを外付けにするアプローチ、どちらが優れているかは検討が必要です。しかし、一体による小型化、iPhone/AndroidやパソコンとのBluetooth通信確認済みのアンテナ、しかも各国の規格認証済みであるなど魅力があると思います。

本ブログの対象Cypressデバイス:
PSoC 4、PSoC 4 BLE、PRoC BLE

制御コアが8051のPSoC 3、ARM Cortex-M3のPSoC 5もありますが、本ブログは、制御コアに8/16ビットマイコンの置き換え市場を狙うCortex-M0を使った以下3デバイスを対象とします。

  1. PSoC 4
  2. PSoC 4 BLE
  3. PRoC BLE

PRoC BLEは、普通のMCUで使うADCやUARTのコンポーネントに、BLEコンポーネントを追加したIoT MCU市場へ殴り込みをかけるCypressデバイスで、アナログコンポーネントブロッグが無いデバイスです(前回記事のブロック図参照)。
今日現在DigiKeyで未販売ですので価格は不明ですが、PSoC 4 BLEよりはかなり安くなると思います。

* * *

PSoCの特徴と3つのブログ対象デバイスについて示しました。これらデバイスは、制御コアがCortex-M0のため、普通のMCU開発者なら試しに使ってみる障壁は少ないと思います。
今後は開発キット、PSoC 4 Pioneer KitBLE Pioneer Kitを使って、デバイスの具体的な使い方、一般的なMCUとの開発の違いなどを記載する予定です。

LPCXpresso v7.9.2とLPCOpen v2.19リリース

2015/09/14、LPCXpresso v7.9.2がリリースされました。

この新LPCXpressoのデフォルトインストール先、C:\nxp\LPCXpresso_7.9.2_493\lpcxpresso\Examples\LPCOpen
にLPCOpenの新バージョンv2.19 2015/09/01も同時にインストールされます。

残念ながらこのLPCOpen v2.19も、前版v2.15積み残しのGPIO_APIバグ、uinit8_tを修正してunit32_tを使うが解決されていません。従って、LPC824テンプレートも“開発待ち”を続けます。

NXPのFreescale買収は、2015年末完了予定で進行中です。マイコン部門のみを比較すると、NXPよりもFreescaleの方が大きいそうで、今回の積み残しはこれが反映されたのかもしれません。LPCXpressoとLPCOpenの組合せは、他社と比較しても使いやすいIDEなだけに残念です。

一方、FreescaleのKinetis Design Studio 3.0.0 IDEもEclipseのUpdateはありますが、メジャーバージョンアップはありません。

NXP、Freescaleともに2015年末に向けて忙しいのでしょう。両社のARM Cortex-M0+/M0マイコン状況は、様子がはっきりするまで待ったほうが良い、というのが現段階の判断です。そこで、先に取上げた、Cypress PSoC 4/PRoCの調査を次回報告する予定です。

IoT向けマイコン動向とマイコンテンプレート

IoT構成デバイス、特に数億~数十億とも予想される莫大な出荷数のマイコンに対して、ネットワークやセキュリティなどのIoT向け機能を強化した新マイコンがベンダ各社から登場しています。

Runesas Synergy

この新マイコンの1つ、ルネサスSynergyの“セキュリティ強化ポイント”と“開発アプローチ”に関する2種ホワイトペーパーが9月9日公開されました。ティーザー広告手法でしょうか? Synergyは、2015年末に詳細発表予定です。

セキュリティの方は、私はイマイチ解らないのですが、開発アプローチのペーパーを読むとSynergyが、ARM Cortex-MコアでEclipseベースのe2 studioThreadX RTOSを使うらしいことが解ります。

狙いは、ルネサスが、System Codeと呼ぶドライバーやミドルウエア、RTOSなどをパッケージで提供することで、開発者労力をアプリケーションに集中させ、トータル開発時間を削減することです。

CS+のコード生成にReal Time OSを付けた、または、Visual StudioのWindowsデスクトップアプリ開発環境に近いイメージでしょうか? 私は、NVICによるイベントドリブンプログラム派ですので、OSが小規模マイコンのオーバーヘッドにならないか気がかりです。

開発キットかスターターキットの購入&登録でSystem Codeパッケージを全て使用できるそうです。

Cypress PSoC4/PRoC BLE

Cypressでは、PSoC4は、“IC: Integrated Circuit”の位置づけ、PRoC BLEは、プログラマブルRadio機能のBLE: Bluetooth Low Energyを追加した“マイコン”と言うそうです。PSoC4にBLEを追加し2015年発売のPSoC4 BLEPRoC BLEともにCortex-M0コアを使いBluetooth 4.1モジュールが実装済みのパッケージです。

確かにPSoC4 BLEは、Cypress独自のプログラマブルなアナログモジュールやデジタルモジュールにBLEモジュールが追加されています。一方、PRoC BLEは、見慣れたADCやPWMにBLEが載っており、アンテナパターンと2個のL、C追加のみでBluetooth マイコンが低コストで実現できそうです。

PRoCブロック図とBluetoothアンテナパターン(データシートより抜粋)
PRoCブロック図とBluetoothアンテナパターン(データシートより抜粋)

PSoC4 BLEとPRoC BLEの両方をBaseboardに載せ換えて開発できるお得なBluetooth Low Energy (BLE) Pioneer Kitは、チップワン、DigikeyやMouser、Cypressから購入できます。また、秋月電子でBLEなしのPSoC4 Prototyping Kitが600円、PSoC4 Pioneer Kitが3000円で購入できます。

※Cypress主催の“ハンズオン トレーニング ワークショップ:PSoC4およびBLEシステム設計入門”に参加すると、2015年9月現在、PSoC4 Pioneer KitとBluetooth Low Energy (BLE) Pioneer Kitが無料で入手できます。

マイコンテンプレートの今後

2015年末完了予定のNXPによるFreescale買収後は、両社のCortex-M0+/M0ラインアップも変わる可能性があります。私は、Cortex-M0+マイコンの統合を予想しており、この結果、現在4種提供中の弊社マイコンテンプレートも減るかもしれません。

対策と言っては失礼ですが、Cortex-M0搭載でBluetoothも使えるCypress PRoC BLEかPSoC4 BLEのテンプレートラインアップ追加を検討中です。ブログにPSoC4/PRoCマイコンカテゴリーを追加し今後経過を掲載します。

Runesas Synergyはもう少し様子を観察する必要があります。

ブログカテゴリ修正

マイコンのサブカテゴリを、6種のマイコンとIoT向けPCに修正しました。

ARM Cortex-M0+またはM0コアのマイコン、FreescaleのKinetisマイコン、NXPのLPCマイコン、ルネサスのRL78マイコンとR8Cマイコンです。
IoT向けのPCは、Windows 10 IoTコアを実装できるCPUボードを対象としました。

KinetisとLPCマイコンは、Cortex-M0+/M0マイコンと重複しています。
これは、Cortex-M0+/M0を重視したためで、このカテゴリから、今後新しいマイコンが発売されることを想定しています。

この基になった記事がコチラです。「Cortex-Mプロセッサを軸にしたARMのIoT戦略」の項で、市場早期対応にARMコア利用が優れていること、小さな実装面積と少ない電力要求のIoT市場にはCortex-M系が良く、Bluetoothなどの無線IPをSoC実装した新マイコン発表の可能性を示しています。

正式版がリリースされた無償Windows 10 IoTコアは、Wi-FiとBluetoothサポートなので、この新マイコンとの相性も良さそうです。

ブログ記事検索は、キーワード短縮表記をお使いください

カテゴリ修正に合わせて、過去の記事のタグ追加と修正も試みましたが、記事数が多いので断念しました。従って、記事の検索にタグを使うと、検索漏れが生じます。

ブログ記事のタグ検索
ブログ記事のタグ検索

対策として、関連記事の検索は、「検索窓にキーワードの短縮表記」をお使いください。例えば、LPC812とLPC824の記事を検索するときは、“LPC8” を入力するなどです。タグ検索よりは遅いのですが、検索漏れは防げます。よろしくお願いいたします。

ブログ記事のキーワード検索
ブログ記事のキーワード検索

NXPのFreescale買収、株主承認取得

NXPによるFreescaleの買収に進展があり、7月2日株主承認が得られました。後は、規制当局の承認を得て、予定通り今年の終わりまでに完了するようです。

気になる両社のCortex-M0/M0+マイコンの今後については、未だ不明確です。
個人的には、統合開発環境IDEは、NXPのLPCXpresso、Rapid Application Development : RADツールは、FreescaleのProcessor Expertが好みなので、折衷的なIDEができると嬉しいです。両社同じEclipseベースIDEですが、異なります。

ルネサスの新マイコン:Renesas Synergy MCUも、EclipseベースIDE(E2Studio?)でARM Cortex-M0+/M3/M4コアと予想しています。この新マイコンの詳細発表は2015年4Qで、NXP買収完了とほぼ同じタイミングです。

LPCXpressoにTerminate, Build and Debugボタン追加

Terminate, Build and Debug Button
Terminate, Build and Debug Button

LPCXpressoが7.7.2 (build 379)に更新され、Terminate, Build and Debugボタンが新たに追加されました。

デバッグ中にソース修正を加えた場合、一旦デバッガ接続を切り離した:Terminateボタン後、Buildボタン→Debugボタンを押していた従来方法が、このボタン1個でできるように改善されました。

CypressとSpansion合併

2015年3月15日、Spansionは、Cypressと合併しました。

ARMコアでプログラマブルなアナログ周辺回路が特徴のCypressと、自動車/産業機器に強いシェアをもつSpansion、「新生Cypressは、車載、産業機器、民生機器、ウェアラブル端末、IoTなどの世界市場でシェアを拡大すべく、組み込みプロセッサやメモリの製品ポートフォリオの拡充を図っていく」とのことです。

ARMマイコン業界も数年前の自動車業界と同様、会社規模の集約化が進んでいくのでしょうか?  NXPとFreescale合併後、ARM Cortex-M0/M0+の製品ポートフォリオの変化の有無が気になる今日この頃です。

マイコンテンプレート活用のアプリケーション開発(後半)

マイコンテンプレートを使ったアプリケーションの開発方法(後半)は、手順4:サンプルソフトのテンプレートへの組込みとデバッグ、複数サンプルが同時に動くしくみを解説します。

アプリケーション開発手順(再掲)

アプリケーション完成までの手順1~3の詳細は、(前半)に記述済みです。

  1. 対象動作の明確化
  2. サンプルソフト獲得
  3. サンプルソフトを初期設定とループ処理の2つに分けて解読し、部品化
  4. 部品のサンプルソフトをテンプレートへ組込み、デバッグ

サンプルソフトとテンプレートの構造

サンプルソフトを組込んだテンプレート構造
サンプルソフトを組込んだテンプレート構造

ルネサスのRL78/G13アプリケーションノート:R01AN0451JJ0301をサンプルソフトにした例で説明します。サンプルソフトは、初期設定とループ処理から成ります。hdwinit()が初期設定、main()がループ処理です。このアプリノートでは、無限ループ内でスイッチ入力:P0と、LED出力:P1を同時に行っています。詳細は、R01AN0451JJ0301を参照して下さい。

サンプルソフトのループ処理
サンプルソフトのループ処理

このサンプルをテンプレートへ組込んだテンプレート構造が右側です。テンプレートでは、スイッチ入力処理と、LED出力処理は、別々に起動します。このテンプレート構造から、これら以外の別サンプルN処理や、割込み起動のサンプルX/Y処理が追加可能なことが判ります。例えば、ブザ音の発生処理などをここへ追加すると、簡単に処理の追加ができます。
つまり、テンプレートは、「複数処理を起動する仕組みを、初めから持っている」のです。ここがサンプルソフトと最も異なる点です。
スイッチ入力とLED出力を分離したのは、スイッチの入力スキャンタイミングを、チャタリング対応で簡単に変更することが目的です(補足参照)。

テンプレートに付属している「シンプルテンプレート」が、このスイッチ入力とLED出力を組込んだテンプレートに相当します。また、更に、LCD表示やI2C入出力などの、組込みマイコンに必要となる処理をほぼ全て加え、完成形の形にしたのが、「メニュードリブンテンプレート」です。

マイコンテンプレートの仕組み

  • サンプル初期設定は、丸ごとそのままテンプレート初期設定へ流用 → 複数サンプルの初期設定は、挿入順にそのまま実行
  • 時分割で複数の無限ループ生成 → サンプルの起動関数追加により、複数処理を実行
  • サンプル割込み処理は、そのままテンプレート割込み処理へ流用 → 複数の割込み処理時は、割込み優先順位に注意
  • 関数の引数は、インタフェースRAM経由 → 関数入出力確認がRAMでできるので、単体/結合デバッグ、処理の部品化が容易

インタフェースRAMのメリットは明らかです。例を示します。上記テンプレートに、スイッチに応じてブザ音発生処理を追加するとします。

スイッチ入力処理で、スイッチ入力結果をRAMへ出力します。ブザ音発生処理は、このRAMを参照し、音を発生させます。RAMインタフェースを使えば、どちらの処理もRAMで動作が分離され、そのRAM値により処理が正しく動作しているかが解ります。RAM値は、デバッガで変更やモニタもできますので、処理単体デバッグが簡単です。仮に、片方の処理が未完成であっても、RAM設定/モニタで結合デバッグもできます。

ブザ音処理の追加前と後で、スイッチ入力処理には影響が無いことも判ります。つまり、処理の部品化も可能です。

割込み処理は、優先順位に注意が必要です。テンプレートは、時分割ループ生成のために、SysTickタイマと呼ばれるタイマを使います(その名が示すように、システムのチックタック動作タイマ)。SysTickタイマの割込み優先順位は高く、サンプルで割込み処理が使われても、このSysTickタイマよりは低い優先順位です。

注意が必要なのは、複数サンプルの割込み処理をテンプレートへ追加する場合です。割込みには、デフォルト優先順位があります。このデフォルト順位で処理できるか、変更が必要かの検討が必要です。
デフォルト順位でOKなら、そのままテンプレートへ流用します。変更する場合は、マイコンに依存しますので、データシートを参照して順位を変更してください。

RL78/G1xタイマの検討優先順位設定に関しては、過去のブログ記事を参照してください。

アプリケーション開発手順4のまとめ

  • サンプルソフト初期化関数は、そのまま丸ごとテンプレート初期設定へ挿入
  • サンプルソフトのループ処理は、サンプル起動関数を適切なテンプレート時分割ループへ挿入
  • サンプルソフトの割込み処理は、割込み優先順位に注意し、テンプレートの割込み処理へ挿入
  • 関数間は、部品化のため、RAMインタフェースを使い、単体/結合デバッグを行う

テンプレートですから、部品化した関数の挿入でアプリが完成します。また、部品の再利用を容易にするため、部品単位でファイル化します。複数の割込み処理は、優先順位に注意し、必要なら設定を変更します。関数間は、RAMで切り離し、関数単位でのデバッグを容易にします。

テンプレートを使うと、開発者毎に異なるアプリ開発手法が統一でき、また、処理がファイル単位で部品化できますので、流用性や可読性も良くなります。

マイコンテンプレート販売中

前半、後半と長い説明になりましたが、マイコンテンプレートを使ったアプリケーション開発手順を示しました。シンプルテンプレート、メニュードリブンテンプレートが付属した、4種類のマイコンテンプレートを、各1000円(税込)で販売中です。

IoT向き省電力マイコンのLPC824は、2015/04Eに加わる予定です。

テンプレート名
(MCUコア)
対応マイコン
(ベンダ)
評価ボード:動作確認ハードウエア ブログタグ
RL78/G1xテンプレート v3.1
(RL78-S2/S3
RL78/G13
RL78/G14
(Runesas)
・BB-RL78G13-64(推薦ボード)
・G13スタータキット
・G14スタータキット
・QB-R5F100LE-TB
・QB-R5F104LE-TB
RL78/G13
RL78/G14
LPC8xxテンプレート v2.1
(Cortex-M0+
LPC812
LPC824
(NXP)
・LPCXpressoLPC812 + Baseboard
・LPCXpresso824-MAX + Baseboard
LPC812
LPC824
LPC111xテンプレート v1.1
(Cortex-M0
LPC1114
LPC1115
(NXP)
LPCXpressoLPC1114 + Baseboard LPC1114
Kinetis Eテンプレート v1.1
(Cortex-M0+
Kinetis E
(Freescale)
FRDM-KE02Z40M Kinetis E

 

テンプレートソースをご覧になれば、文書で示したものよりも、より直接的にテンプレートの処理内容がご理解いただけると思います。
また、テンプレート本体とサンプルソフト流用部分のソース間には、5行以上のスペースを入れ、視覚的にもテンプレートと流用部分の切れ目が判る工夫をしています。
サンプルソフト流用部分は、オリジナルの英語コメントですが、テンプレート本体は、日本語コメントで(冗長に?)説明を加えています

概要と仕様の説明資料は、マイコンテンプレートサイトから無料ダウンロードもできます。

テンプレートは、処理が何もない時は、Sleepする消費電力低減機能や、WDT:ウオッチドックタイマ処理、テンプレート本体の暴走監視機能など、アプリとして最低限必要な機能も実装済みです。

零から始めるアプリ開発に比べ、実務に直結した弊社マイコンテンプレートを活用して頂ければ、マイコンの習得と、可読性、流用性に優れたアプリケーションの早期開発ができます。是非、ご検討ください。

 

補足:スイッチ入力処理のチャタリング対応

サンプルソフト:R01AN0451JJ0301は、スイッチ入力処理にチャタリング対応がありません。マイコンの入力処理には、チャタリングに対するノイズ対策は必須です。ソフトウエア対策として、複数回スキャンし、入力が同値の時に、値を確定する方法が一般的です。弊社シンプル/メニュードリブンテンプレートは、この方法を採用しております。

この処理には、何回一致を判定するか、スキャンタイミングはどの程度か、の2パラメタがあり、使用スイッチに応じてこのパラメタを決める必要があります。弊社では、2回一致、10msタイミングで、タクトスイッチ入力処理を行っています。

テンプレートでご利用の実際のスイッチに応じて、これらパラメタ、特に回数のパラメタを変更すると効果が高いと思います。

マイコンテンプレート活用のアプリケーション開発(前半)

マイコンのアプリケーション開発方法として、マイコンテンプレートを使った方法を前後2回に分けて示します。
テンプレートを使えば、マイコン習得と可読性、流用性に優れたアプリが素早く開発でき、開発者毎に異なる開発手法も統一できます。
前半は、アプリケーション開発手順1~3を解説し、次回、後半で手順4を解説します。

アプリケーション開発手順

動くアプリ完成までの手順を示します。

  1. 対象動作、「何を、どうするか」を明らかにする。この段階では、細かいことを気にする必要はありません。例えば、スイッチをスキャンする程度で十分です。
  2. サンプルソフトを探す。メジャーなマイコンは、必ず多くのサンプルソフトをベンダがサイト公開しています。この中から対象動作のサンプルを探します。
  3. サンプルソフトを読む。サンプルソフトは、「初期設定処理」、次に「ループ処理」の2構成で記載されるものが殆どです。たまに、メニュードリブン形式もありますが、これは、弊社メニュードリブンテンプレートと同様、処理抜出を容易にすることを目的にしたものです。
  4. サンプルソフトの必要部分をテンプレートへ組込み、デバッグ。

以上で、アプリが完成します。

マイコンの場合、組込み後、チューニングが必要な場合もありますが、アプリ完成後の処理ですし、アプリにも依存しますので、先ずは、動くアプリ完成までの手順を示しました。

RAD: Rapid Application Developmentツールを使う場合は、2のサンプルソフトをサイトから探す代わりにRADツールを使ってサンプルソフトを生成すると考えれば良く、同じ手順となります。

サンプルソフトベースの部品化

対象動作は、スイッチ入力処理、LED出力処理などできるだけ細かく分割し、部品化することがポイントです。
最後に、これら部品を組み合わせて1つのアプリケーションにします。部品毎にサンプルソフトを見つけ、デバッグすれば、バグもこの部品内に閉じ込めることができます。また、部品単位の流用性も高まります。

サンプルソフトを組合せてアプリケーション開発
サンプルソフトを組合せてアプリケーション開発

上級者との差が出る箇所と対策

手順1~3で重要なことは、「対象動作の明確化」と、「サンプルソフトの分離読解」です。分離解読とは、初期設定とループ処理を明確に分離して解読することで、処理内容は、大体把握すれば十分です(後述サンプルソフトの読み方参照)。

上級者は、多くのサンプルソフトを経験しているので、的確に対象動作を絞り込め、分離解読が、早く深い点が違います。さらに、上級者は、個人的なテンプレートを既に持っているので、サンプルの流用、組込みとデバッグが効率よくできます。

弊社マイコンテンプレートを活用すると、

  • サンプルソフトの組込みが簡単な、テンプレート獲得
  • 処理単体/結合デバッグが簡単で部品化も容易な、RAMを使った処理インタフェースの獲得

ができますので、上級者との差分を誰でも補えます。

サンプルソフトの選出

何回かサンプルソフトを読むと、より明確な対象動作が選べるようになります。逆に、サンプルソフトが見当たらない時は、絞り込みが不完全、または対象が間違っていると言えます。初めに全てのサンプルソフトをざっと眺めた後で、アプリをイメージするのも良い方法です。

但し、スイッチ入力処理は、注意が必要です。スイッチには、チャタリング対策が必須です。この対策は2つあり、1つがハードウエア、もう1つがソフトウエアの対策です。両者併用もあります。
個人的には、ハード対策の有無に関係なく、ソフト対策は必要と考えます。弊社シンプルテンプレートでチャタリング対策済みのスイッチ入力処理を添付しているのは、この理由からです。
チャタリングは、使用するスイッチでタイミングが異なりますので、対策済みサンプルをベンダは提供しにくいと思います。チャタリングに関しては、以前のブログ記事や、ネット検索すると、多くの情報がありますので、そちらも参照して下さい。

サンプルソフトの読み方

サンプルソフトは、「木を見て森を見ず」にならないように、細かいことは気(木?)にせずに、初期設定とループ処理の2つに分けて読みます。

初期設定は、コメントに注意し、周辺回路の使用方法が開発するアプリと同じがどうかを見極めます。同じなら、丸ごとそのままテンプレートへ流用します。異なる場合は、データシートなどで変更箇所を特定し、実際にサンプルに変更を加え、結果が正しく動作することを確認しておきます。

ループ処理は、無限ループで処理するものと、割込みで処理するものに大別できます。割込み処理は、基本的にそのままテンプレートへ流用します。
無限ループ処理は、何をトリガにアプリを起動しているかが解れば十分です。多くの場合、フラグポーリングやカウンタなどです。この起動トリガで関数化し、テンプレートへ組込みます。

テンプレートの狙い:複数サンプルソフト流用

よほどの上級者やツワモノを除けば、アプリ開発は、サンプルソフトの流用が王道です。敢えてリスクをおかしてサンプルソフト以外の方法でマイコンを動かす必要はないからです。ベンダサンプルは、典型的動作ですので、先のスイッチ処理の例外を除くと、流用可能なものが多いのも理由です。

但し、サンンプソフトは、1個の周辺回路の動作説明が主なので、実際のアプリで必要となる複数の周辺回路を組合せる記述はありません。これが、開発者毎に手法が異なる原因です。弊社テンプレートは、これに対して1つの解を提供します。

弊社マイコンテンプレートは、サンプル処理の流用が簡単で、複数サンプル処理を組込むのも容易です。従って、サンプルを活かした動くアプリの早期開発ができます。また、本テンプレートを用いれば、開発者毎で異なる開発手法を統一でき、可読性や流用性も高まります。次回、後半で詳細を説明します。

アプリケーション開発手順1~3のまとめ

  • 細かい単位の対象動作サンプルソフトを見つけ、初期設定とループ処理の2つに分けて読む
  • サンプルソフトを部品と見なし、複数部品の組合せでアプリケーションを開発
  • サンプルソフト獲得方法は、ベンダサイト、RADツールがある

次回は、手順4の部品化したサンプルソフトのテンプレートへの組込みとデバッグ、複数サンプルが同時に動くしくみを説明します。

 

補足:チューニングとマイコン性能

アプリケーション開発で最も厄介なのは、実はチューニングです。

アプリに最適なマイコンを選定していれば、一部アセンブラ化などのチューニングなしで動くアプリができます。しかし、この選定失敗、もしくは、選定マイコンが古いのにアプリ追加などで、性能を絞り出す場合などの、最後の手段としてチューニングもありえます。
但し、苦労してチューニングしても、トラブルフリーの経験がないので、絶対に避けるべきだと思います。結局、高性能マイコンへの置換えという結果になります。

では、マイコン性能はどの程度が正解でしょうか? マイコンでシステムを制御する場合、通常アプリ以外の処理ソフト、例えば、ハード/ソフトの出荷時のセルフテストや、入力が一定時間ない時のデモンストレーション表示なども必要です(自動販売機などでおなじみですね)。ここでは、これらソフトを「システム運用ソフト」と呼びます。

これらシステム運用ソフトは、通常アプリ動作中には、並列処理をしませんので、消費するのはROM/RAMです。ソフト開発者は、ROM/RAM量を見積もる時に、これら通常動作には現れないシステム運用ソフトも考慮する必要があります。経験では、通常アプリと同程度、つまりトータル2倍のROM/RAMは必要と思います。

また、必要となるマイコン性能は、通常アプリと、上の例で示したようなシステム運用ソフトの両方で考慮すべきです。処理能力に十分な余裕がないと、再現性のない取れにくいバグ発生のリスクも高まります。この処理能力も、2倍程度の余裕が必要だと思います。

ハードウエア設計の「ディレーティング50%」と同様、2倍の余裕がマイコン設計には必要と思います。

LPCXpresso824-MAXでデバッガ接続NG時の回復方法

スイッチマトリクス:SWMを持つLPC8xxは、入出力ポートとマイコン周辺回路信号を柔軟に設定できる特徴があります。しかし、デバッグに重要なSWDIO/SWCLK信号の誤ったポート割付けなどが原因で、下図に示すLPCXpresso IDEデバッガと接続できないエラーが発生します。今回は、この対処方法を示します。

LPCXpresso824-MAX as not debuggable
デバッガ接続できないLPCXpresso824-MAX

LPC810対処

トラ技2014年2月号p85に、LPC810の同様問題への対処方法が掲載されています。SWMをもつマイコン特有の問題かもしれません。

LPCXpresso824-MAX対処

私の場合は、SWMとは関係のないLPCXpresso824-MAXのシステムクロック周波数を変更するプログラムでこの現象が発生しました。このエラーが発生すると、mbedプログラミングもできなくなります。因みに、mbedのファームウエアは、最新版Version0221 2015/03/03です。回復するまでは、LPC824への変更ができない状態となります。

この状態からの回復手順は、以下です。

  1. 念のため、mbedサイトを参照し、mbedファームウエアを最新版に更新完了しておく
  2. LPCXpresso824-MAXをパソコンと接続後、ボードのISPボタン押下げ後、リセットボタンを押す。リセットボタンを放し、最後にISPボタンを放す(→ ISPモードでデフォルトピン割付に回復)
  3. LPCXpresso824-MAXとパソコンを再接続し、LPCXpresso IDEを起動
  4. LPCXpresso IDEのProgram Flashアイコンをクリックし、Mass eraseを実行(原因プログラム消去)
Program Flash実行で回復
Program Flash実行で回復

今回の原因が、SWMに起因するか、または、main実行前に設定すべきシステムクロック周波数変更を、誤ってmain実行後に行ったことに起因するかは不明ですが、同じプログラムで現象が再現しますし、上記手順で回復しました。
LPCXpresso824-MAXとLPCXpresso IDEのデバッガ接続ができない時は、ご参考ください。