第2のRAサンプルコード

ルネサスRAファミリ開発に評価ボード毎のサンプルコードが重要であることは、過去何回か投稿済みです。今回は、これとは別の、「Stacks毎」に提供される第2のサンプルコード利用方法を説明します。

RAプロジェクトソースコード開発手順

FSPパースペクティブへ追加するLPM Stack
FSPパースペクティブへ追加するLPM Stack

ごく簡単にRAプロジェクトのソースコード開発手順を説明すると、

1) 利用「Stack」をFSPパースペクティブへ追加
2) Generate Project Contentクリック
3) 生成されたDeveloper AssistanceのStack API群から、利用APIをソースコード上へコピー&ペースト

という3手順の繰返しです。Stackとは、MCU周辺回路のことです。

評価ボードサンプルコードは、あらかじめ1)~3)をエキスパートが行い、サンプルで利用するStackとStack APIは、エキスパートが選択済みの実動作プロジェクトです。

一方、開発者自らが、1)~3)手順でソースコード開発する時は、どのStackを追加するか、利用するAPIは何か、を検討する必要があります。この検討に必要な情報は、全てFSPパースペクティブへ配置したStackのℹ️から得られます。

ℹ️をクリックすると、Stack PropertiesのAPI infoタブ相当の英文解説が読めます。内容は、Function、Overview、Exampleなどです。API info表示内容と同じですが、より詳しい説明が得られます。

「Stack毎」に提供される第2のRAサンプルコードとは、このExampleのことです。

Low Power Modes (r_lpm)の例

RAファミリの4低電力動作モード(出展:RA6E1ユーザーズマニュアル)
RAファミリの4低電力動作モード(出展:RA6E1ユーザーズマニュアル)

MCUアプリケーションに、低電力動作は必須です。RAファミリには、スリープ/ソフトウェアスタンバイ/スヌーズ/ディープソフトウェアスタンバイの4低電力動作モードがあります。例えば、RA6E1グループユーザーズマニュアルハードウェア編の10章を参照ください。

電力消費の最も大きいMCUを停止するのが、スリープモードです。スリープからの復帰時間も短く、簡単で効果的な低電力動作が可能です。

RAファミリで低電力動作を行うには、FSPパースペクティブへ、最初の図に示したLow Power Modes (r_lpm)スタックを追加します。

Stackのℹ️とサンプルコード

追加Stack ℹ️クリックで表示されるのが、LPMの詳細説明です。LPMスタック追加で増える5個全てのLPM APIが解ります。また、スリープモードプロパティがデフォルト設定済みなのも解ります。

このスリープモードのExampleが、下記LPM Sleep Exampleです。

LPM Sleep Example
LPM Sleep Example

利用APIは、R_LPM_Open()とR_LPM_LowPowerModeEnter()の2個のみです。assert(FSP_SUCCESS == err)は、次章で説明します。

注意点は、この「Stacks毎」に提供されるサンプルコードは、一般的なサンプルコード構成、つまり、初期設定と無限ループ内処理の記述形式ではないことです(一般的サンプルコード構成については、コチラの関連投稿参照)。

ここで示されているのは、LPMスリープモード時に利用するAPIとその利用順序です。

つまり、最初にR_LPM_Open()でスタックAPI利用可否を判断し、次に、R_LPM_LowPowerModeEnter()でスリープ動作OKの判断をしているだけです。

LPM以外のStack Examplesでも同様です。繰返しになりますが、Stack Exampleは、利用APIとその利用順序を示します。

従って、自分のソースコードへ取込むには、Developer Assistance内に生成された5個のLPM APIから、R_LPM_Open()を初期設定へ、次に、R_LPM_ LowPowerModeEnter()を無限ループ内の適当な個所へ、コピー&ペーストすれば、LPMスリープモードのソースコードが完成です。

assert(FSP_SUCCESS == err)

assert()は、()内が真の時は、何もしません。偽の時は、発生場所や関数名、ファイル名などをコンソール出力し、プログラムを停止します。API利用後の結果判断に活用しています。

「Stacks毎」に提供されるサンプルコードでは、多くのStack API利用箇所で使われています。

lpm_fpb_ra6e1_wpと比較

lpm_fpb_ra6e1_wpのFSPパースペクティブとhal_entry.cのMain loop部分
lpm_fpb_ra6e1_wpのFSPパースペクティブとhal_entry.cのMain loop部分

評価ボード毎のサンプルコードにも、低電力動作サンプルがありますので、前章Stack Exampleと比較します。

RA6E1の場合は、lpm_fpb_ra6e1_epです。このFSPパースペクティブとhal_entryのMain loopの一部抜粋が上図です。多くのLPM関連スタックが追加済みで、Main loopの低電力動作を解読するのも大変です。

これは、評価ボードサンプルコードが、初めに示した4低電力動作モードの状態遷移を示すプロジェクトだからです。スリープ動作のみを実装する時は、前章LPM StackのExampleを参照した方が簡単に理解できます。

勿論、評価ボードサンプルコードとStack Example、両方を参考にしてソースコードを開発する方が良いことは言うまでもありません。

Stack Exampleが、評価ボードサンプルコード理解を助ける第2のサンプルコードとして役立つことを示したかった訳です。

追加Stacks一覧

本稿は、LPM Stackを例に第2のサンプルコードを説明しました。

FSPパースペクティブへ追加可能なStackは、Stackタブを選択後、右上のNew Stack>をクリックすると一覧表示されます。

まとめ

RAファミリのソースコード開発は、FSPパースペクティブへStackを追加後、一括生成されるDeveloper Assistance内の多くのStack API群の中から、利用APIを適切な順序でソースコードへコピー&ペーストすることで進めます。

利用Stackに複数動作モードがあるなど評価ボードサンプルコードが複雑な場合や、開発者自らが利用Stack APIを検討する場合は、第2のサンプルコードとして、追加Stackのℹ️クリックで得られるExampleに示されるStack APIとその利用順序を参考に、ソースコード開発をする方法を示しました。

RA4E1 Fast Prototype Boardの使い方

前稿のRAファミリ評価ボードRA4E1 Fast Prototype Board(以降FPB)を入手、RA/REテンプレート検討に着手しました。

FPB開発に用いるルネサスIDE:e2 studio(以降e2)とAPI生成ツール:Flexible Software Package(以降FSP)は、NXPやSTマイクロなどのEclipseベースIDEの利用者が?に思う箇所があると思います。

ルネサスIDE:CS+ユーザでも、同様にこの?を感じると思いますので、対策と評価ボードFPBの使い方を示します。

RA4E1 Fast Prototype Boardとe2 studio
RA4E1 Fast Prototype Boardとe2 studio

e² studio

Eclipse IDEをベースとしたRAファミリ統合開発環境:IDEが、e2、API生成ツールが、FSPです。

e2は、ARMコアを含む全てのルネサスMCU開発用の新世代IDEで、古くからあるRL78ファミリやRXファミリなどのルネサス独自コア専用統合開発環境CS+の後継IDEとして登場しました。但し、CS+は、現在でもRL78/RXファミリ開発に使えます。

e2は、MCUファミリ毎にコンパイラを切替えることにより、全ルネサスMCUの共通IDEとして動作します。MCUファミリのコンパイラは、普通1種類です。ところが、RAファミリには、GNUとARM Compiler V6の2種類が用意されており、どちらも無償です。

GNUとARM Compiler V6?

e2インストール時、デフォルトでインストールされるコンパイラは、GNUです。ARM Compiler V6は、後から追加インストールが必要です。最初の?は、両コンパイラの“違いは何か”です。

次章で示すFSPやTrustZone利用に差が生じるのであれば、問題です。

ルネサス資料を探しましたが、結局、コンパイラ差は分かりません。最近では殆ど行わないアセンブラデバッグが無ければ、コンパイラはどちらでも構いませんので、デフォルトGNUで当面はOKとします。

Flexible Software Package (FSP)?

RAファミリ専用のAPI生成ツールが、FSPです。動画:Generating Your First RA FSP Project(8:25)で使い方が分かります。

Flexible Software Package構成
Flexible Software Package構成

簡単に説明すると、スタックと呼ぶ開発プロジェクトで使用するHALドライバやRTOSなどのミドルウェアパタメタをGUIで設定後、e2のGenerate Project Contentをクリックすると、Developer Assistance内に全てのAPIが自動生成され、その中から使用するAPIを、ユーザ自身でソースコード任意場所にドラッグ&ドロップする使い方です。

ソースコード任意場所にAPIを配置できるのは、親切とは言えません。NXPやSTマイクロのコード生成ツールでも、API追加箇所にコメント付きのソースコードが生成されます。しかし、FSPは、ソースコード上のどこにでもAPIを設置できます。

API使用順序、設置場所、パラメタの意味が予め解ってないと、適切なコーディングは困難でしょう。後述する多くの公式サンプルコード(スタック利用例)がありますので、これらを参考に習得する必要があります。

hal_entry.c?

e2 studioのra_genとsrcフォルダ
e2 studioのra_genとsrcフォルダ

Generate Project Contentのクリックで生成されるのがAPI本体、つまり、ra_genフォルダ内のmain.cを含むスタックのドライバ関数群です。ra_genフォルダは、FSPが生成するコードの格納場所です。

これらとは別のsrcフォルダ内に見慣れないhal_entry.cファイルがあります。srcフォルダは、ユーザが追加するコードの格納場所です。

FPB出荷時にインストール済みのquickstart_fpb_ra4e1_epプロジェクトを読むと、main.c→hal_entry.c→user_main.cとコールされ、結局、user_main.cに一般的なIDEでユーザが追記する初期設定と無限ループを記述するのが、FSPでのユーザソースコード記述作法のようです。

※一般的なIDEでユーザが追記する初期設定と無限ループについては、基本のキ3章まとめを参照してください。

quickstart_fpb_ra4e1_epのuser_main処理
quickstart_fpb_ra4e1_epのuser_main処理

readme.txt?

公式サンプルコードをe2へインポート後、readme.txtでサンプル動作内容やFPB追加配線の必要性が分かります。バグだと思いますがe2(2021-07)は、サンプルコード付属readme.txtがプロジェクト内へインポートされません。

筆者は、手動でインポートしました。例えば、sci_uart_fpb_ra4e1_epプロジェクトは、追加配線無しではTera Term動作確認ができませんので、readme.txtを読み、追加配線が必須です。

RA4E1 Fast Prototype Board(FPB)の使い方

IoT MCUの機能と消費電力を最適化したRAファミリのRA4E1グループ評価ボード:RA4E1 Fast Prototype Board(FPB)の特徴は、以下2点です。

  • TrustZone
  • 低電力動作(Sleep > Snooze > Software Standby > Deep Software Standby)
RA4E1ブロック図
RA4E1ブロック図

TrustZoneの使い方は、RAファミリビギナーズガイドの11章が参考になります。

FreeRTOS利用を含むサンプルコードはコチラ、低電力動作サンプルコードはコチラからダウンロードできます。前章のquickstart_fpb_ra4e1_epやsci_uart_fpb_ra4e1_epプロジェクトは、初めのサンプルコード内にあります。

RTOSは、IoT接続先クラウドに応じてFreeRTOSかAzure RTOSの2種から選択可能です。また、通常の低電力動作:Sleepに加え、SnoozeやDeep Software Standbyなど超低電力動作モードも備えています。

プロジェクトは、ベアメタルまたはRTOS、TrustZone利用または非利用、の各選択肢がありますので4種類、FreeRTOSかAzureの選択を加えると、合計6種類の新規プロジェクト作成方法が可能です。

つまり、IoT MCUエッジ開発で必要となる様々なプロジェクト開発に、FPBだけで対応可能です。応用範囲の広い評価ボードで、IoTプロトタイプ開発に適しています。サンプルコード内容も豊富です。

まとめ

ユーザ視点からのベンダ各社がEclipse IDEをベースIDEに使うメリットは、IDEインタフェースがEclipseに似てくるので、ベンダが変わっても同じIDE操作性が得られることです。各社IDEで異なる部分は、周辺回路設定やAPI/コード自動生成の部分に限られるのが一般的です。

これら部分に加え、RAファミリ開発に使うe2 studioとFlexible Software Package は、無償コンパイラ選択、生成APIのソース追加方法、hal_entry.cなど、一般的なEclipseベースIDE利用者にとって?が生じる箇所が多数ありました。

ルネサス資料は多いのですが、肝心の?ポイントが解りにくいとも感じました。RAファミリ開発着手時は、これらに対し慣れが必要かもしれません。そこで、備忘録として本稿を作成しました。

なお、同じく前稿で示したREファミリについては、非常に良くまとまったREマイコンの使い方がルネサスサイトより入手できます。

RA4E1 Fast Prototype Board(Cortex-M33/100MHz、Flash/512KB、RAM/128KB)は、低価格で入手性もよくTrustZoneやRTOS、低電力動作など、幅広い知識や技術が要求されるIoT MCU開発の素材として優れています

現状RAファミリ資料の纏まりは、REファミリと比べると今一歩ですが、改善されると思います。開発に必要となる技術レベルが少し高いのですが、e2 studioとFlexible Software Package (FSP)、RA4E1 Fast Prototype Board(FPB)と豊富なサンプルコードを使ったIoT MCU開発は、好奇心を満たすIoT MCU習得へ向けたお勧めの開発環境と評価ボードと言えるでしょう。

弊社ブログは、RA/REテンプレート開発を目指し、継続して関連情報を投稿します。

Windows 11アップグレード可能通知:FYI

Windows 11を実行できます
Windows 11を実行できます

10月5日リリースWindows 11アップグレード可能通知が弊社PCへ届きました。今月リリースWindows 10 21H2で運用し、1年程度の11評価結果を見てアップグレードを予定しております。ご参考まで。

LPCXpresso54114 150MHz動作設定方法

MCUコア動作速度設定は、一般的にプログラミングの冒頭、main関数の各種初期設定よりも前で行い方法は2つあります。

LPCXpresso54114の150MHz動作
LPCXpresso54114の150MHz動作

1つがソフトウェアで明示的にコア速度を設定する方法(左側の橙下線)、もう1つがConfig ToolsでGUIを使って設定する方法(右側の橙囲い)です。ソフトウェア設定方法は、代表的な設定値のみがAPIで提供され、GUI利用方法は、細かな速度設定や周辺回路毎へのクロック供給設定ができるなど柔軟性があります。

弊社は、アプリケーション開発後の低消費電力チューニング時にもソースコード不変で柔軟性メリットがあるConfig ToolsのGUI利用方法を推薦します。

現状の開発ツールでは、コア速度がデフォルト96MHzですので、これを150MHzへ変える方法を示します。

開発ツール

前稿最後に示したLPCXpresso54114最新データシートで発見(!)したCortex-M4コア最大動作周波数150MHzは、最新SDKの新規プロジェクト作成時でも旧データシート記載の100MHz(=96MHz)のままです。

そこで、2021年4月2日投稿の新規FreeRTOSプロジェクト作成方法のStep1~Step5に、本稿の動作クロック150MHz化をStep6として追加します。

本稿で示す開発ツールは、本日時点の最新版で以下です。

・MCUXpresso IDE v11.3.1 [Build 5262] [2021-04-02]
・LPCXpresso54114 SDK Version 2.9.0
・LPC5411x データシートRev. 2.6

これを示した理由は、今後の開発ツール更新によりデフォルト動作クロック値が150MHzへ変わる可能性もあるからです。

Config Tools利用MCU動作速度150MHz設定

新規プロジェクト作成直後のConfig Tools Clocks Diagramが下図です。コア速度のSystem clockは96MHzです。150MHzへの変更手順が以下です。

SDK新規プロジェクト作成直後のClock Diagram
SDK新規プロジェクト作成直後のClock Diagram

1. PLL Modeを、Fractional/Spread spectrumからNormalへ変更。
2. クロック選択肢をクリックすると、下図のように供給クロックのルート変更ができます。最初に示したクロックルートになるよう各選択肢やPLL設定を変更し、System clockを150MHzにします。

クロック選択肢をクリックして供給クロックルート変更
クロック選択肢をクリックして供給クロックルート変更

3. Config ToolsのUpdate Codeをクリックし、GUI変更結果をソースコードへ反映させます。

※全般的なConfig Toolsの使い方は、コチラの関連投稿を参照ください。

初期設定後に下記のようなソースコードを追加しておくと、コア動作クロックが設定値に変わったか確認ができます。

コア動作クロック速度を示すソースコード
コア動作クロック速度を示すソースコード

Config Tools MCUコア速度設定メリット

例えば、初期設定したusart通信速度115200bpsやMRT:マルチレートタイマ満了時間は、コア速度を変えたとしても不変です。各ドライバ内で、コアから独立した速度/満了時間設定を行うからです(※厳密には、設定誤差などが多少変わります)。

MCUの中で消費電力が最も大きいコアの動作速度を下げるのは、アプリケーション開発後の低電力動作チューニングに最も効果があります(※アプリケーション開発中にコア速度を下げるのは、より厳しい動作条件で開発することに相当しますのでお勧めしません)。

ソフトウェアで直接コア速度を記述した場合、この低電力化検討時に記述変更が必要になります。しかも、代表的な速度のみ設定可能なため、変更幅が大きくなる欠点があります。

一方、本稿で示したConfig Toolsによるコア速度設定の場合は、ソフトウェア設定に比べ細かな設定が可能で、記述ソフトウェアも不変です。更に、周辺回路動作も個別に制御できるため、コアだけでなく電力消費が大きい周辺回路の特定などにも役立ちます。

つまり、Config Toolsコア速度設定方法は、より効果的できめ細かいMCU低電力動作チューニングが可能でメリットが大きいと言えます。

評価ボード消費電流測定方法

評価ボードLPCXpresso54114には、0Ωチップ抵抗:JS11の取外しが必要ですが、消費電流測定用の端子:JP4が用意されています。これを使うと、前章で示したコア速度変更や周辺回路を動作停止した時の実消費電流が測れます(測定誤差ガイドラインもデータシートFig. 5に掲載中)。

LPCXpresso54114消費電流計測回路
LPCXpresso54114消費電流計測回路

あとがき

LPC5411x データシートRev. 2.6は、コア速度96MHzまでのCoreMark消費電力しか記載されておらず、しかも、96MHz以降急激な上昇傾向があるなど、気になる点もあります。

CoreMark power consumption
CoreMark power consumption

現在のSDK新規作成プロジェクトがデフォルト96MHzなのは、この辺りが妥当なクロック速度のせいかもしれません。今後のデータシート改版で状況を見たいと思います。

但し、開発中のCortex-M4 LPCXpresso54114向けFreeRTOSアプリケーションテンプレートは最高動作周波数の150MHz動作、比較用ベアメタルアプリケーションも150MHzで開発します。