Windows,PC:パソコンセキュリティ,Windows 10 21H2,Windows 11,Windows 365

2021年11月17日、Microsoftは、Windows 10 21H2大型更新を一般公開しました。数年前から投稿してきたMediaCreationTool21H2を使った手動更新方法で、10月18日に弊社Windows 10 PC 3台を更新し、今日現在トラブルはありません。

21H2大型更新後OSビルド1348から1387へ更新、Windows 11アップグレートも可能
21H2大型更新後OSビルド1348から1387へ更新、Windows 11アップグレートも可能

朗報は、Windows 10大型更新が、年1回へ変更されたこと、また、今回の21H2更新規模は小さく、今後も小規模更新を繰返し、4年後の2025年10月14日サポート終了を迎えるだろうことです。

安心、安全、安定度の高い最新Windowsを望むユーザは、今日現在、Windows 10 21H2が最適です。

Windows 10 21H2手動大型更新方法

Windows 10 21H2大型更新方法と手動更新メリット/デメリットを、簡単にまとめたのが下表です。詳細は、前回前々回と同じですので参照してください。

注意点は、旧21H1を起動した状態で、新21H2 USBセットアップを実行することです。

Windows 10 21H2手動 大型更新手順
準備 MediaCreationTool21H2.exeダウンロード

②USB/DVDインストールメディア作成

③21H1バックアップ(更新失敗リカバリ対策)

更新 21H1起動状態で作成USBのsetup.exe実行

②21H2引継ぎ項目選択後インストールクリック

③21H2大型更新が自動で完了

最大メリットは、ユーザタイミングで大型更新できることです。また、Windows 21H2更新後でもWindows 11アップグレートは、もちろん可能です。

手動 大型更新 メリット/デメリット
メリット ・ユーザがいつ始まるか判らない大型更新を開始できる

・バックアップを取るタイミングが良く、リカバリにも適す

・アプリとユーザデータ両方引継ぎで更新後、即PC利用可能

・USBは複数PC更新に使えWindowsトラブル回復ツール兼務

デメリット ・レジストリがデフォルトへ戻るのでユーザ変更時は再設定必要

Windows 11新機能とWindows 10最適理由

例えば、Windows 11新採用のタスクバーのモニタ中央配置。Windows 10風に左配置へ戻せますが、タスクバー中央配置の必然性は無いと思います。このように、PC本来の生産性や操作性を向上させる新OS機能が、Windows 11には少ない(≒無い)と感じます。

Windows 11アップグレート要件TPM 2.0は、コチラに2021年11月16日のMicrosoft見解があります。PC搭載カメラ/指紋認証/スマホを使った2要素認証など、既に存在する様々な対策に加えてTPM採用の利点は、理解できます。

しかし、重要情報をハッカーなどから守るセキュリティ強化策がTPMで、重要ですが縁の下の力持ち、新しく何かを作り出す訳ではありません。

Microsoftは、当初TPM 2.0をWindows 11足切り要件とし、新PC購入の需要喚起、起爆剤にしたかったと推測します。既にTPMを破る方法も公開されていますので、TPM過信は禁物です。

しかも、欠点もあるハズです。例えば、TPMモジュール故障時PC起動はできるか、TPM再設定は簡単か、TPM認証失敗時の手間は、などなど、セキュリティ根幹強化は使い勝手も良くなるとは限りません。

素人考えですが、効果と失敗を含めた手間など利用形態に応じて、ユーザがセキュリティリスクバランスを設定できるか否かだと思います。ユーザアカウント制御設定に近いイメージです。設定が攻撃対象になると元も子もなくなる訳ですが、既存2要素認証などで攻撃回避して……、抜け穴ありそうですが…😅。

要は、セキュリティは、貴重なユーザPC能力をも消費するということです。

ユーザアカウント制御の設定
ユーザアカウント制御の設定

ネットカフェPC利用も多い筆者は、PCハードウェア依存のアクセス制御は好みません。半導体不足の昨今では、持ち運び可能な高性能ノートPC新規入手は、新車同様、困難になりつつあります。

Microsoftが本当にTPM必須と考えるなら、TPMを回避したWindows 11インストール方法の公式発表やアップグレート要件緩和など、矛盾行動も見られます。半導体不足終息が不明であることから、新PC需要喚起の方針ブレだと思います。

また、次期OSのWindows 365とWindows 11両方に開発リソースを分けるのは、(余計なお世話ですが)Microsoftにとって得策とは思えません(Windows 365/11は、コチラの関連投稿参照)。Windows 11初期トラブルが、来年2022年秋Windows 11大型更新後も続くようなら、Me/Vistaの二の舞もあり得ます。

大規模変更が無いWindows 10へは、セキュリティやバグ修正などPC本来の安心、安全、安定度を高める更新は、2025年10月14日サポート終了まで提供されます。

まとめ

Windows 10 21H2への手動大型更新方法、メリット/デメリットをまとめました。

Windows 11新機能や初期トラブル状況から、今日現在Windowsユーザには、Windows 10 21H2が最適とした理由を説明しました。

Windows 10サポート終了2025年10月14日までに、Windows 365/11、新PC購入、他OS乗換などの対策は必要です。

あとがき:テクノロジー進化リスクと魅力の比

筆者は、MS-DOSからの古いMicrosoft Windowsユーザです。過去、Windowsアップグレートを躊躇った事は、一度もありません。もし、弊社3台PCが、全てWin 11足切り要件OKなら、今回も過去同様アップグレートしたと思います。しかし、現状は11要件緩和後もOKは2台、1台はNGです。

ノートPCは、天寿も近いので新PC購入も検討中ですが、好みのPCは価格高止まりです。さらに、新PCプレインストールOSもWin 11か10選択可能など、マスコミやSNSがバイアスをかけるWin 11が、実ユーザに歓迎されているかも疑問です。Win 11魅力不足と購入後のWin 10→Win 11はいつでも簡単ですが、Win 11→Win 10ダウングレードは大変だからでしょう。

テクノロジー進化は必須です。ただ、進化リスクと魅力の比は、リスクが勝ると現状Win 11には感じます。

COVID-19が、コンタクトレス・テクノロジーを加速中なのは確かですが、同じく加速した半導体不足が、Win 11に追風か逆風かは、MS動向注視とWin 11魅力アップが必要だと思います。22年秋の11大型更新後でも、アップグレートは遅くは無いと思います。

逆に2022年は、最新、高安定Windows 10 21H2でIoT MCU開発に注力できる1年と言えます👍。



LibreOffice,Linux,Windows,PC:パソコンLibreOffice,Microsoft Office,Fresh,Still,PCプラットフォーム

2021年秋は、Windows 11やmacOS MontereyなどPC新OSが登場しました。加えて、Microsoft Office 2021発売やLibreOffice Fresh/Stillが共に7系へ更新するなど、PC文書作成ツールも変化しつつあります。

本稿は、これら文書作成ツールとPCプラットフォームの現状をまとめます。

Microsoft Officeの2025年10月14日

Microsoftの2025年10月14日
Microsoftの2025年10月14日

Microsoft Office 2019と2016のセキィリティ延長サポート終了は、どちらも同じ2025年10月14日で、Windows 10サポート終了と同日です。

つまり、2025年10月14日以降は、Windows 10+Office 2019/2016のローカルPCでの運用は、セキュリティ上、問題です。Microsoftは、Windows 365やOffice 365(=Microsoft 365)などのサブスクリプション型クラウドツールを代替候補として提供します。

新発売の買い切り版ローカルPC向けOffice 2021のサポート終了は、何故かOffice 2019/2016のわずか1年後、2026年10月14日です。日本のみに人気がある買い切り版Officeから、徐々に撤退の兆しを感じるのは筆者だけでしょうか?

新OS Windows 11は、特に企業向けには不評のようです。多くの初期トラブルに加え、Windows 11メリットがビジネスには直結しないため、安定度、完成度の高いWindows 10を使い続けるユーザが多いからです。

さらに、従来Windows 10大型更新の年2回から、Windows 11同様年1回へ変更されたことも朗報、継続プラス材料です。名称もWindows 10 November 2021 Updateへ変わったようですが、大型更新結果は21H2のままでした(21H2更新結果は、来週投稿予定)。

21H2:Windows 10 November 2021 Update結果
21H2大型更新結果

Microsoftのこれら対応は、Windows 11へのアップグレート更新を望まない多くのWindows 10ユーザが、マルチプラットフォーム&クラウドツールのWindows 365へ乗換える可能性を高くします。
※Windows 365とWin 10/11比較は、コチラの関連投稿を参照してください(Win 10大型更新回数は、投稿当時の年2回のままなので注意してください)。

2025年10月14日まで、残り4年です。

この4年間は、「Microsoftが全Windowsユーザへ与えたクラウド提供ツールへの移行検討と猶予期間」とも考えられます。Microsoft戦略を俯瞰した気がします。

クラウド化は、ユーザメリットもある反面、情報漏洩についてコチラの記事を参考に検討が必要です。また、10月発生のNTTドコモ通信障害のように、ネットワーク障害により長時間クラウド利用ができないリスクもあります。

LibreOffice Community 7系

LibreOffice 7系公式資料とContents
LibreOffice 7系公式資料とContents

独)TDF:The Document FoundationのWindows/Mac/Linuxマルチプラットフォーム対応個人向け無償LibreOffice Communityは、Fresh(約1ヶ月更新の最新版)とStill(約3ヶ月更新の安定版)ともにバージョンが7系になりました。
※LibreOffice Communityと企業向けEnterpriseの違いは、コチラの関連投稿を参照してください。

Microsoft Office文書との互換性改善が主な改良点で、従来版との大きな変更はありません。弊社は、Microsoft Office 代替としてLibreOfficeを推薦しており、LibreOfficeの使い方や、Writer/Drawテンプレートなども無料提供しています。

Drawは、Microsoft Office Visio相当の図形描画ツールです。弊社は、超高価なVisio代替にDrawへ移行しつつあります。

初歩的な使い方は、上記テンプレートでカバーしています。英語版ですが、7系の使い方や、Writer/Draw/Clacの詳細な使い方は、PDF公式資料がコチラからダウンロードできます。

残念ながら日本語版(機械翻訳)は、404エラーで使えない状態です。但し、PDF資料の目次(=Contents)が判り易くできているので、不明箇所をピックアップして読めば使用方法が判ります。

注目してほしいのは、ダウンロード資料の出来栄えです。高品質資料が、無償LibreOfficeを使って作成できることが判ります。

文書作成ツールとPCプラットフォーム

ビスネスPCのOSは?
信頼性重視ビスネスPCのOSはWindows、Mac、Unixのどれが良いか?

PC技術の最新ドレンドは、メタバースやアバターです。コンタクトレス・テクノロジーと呼ばれます。MicrosoftNVIDIAなど多くのIT企業が仮想世界の実現に向けて邁進中です。

COVID-19が影響しているこれらトレンド実現には、Windows 11要件、TPM:Trusted Platform ModuleなどによるPCプラットフォーム、つまりクラウドエンドポイントのセキュリティ強化が必要です。アバター本人確認や、なりすまし防止などが必須だからです。

一方、コンテンツ作成を主機能とする文書作成ツールMicrosoft Officeは、既に完成の域に達しています。LibreOfficeは、Microsoft Office文書互換性向上を目指し改版を続けるでしょうが、価格を除く両者の差は、少なくなってきました。要は、ユーザ操作の慣れの問題で、コンテンツ作成機能差は無いと言っても良いでしょう。

経済的理由や各種リスクから、クラウドサービスよりも、ローカルPC処理が筆者は好みです。本稿の文書作成ツール状況を踏まえ、2025年10月14日までに、弊社に適すPCプラットフォーム整備を進めます。

主要ベンダのIoT MCU開発環境は、既にマルチプラットフォーム対応済みです。良質な開発資料を顧客へ提出するのは、開発者の責務です。コンテンツ資料作成の観点から、文書作成ツールとPCプラットフォームを検討する際に、本稿がお役に立てば幸いです。

MCU:マイコン,STM32マイコンセキュリティ,stm32,AI

メタバース会場Mapとメニュー
メタバース会場Mapとメニュー

11月10日(水)から本投稿日12日(金)17時まで開催中のSTマイクロエレクトロニクス主催、オンライン・コンファレンスとAI、Security&Cloud、Ecosystem展示会場の歩き方を説明します。インターネット仮想空間:メタバースの移動方法です。

メタバース会場Mapと移動方法

ログインし会場入り口はこちらをクリックすると、表示されるのが最初の図、左下が会場Map、右上がメニューです。

Map内●が、現在位置:会場入り口、が、移動可能な6位置を示します。図中央の位置の移動や視点を変える方法は、Google Mapと同じ要領です。左下の+-△▽などでも移動可能です。メニューは、移動ショートカットです。

つまり、STM32 Innovation Day 2021会場が、インターネット上の仮想空間(メタバース:後述)で実現され、このメタバース内をGoogle Mapの方法を使って自由に移動するしくみです。

コンファレンスとバーチャル展示会

メタバース内は、ライブ配信のコンファレンスと、期間中いつでも入れる5か所のバーチャル展示会の2つから構成されます。

毎日13:00から17:00までのライブ配信コンファレンスは、日程の時のみコンファレンス内容が視聴可能です。一方、バーチャル展示会は、開催期間中は、24時間いつでも視聴ができます。

追記:各種資料(※基調講演および一部セッションを除く)は、11月30日(火)17:00までダウンロード可能なので、イベント開催期間中に参加できなかった方や、もう一度ご覧になりたい方は、利用できるそうです!

バーチャル展示会内操作

Product展示会の操作
Product展示会の操作

Product位置へ移動した例が上図です。「製品・デモ」をクリックすると、パネル内容に関する日本語説明員による動画、開発ボード説明やダウンロード資料などが入手できます。

つまり、現実の展示会と同じです。残り4か所の展示会へのGoogle Map移動が少し面倒ですが、各展示会とも同じ構成ですので楽しめます。位置移動は、ブラウザの戻る(履歴)や「MAP」クリックの方が簡単です。

アンケート回答でボードが当たるかも?

右下「退出する」クリックで示されるアンケートに答えると、大量370名に当たる開発ボードプレゼントキャンペーンが実施中です。もちろん、これら開発ボードは、前章の5展示会でその詳細が確認できます。ブラウザ履歴で展示会へ戻り、応募ボード内容を再確認するのも良いでしょう。

メタバース

メタバースとは、メタ (meta-) とユニバース (universe) の合成語です(Wikipediaより)。今回のSTM32 Innovation Day 2021では、アバターは使いませんが、今後は、自分のアバターと会場説明員アバターが登場し、技術解説や質問・回答を行うなど、現実世界をより仮想化した展示会やコンファレンスへ発展するかもしれません。

COVID-19の影響で、人の密集を避ける会議やイベントは、メタバースやアバター活用がトレンドです。一部ゲーマー向けだった高性能GPU搭載PCが、ビジネス分野へも普及するきっかけになります。PCやスマホ超高性能化が、MicrosoftやMeta(旧Facebook)の狙いでしょう。

RL78マイコン,MCU:マイコン,LPCマイコン,Kinetisマイコン,STM32マイコン,PSoC/PRoCマイコン,MSP432マイコンテンプレート,IoTマイコン,セキュリティ,プロトタイプ開発

クラウドベースMCU開発お役立ちリンク
クラウドベースMCU開発お役立ちリンク

ARMが、2021年10月19日、IoT関連製品の開発期間を平均5年から最大2年間短縮できるクラウドベース開発環境「Arm Total Solution for IoT」発表という記事(EE Times Japan)は、以下の点で興味深いです。

・IoT製品化に平均5年もかかるのか?

・ハードウェア完成を待ちソフトウェア開発着手するのか?

但し、クラウドがMCU開発に効果的で、GitHubなどのクラウドリンクが今後増えることは、疑う余地がありません。そこで、すきま時間に個人レベルで役立つクラウドMCUリンクを3点示します。

すきま時間お役立ちクラウドMCU開発リンク

クリエイティブなMCUハードウェア/ソフトウェア開発中は、集中時間と空間が必要です。COVID-19の影響で、開発場所や通勤環境に変化はあるものの、ちょっとした待ち時間や出先での2~3分程度のすきま時間は相変わらず存在します。

個人レベルのIoT MCU開発支援が目的の弊社は、このような短いすきま時間にスマホやタブレットを使って、MCU情報を収集、閲覧するのに便利なリンクを紹介します。

すきま時間にMCU関連情報を閲覧することにより、集中時間に凝り固まった開発視点を新たな視点に変える、最新情報を収集するなどが目的です。

STマイクロMCU技術ノート

STマイクロMCU技術ノートの一部(PDF内容は濃く全てのMCU開発で役立つTips満載)
STマイクロMCU技術ノートの一部(PDF内容は濃く全てのMCU開発で役立つTips満載)

STマイクロのSTM32/STM8シリーズ別に検索できる日本語MCU開発Tips満載リンクです。ログインが必須ですが、わずか数ページで説明されたダウンロードPDF内容は濃く、STユーザに限らず全てのMCU開発者に役立つTipsが得られます。

EDN Japan Q&Aで学ぶマイコン講座

EDN Japan Q&Aで学ぶマイコン講座の一部
EDN Japan Q&Aで学ぶマイコン講座の一部

EDN JapanのMCU情報リンクです。Q&Aで学ぶマイコン講座は、最初の1ページでMCU初心者、中級者からの質問に対する回答要点が示されています。2ページ以降で回答詳細を説明するスタイルですので、短時間での内容把握に適しています。

Digi-Keyブログ

DigipKeyブログの一部(日本語タイトルは翻訳された記事を示す)
DigipKeyブログの一部(日本語タイトルは翻訳された記事を示す)

日本語タイトルで日本語へ翻訳されたブログ記事が判るリンクです。大手サプライヤーの英語ブログですのでMCUだけでなく、幅広いデバイス情報が得られます。すきま時間でも読めるように記事は短く纏まっています。最新MCU情報やハードウェア開発者向け情報が多いのも特徴です。

IoT製品とプロトタイプ開発

EE Timesの2021年10月8日、半導体製品ライフサイクルの長さと製造中止対策の記事に、20年前、1990年代の事業分野別の製品開発リードタイムとライフサイクル変化が示されています。

事業分野別の開発リードタイムと製品のライフサイクル変化(出展:記事)
事業分野別の開発リードタイムと製品のライフサイクル変化(出展:記事)

1998年の値ですが、重電機器を除く製品開発時間(リードタイム)が2.3年以内という数値は、現在でも納得できます(0.5年程度のプロトタイプ開発時間は含んでいない実開発時間だと思います)。

MCUベンダ各社は、10年間のMCU供給保証を毎年更新します。つまり、2021年更新ならば、2031年迄の10年間は販売MCUの供給を保証するということです。

但し、セキュリティが重視されるIoT製品では、最新セキュリティハード/ソフト内蔵IoT MCUによる製品化をエンドユーザは望みます。SoC:System on a Chipによる製造プロセス進化により、IoT関連製品の開発期間は、再開発も含めると1998年よりも更に短くなる可能性もあります。

前章リンク情報を活用し、最新セキュリティ内蔵MCU状況、セキュリティ機能のOTA更新可能性、開発製品がエンドユーザのセキュリティニーズと開発コストを満たすか、などを個人でも常時把握・評価し、万一、開発製品の成功見込みが少なくなった場合には、MCU見直しなども必要でしょう。

IoTセキュリティのライフサイクルは変動的で、かつ、IoT製品の市場獲得に支配的です。短い開発時間中であっても、状況に応じてMCUを変更することは、製品の成功と失敗に直結します。

弊社MCUテンプレートを使ったプロトタイプ開発は、このような激変IoT製品開発のMCU評価に適しています。制御系MCUと被制御系を分離、低コスト、少ない手間でプロトタイプを早期に開発し、プロトタイプ実機によりIoT製品のMCU評価、適正判断ができるからです。

もちろん、最初に示したバーチャルなArm Total Solution for IoTとの併用も有効です。セキュリティ重視IoT製品開発の成功には、IoT MCU選択と開発期間の短さがポイントです。

MCU:マイコン,Cortex-M33コア,Cortex-M4コアARMマイコン,IoTマイコン,Bluetooth,FreeRTOS,RAファミリ,RA4E1 Fast Prototype Board

Bluetooth 5.3対応の開発中RA MCU
Bluetooth 5.3対応の開発中RA MCU

2021年10月21日、ルネサスは、最新規格Bluetooth 5.3 Low Energy(LE)対応のRAファミリ新MCUを開発中と発表しました。RA搭載予定のBluetooth 5.3 LE機能と、ルネサス32ビットMCU におけるRAファミリの位置づけを示します。

搭載予定の最新Bluetooth 5.3 LE機能

PCとキーボード、スマホとヘッドホン間など近距離低消費電力無線通信規格としてBluetooth 5は、広く用いられています。MCU搭載例も多く、本ブログでも何件か投稿してきました(STマイクロのSTM32WB、Cypress/InfineonのPSoC6、NXPのKW41Z、Bluetooth 5規格)。

RAファミリでもBluetooth 5対応RA4W1が発売中です。開発中のRAは、新規格Bluetooth 5.3対応MCUです。

Bluetooth SIGが2021年7月13日に発表した新規格Bluetooth 5.3は、Bluetooth 5に、スループットと信頼性、エネルギー効率向上など様々な機能を追加しました。詳細は、Bluetooth SIG サイトのBluetooth Core Specification v5.3で判ります。

開発中の新RAには、これらBluetooth 5.3機能に加え、Bluetooth 5.1で追加された方向検知機能、Bluetooth 5.2で追加されたステレオオーディオ伝送用アイソクロナスチャネルも対応予定です。また、ソフトウェア無線(SDR)機能の搭載により、後日リリースされる新たな規格への移行も可能だそうです。

つまり、新RAは、Bluetooth 5以降の新Bluetooth機能満載のIoT MCUで、しかも、SDRにより新しい機能追加も可能な、“万能”近距離低消費電力無線通信付きIoT MCUになりそうです。

2022年1~3月サンプル出荷予定

最新規格Bluetooth 5.3 Low Energy対応、開発中RA MCUのサンプル出荷は、2022年第1四半期(1~3月)が予定されています。

RAファミリ位置づけ

独自コア、ARMコア、開発環境など様々なルネサス32ビットMCUファミリ差が一目で判る図が、コチラの記事にあります。

RAファミリ位置づけ(出展:記事に加筆)
RAファミリ位置づけ(出展:記事に加筆)

IoT MCU開発者の立場からRAファミリを分析すると、

・ARM Cortex-M33/M23/M4コア採用でIoTセキュリティ強化
・Eclipse IDEベースのKeilやIARなどのARM Ecosystemと無償GNUコンパイラが使える

などRXファミリやSynergyでは不可能であった、手軽で低コスト、個人レベルでも開発可能な32ビットIoT MCUと言えます。

RAファミリ向けルネサスEcosystemは、Eclipse IDEベースのe2 studioです。また、RAファミリ専用Flexible Software Package(FSP)によるAPI生成ツールは、ピン互換性、周辺回路共通性があるため、RAファミリ内での開発ソフトウェア移行や移植も容易になる特徴があります。

無償GNUコンパイラのFlash容量制限などもありません。

RAファミリ開発方法

開発中のBluetooth 5.3 LEが新たに周辺回路に追加されますが、e2 studioやFSPによるRAファミリ開発方法は、汎用RA MCUのRA4E1 Fast Prototype Boardの使い方や、FreeRTOSの使い方と同じです。

RAファミリ開発の早期着手、習得したい方は、上記リンクを参考にしてください。

Flexible Software Package v3.4.0更新

FSPは、10月7日にv3.4.0へバージョンアップしました。

e2 studio 2021-10のHelp>check updatesではFSP v3.3.0から自動更新しません。FSPサイトから最新v3.4.0をダウンロードし、手動でアップグレート更新する必要があります。

Flexible Software Packageのアップグレード
Flexible Software Packageのアップグレード

v3.4.0を別の場所にインストールすれば、旧v3.3.0との併存も可能です。

MCU:マイコン,STM32マイコン,Cortex-M33コアIoTマイコン,STM32U5,エッジAI

AI、Security&Cloud、Ecosystem(=開発環境)の3日間オンライン・コンファレンスと展示会が、STマイクロ主催でライブ配信されます。STM32ユーザは勿論、他社ユーザでも組込みシステム開発ヒントの可能性があります。

STM32 Innovation Day 2021 11月10日~12日(オンライン)
STM32 Innovation Day 2021 11月10日~12日(オンライン)

AI、Security&Cloud、Ecosystemプログラム概要

11月10日(水)~12日(金)の毎日13時~17時間のライブ配信で、登録すればお好きな内容のみ視聴も可能です。登録方法は、後で示します。

AI、Security&Cloud、Ecosystemのプログラム概要
AI、Security&Cloud、Ecosystemのプログラム概要

詳細プログラムは、コチラからダウンロードできます。

見どころ

10日(水)AI:STM32MCUでの組込みエッジAIデモ。

11日(木)Security&Cloud:Cortex-M33コアSTM32U5、セキュリティ・フレームワークSTM32Trust、AWSクラウド。

12日(金)Ecosystem:STM32MCU機能安全ソフトウェア・パッケージ、Azureクラウド。

13:30~14:00の各分野エキスパートによる基調講演、バーチャル・イベント会場の最新製品紹介やデモなども面白そうです。

他社ユーザの方は、利用中MCUとの差分が明確に判る絶好のチャンスです。

登録方法

事前に、コチラで仮登録し、折返しメールで10分以内に本登録します。

コンファレンス後、アンケートに回答するとMCU評価ボードなどが当選するかもしれません。

MCU:マイコン,Cortex-M33コアテンプレート,IoTマイコン,semaphore,FreeRTOS,セキュリティ,TrustZone,RAファミリ,Cortex-M33,RA4E1 Fast Prototype Board,REファミリ

RA4E1 Fast Prototype BoardへFreeRTOSを適用
RA4E1 Fast Prototype BoardへFreeRTOSを適用

RAファミリ評価ボードRA4E1 Fast Prototype Board (Cortex-M33/100MHz、Flash/512KB、RAM/128KB)(以降FPB)の、スイッチS1でLED2を点灯するFreeRTOS適用例を示します。RAファミリビギナーズガイド9章記載のEK-RA6M4評価キットを使った処理内容と同じです。

e2 studio 2021-10は、Project>Change Deviceで対象MCUデバイス変更機能がありますが動作しません。そこで、ガイド掲載のEK-RA6M4を手動でRA4E1へ変更し、FPBでFreeRTOSのセマフォを利用し、S1押下げ割込みとLED2トグル点灯を同期させるFreeRTOSサンプルコードを示します。

このコードを使い、前稿よりも具体的にFPBとFlexible Software Package(以降FSP)の使い方、今回は使わないTrustZoneのメリットを示すのが、本稿の目的です。

RA4E1 Fast Prototype Board(FPB)のRTOSとTrustZone

IoT MCUをクラウド接続するには、RTOSが必要です。AWS(Amazon Web Services )接続にはFreeRTOSライブラリ、Microsoft Azure接続にはAzure RTOSライブラリの利用が前提だからです。

また、クラウド接続には、TrustZoneなどハードウェアによるセキュリティ対策も要求されますので、RTOSとTrustZoneは、IoT MCUの必須2技術です。

ハードウエアセキュリティは、開発後、簡単に追加することが困難です。今回はTrustZone未使用ですが、IoTプロトタイプ開発にTrustZone内蔵Cortex-M33を用いるのは、例え未使用でも製品セキュリティ処理の具体的検討ができるなど、IoTセキュリティを開発初期から考慮した設計となるからです。

これが使わないTrustZoneのメリットです(TrustZone使用例も、いずれ投稿予定)。

本稿は、先ずFreeRTOSをFPBへ適用します。FreeRTOS新規プロジェクト作成、API生成ツールFSP設定、FSP生成ファイルへのタスク追記の順に説明します。

Step1:FreeRTOS新規プロジェクト作成

最新版e2 studio(2021-10)の新規FreeRTOSプロジェクトは、File>New>C/C++Projectとクリックし、①~⑥の手順で作成します。

FreeRTOS新規プロジェクト作成
FreeRTOS新規プロジェクト作成

②プロジェクト名は、任意です。③Boardは、PFB-RA4E1を選択します。

④TrustZone未使用時のプロジェクトを、“Flat”と呼びます。これは、TrustZone使用時、セキュアと非セキュアの2プロジェクト並存が必要となりメモリ領域を分割することに対する、平坦なメモリ使い方に起因していると思います。

※メモリ領域分割は、PCハードディスクのパーティション分割をイメージして頂ければ判り易いでしょう。例えサイバー攻撃を受けても、物理的に侵入できないメモリ領域を作り、ここへ最重要情報やソフトウェアを保存する訳です。

⑤FreeRTOSを選択します。ベアメタル(No RTOS)とAzure RTOSも選択可能です。⑥Minimalを選択し、FinishクリックでFreeRTOS(TrustZone未使用)新規プロジェクトが完成です。

各選択肢を変えると、前稿で説明した多種類の新規プロジェクトが作成できることが解ります。

Step2:Flexible Software Package(FSP)設定

Flexible Software Package (FSP)設定
Flexible Software Package (FSP)設定

新規プロジェクト作成のFinishクリックで、FSPパースペクティブオープンを聞いてきますので、開きます。

①プロジェクトSummaryが表示されます。Stacksタブを選択、②New Stackをクリックし、External IRQ Driver on r_icuを選択します。新しい外部割込みドライバがStackに追加され、③プロパティが表示されます。

FPBのユーザスイッチS1は、P205(IRQ1)に接続済みです。そこで、③プロパティのirq0をirq1、TriggerをFalling、Digital FilteringをEnable、Callbackをexternal_irq1_callbackに変更します。

次にセマフォ追加のため、④ObjectsのNew Objectsをクリックし、Binary Semaphoreを選択します。⑤プロパティSymbolをg_s1_semaphoreに変更します。

RA4E1 Fast Prototype BoardのSW1 P205(IRQ1)の確認
RA4E1 Fast Prototype BoardのSW1 P205(IRQ1)の確認

最後に、⑥pinsタブをクリックし、ユーザスイッチS1:P205(IRQ1)とIOピン割当てをGUIで確認します。

以上でFSP設定は完了です。Generate Project Contentをクリックすると、APIや割込みコールバック関数、関連ファイルが自動生成されます。

Step3:FSP生成ファイルへタスク追記

FreeRTOSセマフォ同期処理
FreeRTOSセマフォ同期処理

FSPが生成したファイル:led_thread_entry.cに上記コードを追加します。このコードは、LED初期化と無限ループ処理から構成されます。RAビギナーズガイド掲載のirq10をirq1へ変更したLEDタスクです。

コールバック関数external_irq1_callbackは、Developer AssistanceのLED Threadを開くと一番下に割込みコールバック関数が生成済みですので、これをドラッグ&ドロップして追加します。

LEDタスク追加後、ビルドしFSBへダウンロード、デバッガ起動後、再開を2回クリックして実行中の様子が上図です。FSBのS1クリックでLED2がトグル点灯します。

FreeRTOS Queueサンプルコード

前章は、RAファミリビギナーズガイド9章のEK-RA6M4評価キットFreeRTOSセマフォサンプルコードを、RA4E1 Fast Prototype Board(FPB)へ流用したコードです。変更箇所は、irq10をirq1へ変えただけです。

FSPには、FreeRTOS Queueサンプルコード:freertos_fpb_ra4e1_epも付属しています。これら2つのサンプルコードを理解すれば、セマフォとQueueを使う基本的なFreeRTOSソフトウェア開発が可能です。

FreeRTOS待合せ手段としては、セマフォ/Queue以外にもMutexやイベントグループなどの手段もあります。弊社ではFreeRTOS基礎固めを目的として、Hardware Independent FreeRTOS Exampleを応用したセマフォ/Queue活用のFreeRTOSテンプレート化を目指しています。RA/REテンプレートもこの方針で開発する予定です。

この方針で開発したNXP版FreeRTOSアプリケーションテンプレートは、コチラから概要がダウンロード可能です。

まとめ

RA4E1 Fast Prototype Board(FPB)へ、RAファミリビギナーズガイド掲載FreeRTOSサンプルコードを流用し、ユーザスイッチS1とLED2点灯をセマフォで同期させました。

FreeRTOS新規プロジェクト作成、Flexible Software Package(FSP)設定、FSP生成ファイルへのタスク追記の具体的操作手順を示しました。

ガイド9章には、更に詳細な説明がありますので、参考になります。例えば、スイッチ割込み優先度12を利用する理由、systick優先度15が予約済みであるなどです。

TrustZoneは未使用ですが、プロトタイプ開発初期からIoTセキュリティを考慮した設計ができるメリットがあります。

FSP付属Queueサンプルコードと本セマフォコードを使ってFreeRTOS基礎固め目的のRA/REテンプレート開発を進めます。

MCU:マイコン,Cortex-M33コアテンプレート,IoTマイコン,TrustZone,超低電力動作,RAファミリ,Cortex-M33,低電力動作,RA4E1 Fast Prototype Board,REファミリ

前稿のRAファミリ評価ボードRA4E1 Fast Prototype Board(以降FPB)を入手、RA/REテンプレート検討に着手しました。

FPB開発に用いるルネサスIDE:e2 studio(以降e2)とAPI生成ツール:Flexible Software Package(以降FSP)は、NXPやSTマイクロなどのEclipseベースIDEの利用者が?に思う箇所があると思います。

ルネサスIDE:CS+ユーザでも、同様にこの?を感じると思いますので、対策と評価ボードFPBの使い方を示します。

RA4E1 Fast Prototype Boardとe2 studio
RA4E1 Fast Prototype Boardとe2 studio

e² studio

Eclipse IDEをベースとしたRAファミリ統合開発環境:IDEが、e2、API生成ツールが、FSPです。

e2は、ARMコアを含む全てのルネサスMCU開発用の新世代IDEで、古くからあるRL78ファミリやRXファミリなどのルネサス独自コア専用統合開発環境CS+の後継IDEとして登場しました。但し、CS+は、現在でもRL78/RXファミリ開発に使えます。

e2は、MCUファミリ毎にコンパイラを切替えることにより、全ルネサスMCUの共通IDEとして動作します。MCUファミリのコンパイラは、普通1種類です。ところが、RAファミリには、GNUとARM Compiler V6の2種類が用意されており、どちらも無償です。

GNUとARM Compiler V6?

e2インストール時、デフォルトでインストールされるコンパイラは、GNUです。ARM Compiler V6は、後から追加インストールが必要です。最初の?は、両コンパイラの“違いは何か”です。

次章で示すFSPやTrustZone利用に差が生じるのであれば、問題です。

ルネサス資料を探しましたが、結局、コンパイラ差は分かりません。最近では殆ど行わないアセンブラデバッグが無ければ、コンパイラはどちらでも構いませんので、デフォルトGNUで当面はOKとします。

Flexible Software Package (FSP)?

RAファミリ専用のAPI生成ツールが、FSPです。動画:Generating Your First RA FSP Project(8:25)で使い方が分かります。

Flexible Software Package構成
Flexible Software Package構成

簡単に説明すると、スタックと呼ぶ開発プロジェクトで使用するHALドライバやRTOSなどのミドルウェアパタメタをGUIで設定後、e2のGenerate Project Contentをクリックすると、Developer Assistance内に全てのAPIが自動生成され、その中から使用するAPIを、ユーザ自身でソースコード任意場所にドラッグ&ドロップする使い方です。

ソースコード任意場所にAPIを配置できるのは、親切とは言えません。NXPやSTマイクロのコード生成ツールでも、API追加箇所にコメント付きのソースコードが生成されます。しかし、FSPは、ソースコード上のどこにでもAPIを設置できます。

API使用順序、設置場所、パラメタの意味が予め解ってないと、適切なコーディングは困難でしょう。後述する多くの公式サンプルコード(スタック利用例)がありますので、これらを参考に習得する必要があります。

hal_entry.c?

e2 studioのra_genとsrcフォルダ
e2 studioのra_genとsrcフォルダ

Generate Project Contentのクリックで生成されるのがAPI本体、つまり、ra_genフォルダ内のmain.cを含むスタックのドライバ関数群です。ra_genフォルダは、FSPが生成するコードの格納場所です。

これらとは別のsrcフォルダ内に見慣れないhal_entry.cファイルがあります。srcフォルダは、ユーザが追加するコードの格納場所です。

FPB出荷時にインストール済みのquickstart_fpb_ra4e1_epプロジェクトを読むと、main.c→hal_entry.c→user_main.cとコールされ、結局、user_main.cに一般的なIDEでユーザが追記する初期設定と無限ループを記述するのが、FSPでのユーザソースコード記述作法のようです。

※一般的なIDEでユーザが追記する初期設定と無限ループについては、基本のキ3章まとめを参照してください。

quickstart_fpb_ra4e1_epのuser_main処理
quickstart_fpb_ra4e1_epのuser_main処理

readme.txt?

公式サンプルコードをe2へインポート後、readme.txtでサンプル動作内容やFPB追加配線の必要性が分かります。バグだと思いますがe2(2021-07)は、サンプルコード付属readme.txtがプロジェクト内へインポートされません。

筆者は、手動でインポートしました。例えば、sci_uart_fpb_ra4e1_epプロジェクトは、追加配線無しではTera Term動作確認ができませんので、readme.txtを読み、追加配線が必須です。

RA4E1 Fast Prototype Board(FPB)の使い方

IoT MCUの機能と消費電力を最適化したRAファミリのRA4E1グループ評価ボード:RA4E1 Fast Prototype Board(FPB)の特徴は、以下2点です。

  • TrustZone
  • 低電力動作(Sleep > Snooze > Software Standby > Deep Software Standby)
RA4E1ブロック図
RA4E1ブロック図

TrustZoneの使い方は、RAファミリビギナーズガイドの11章が参考になります。

FreeRTOS利用を含むサンプルコードはコチラ、低電力動作サンプルコードはコチラからダウンロードできます。前章のquickstart_fpb_ra4e1_epやsci_uart_fpb_ra4e1_epプロジェクトは、初めのサンプルコード内にあります。

RTOSは、IoT接続先クラウドに応じてFreeRTOSかAzure RTOSの2種から選択可能です。また、通常の低電力動作:Sleepに加え、SnoozeやDeep Software Standbyなど超低電力動作モードも備えています。

プロジェクトは、ベアメタルまたはRTOS、TrustZone利用または非利用、の各選択肢がありますので4種類、FreeRTOSかAzureの選択を加えると、合計6種類の新規プロジェクト作成方法が可能です。

つまり、IoT MCUエッジ開発で必要となる様々なプロジェクト開発に、FPBだけで対応可能です。応用範囲の広い評価ボードで、IoTプロトタイプ開発に適しています。サンプルコード内容も豊富です。

まとめ

ユーザ視点からのベンダ各社がEclipse IDEをベースIDEに使うメリットは、IDEインタフェースがEclipseに似てくるので、ベンダが変わっても同じIDE操作性が得られることです。各社IDEで異なる部分は、周辺回路設定やAPI/コード自動生成の部分に限られるのが一般的です。

これら部分に加え、RAファミリ開発に使うe2 studioとFlexible Software Package は、無償コンパイラ選択、生成APIのソース追加方法、hal_entry.cなど、一般的なEclipseベースIDE利用者にとって?が生じる箇所が多数ありました。

ルネサス資料は多いのですが、肝心の?ポイントが解りにくいとも感じました。RAファミリ開発着手時は、これらに対し慣れが必要かもしれません。そこで、備忘録として本稿を作成しました。

なお、同じく前稿で示したREファミリについては、非常に良くまとまったREマイコンの使い方がルネサスサイトより入手できます。

RA4E1 Fast Prototype Board(Cortex-M33/100MHz、Flash/512KB、RAM/128KB)は、低価格で入手性もよくTrustZoneやRTOS、低電力動作など、幅広い知識や技術が要求されるIoT MCU開発の素材として優れています

現状RAファミリ資料の纏まりは、REファミリと比べると今一歩ですが、改善されると思います。開発に必要となる技術レベルが少し高いのですが、e2 studioとFlexible Software Package (FSP)、RA4E1 Fast Prototype Board(FPB)と豊富なサンプルコードを使ったIoT MCU開発は、好奇心を満たすIoT MCU習得へ向けたお勧めの開発環境と評価ボードと言えるでしょう。

弊社ブログは、RA/REテンプレート開発を目指し、継続して関連情報を投稿します。

Windows 11アップグレード可能通知:FYI

Windows 11を実行できます
Windows 11を実行できます

10月5日リリースWindows 11アップグレード可能通知が弊社PCへ届きました。今月リリースWindows 10 21H2で運用し、1年程度の11評価結果を見てアップグレードを予定しております。ご参考まで。

MCU:マイコン,Cortex-M0+コア,Cortex-M33コアARMマイコン,IoTマイコン,セキュリティ,TrustZone,RAファミリ,Cortex-M33,RA4E1 Fast Prototype Board,REファミリ

IoV:Internet of VehiclesやV2X:Vehicles-to-Everything通信により、車載半導体チップとソフトウェア需要が指数関数的に増加、ユーザの自動車選択基準が、エンジンなどのメカから車載ソフトウェアへ移行しつつある、という記事がEE Timesに記載されました。

これらIoV状況が、IoTへ与える影響について考えてみました。

IoVとIoT

IoVでユーザ選択基準が車載ソフトウェアへ変化
IoVでユーザ選択基準が車載ソフトウェアへ変化

車のカタログから、エンジン特性や足回りのメカ説明が消え、スマホ連動性や運転支援など車載ソフトウェアによるサービスの説明に変ったのはここ数年です。記事によると、車の新しいユーザ選択基準になりつつあるカーエレクトロニクスが、半導体業界にとってはスマホ以来の最大チャンスだそうです。

また、「CASE」で車載半導体はどう変わるのか(2021年9月15日、EE Times Japan)でも、自動運転と電動化が今後の車載半導体動向を左右すると結論付けています。
※CASE:Connected(通信機能)、Autonomous(自動運転)、Shared&Services(共有化/サービス化)、Electric(電動化)

年々向上するユーザのソフトウェア指向を満たす車載IoV業界、COVID-19の影響で停滞気味の民生IoT業界とは雲泥の差です。

車載半導体需要予測は初めの記事数値を参照して頂くとして、両記事のポイントは、ソフトウェア差別化や付加価値追加には、カスタムチップまたは、IP(Intellectual Property)などの組込みハードウェアが効果的という点です。これらIPには、セキュリティやエッジAIなどIoTへ流用できるものが数多くあります。

従って、IoVは、結果としてIoTも牽引すると思います。

但し、世界的半導体不足が続く状況では、優先度、調達コスト、多くの数量が確実に見込めるIoVが優勢、IoTはこの影響で、しばらくチップ供給不足や停滞が続くでしょう。

停滞気味のIoT側開発者として今できることは、IoV同様、IoTソフトウェア差別化に備えることだと思います。

IoT MCUのTrustZone、SOTB

IoTの観点から、IoTソフトウェア差別化や付加価値追加のための組込みIPと言えば、ARM TrustZone内蔵Cortex-M33コア、ルネサスの新製造プロセスSOTB:Silicon On Thin Buried Oxideなどが相当します。

アクティブ消費電力とスリープ消費電力両方を減らせるSOTBプロセス(出典:ルネサスサイト)
アクティブ消費電力とスリープ消費電力両方を減らせるSOTBプロセス(出典:ルネサスサイト)

例えば、TrustZoneが、高いセキュリティ効果を発揮するのはご存知の通りですし、SOTB製Cortex-M0+搭載ルネサスREファミリは、超低スタンバイ電流により太陽光発電環境などのエナジーハーベストでも電池交換不要を実現するなどです。

SOTBは、超低消費電力動作と高速動作を両立する革新的製造プロセスです。全てのルネサスMCUへ採用すれば強力な差別化技術になると思いますが、今のところ出し惜しみなのか(!?)戦略的なのか、REファミリにのみ採用中です。

一見、ASSP:Application Specific Standard Produceのようですが、これら差別化技術は、汎用MCUに採用された時に最も効果を発揮します。

従来のエッジMCUでの単純なアナログデジタル変換に加え、セキュリティや超低電力動作などのIoT化に伴う付加機能がIoT MCUには必須です。IoT付加機能内蔵MCUが、汎用IoT MCUになります。

IoT開発者は、これらIoT付加技術を今のうちに習得しておくことが必要です。

IoVとIoTの最も大きな差は、車載と民生半導体の電源仕様でしょう。IoVは、EV(Electric Vehicle)のモータ高出力要求に伴いバッテリーが12V供給から48Vへ高電圧化しつつあり、万一の耐圧やフェイルセーフが求められます。IoTは、低電圧(≦3.3V)電源で低圧化しつつあります。

RA/REテンプレート構想

残念ながらSOTB製REファミリ評価ボードは、まだ値段が高く、個人レベルでは手が出しにくい状況です。そこで、SOTBプロセスではありませんが、REファミリとソフトウェア互換性があると思われるCortex-M33コア搭載ルネサスRAファミリを、弊社テンプレート対象にと考えています。

RAファミリは、TrustZoneでIoTセキュリティへ対応しています。また、9月22日発売のRAファミリRA4E1グループの評価ボード:RA4E1 Fast Prototype Boardは、20米ドル台と低価格です。ルネサス独自コアではないため、コンパイラFlash容量制限もありません。

FPB-RA4E1 Fast Prototyping Board(出典:クイックスタートガイド)
FPB-RA4E1 Fast Prototyping Board(出典:クイックスタートガイド)

RL78/G1xテンプレートから新しいルネサスMCUをテンプレート対象に出来なかった理由の1つが、この容量制限です。ARMコア他社同様、GNUまたはARM Compiler V6が、e2 studioでRAファミリ開発に無償で使えます。

今のところRAテンプレートは、REへも使えると考えています。ARMコア差は、CMSIS:Cortex Microcontroller System Interface Standard やHAL:Hardware Abstraction Layerで吸収できるハズだからです。

ADC、SW、LED、UART(VCOM)などのIoT MCU基本動作をRA/REテンプレート共通部分でサポートし、TrustZoneや超低電力動作などRA/RE特徴を活かす部分は、共通部分へ特徴サンプルコードを追加する方法で実現できれば嬉しいと考えています。構想段階ですが、詳細は今後投稿します。

MCU:マイコンテンプレート,IoTマイコン,RTOS,ベアメタル,ISR,基本のキ

IoT MCUソフトウェア/ハードウェア開発者向け基本のキ、今回は、組込み処理の「ポーリング」、「割込み」、「低消費電力動作」とMCU開発の秘訣(コツ)を示します。ベアメタル開発でもRTOS開発でもこれらは同じです。これら基本を知ると、サンプルコードの読み方、利用法も解ります。

ポーリング と 割込み

「ポーリング」とは、無限ループを周る度に例えばSWが押されたかどうかのフラグ相当をポーリング(polling)し、フラグが立ったら、その処理を実行することです。

ポーリング
ポーリング

「割込み」は、割込み発生時に周辺回路が自動で呼出すISR(Interrupt Service Routine)を開発します。

ISRは、出来るだけ軽く(小さく)することが重要です。別周辺回路の割込みもできるだけ取込むためです。そこでISRでは、周辺回路が割込み発生時に立てた割込み発生フラグをリセット、このフラグとは別の割込み処理待ちフラグを立ててコード化するのが常套手段です。

この割込み処理待ちフラグを無限ループでポーリング、ブラグが立っていれば実際の割込み処理を実行します。

つまり、割込み処理の前段階にISRがあり、ポーリングのフラグ相当が割込み処理待ちフラグに変るだけ、結局、ポーリングに帰着します。

割込み
割込み

ベアメタル開発でもRTOS開発でも上記は同じです。RTOS時は、タスク間のセマフォ/Queueによる処理待ちが差分として追加されます(これら以外にも処理待ちはありますが、セマフォ/Queueで当面賄えます)。

低消費電力動作

無限ループをそのまま連続で回し続けると消費電力が増加します。そこで、間欠的にループを回し、ループを回さない時間は、最も電力を消費するMCUを停止するのが「低消費電力動作」です。

低消費電力動作
低消費電力動作

例えば1秒毎に1回ループを回すなど、低電力化を図りつつループ連続回しの時と大差なく処理する、つまり、どの程度間欠動作させるかが開発者の腕の見せ所です。

まとめ:ポーリング、割込み、低消費電力動作の3Tipsと開発秘訣

IoT MCUで開発するのは、MCUを含む周辺回路の初期設定と、無限ループ内の処理です。

初期設定とは、内蔵周辺回路を動作させるための設定です。周辺回路は、初期設定が終わると直に動作を開始します。そこでMCUは、動作中の周辺回路を監視し、必要に応じて処理を行います。このMCU監視が、無限ループ内の処理です。「組込み処理の中身」は、このように初期設定とループ内処理の2種類です。

初期設定の前にRAMクリアなどのスタートアップ処理もありますが、ここはIDEが自動生成し、通常、開発者が手を加えることは殆どありません。

初期設定は、サンプルコードの初期設定をそのまま流用する部分です。サンプルコードに使用例がない特殊(!?)な周辺回路の使い方をする時は、データシートやユーザマニュアルの当該周辺回路部分を熟読すればコード化できます。

次の開発部分が、無限ループ内です。ループ内処理をまとめた本稿の3Tipsが下記です

  1. 無限ループ内は、「ポーリング」か「割込み」のどちらか
  2. 割込みは、ISRで「割込み発生フラグ」を「割込み処理待ちフラグ」へ事前変換しポーリングへ帰着
  3. 無限ループの間欠動作と、間欠中のMCU停止が、「低消費電力動作」
組込み処理の3Tips、ポーリング、割込み、低消費電力動作
組込み処理の3Tips、ポーリング、割込み、低消費電力動作

組込み処理の中身とこれら3Tipsを知らずに組込み開発を始めるは、非効率です。中身と3Tipsを習得するには、紆余曲折、結構な時間と実務(失敗)経験が必要だからです。

例を挙げると、技術背景が少ない初心者にとっては、関連情報が多いため消化不良を起こします。また、初心者でなくても、開発自由度が高い(≒無いに等しい)ので、開発を上手く収束させには、Tipsやコツが必要になるなどです。

全てを網羅的に記述しているデータシートやユーザマニュアルは、既にこれらコツや技術背景を習得済みの中級者以上には役立ちますが、それ以外の人が読んでも実質の理解はできません。いきなり六法全書を読んで弁護士をする様なものです😂。

MCU開発の秘訣(コツ)は、先ず、3Tipsを基にプロトタイプを開発し、次に、実際に動作するプロトタイプを使って、開発自由度の高さを活かし動作チューニングすることです。

実働プロトタイプがあれば、データシート実質理解も進みますし、チューニング結果で変な動作になっても元のプロトタイプへ戻れますので、安心して色々な試行錯誤ができ、開発者スキルアップも容易です。

サンプルコード利用法

主要MCUベンダは、多くのサンプルコードを提供中です。

サンプルコードの目的は、“1つ”の周辺回路の基本動作を解り易く示すことです。基本動作は、初期設定と無限ループ内の2つに分けて読みます。無限ループ内は、Tips1/2から処理内容が理解できます。割込みの時は、ISRがあります。

初期設定は、開発に使う使用例と同じかどうかを添付コメントなどから判断します。使用例が同じ、または、近いなら、そのままコピーして流用します。内容を理解したい時は、”その周辺回路のデータシートのみ”を読めば十分です。

もちろん、サンプルコード無限ループ内のポーリング/割込み処理もそのままコピーして流用可能です。

但し、サンプルコードは、一般的にTips3:低消費電力動作への配慮がありません。また、サンプルコードを、“複数”集めて動作させる作り方ではありません。1周辺回路の動作コードを、シンプルに解り易く示すためです。

弊社マイコンテンプレートは、複数サンプルコードを利用する仕組みを予め持っています。また、無限ループの間欠動作と停止MCUを復帰させる仕組みも、テンプレートへ組込み済みです。

テンプレートのサンプルコード利用法
テンプレートのサンプルコード利用法

つまり、初めから複数サンプルコードの活用・流用が即座に出来るようテンプレート化、主要ベンダの汎用MCUに対応し、適用例と詳しい説明資料付き(一部ダウンロード可)で販売中です(ベアメタル開発用:1000円、RTOS開発用:2000円、テンプレート一覧と価格はコチラ)。

本稿3Tipsを知っていれば、サンプルコードを分析しながら読むことができ、必要に応じて各部分を自分のソフトウェアや弊社テンプレートへ組込むことも可能です。

プロトタイプ開発に最適なのが、弊社テンプレートです。テンプレートを使って早期にプロトタイプ開発を実現すれば、開発者の効率的スキルアップ、要求仕様に対するMCU性能過不足なども明らかとなり、お役に立てると思います。

テンプレートご購入、お待ちしております。