マイコンテンプレート活用のアプリケーション開発(前半)

マイコンのアプリケーション開発方法として、マイコンテンプレートを使った方法を前後2回に分けて示します。
テンプレートを使えば、マイコン習得と可読性、流用性に優れたアプリが素早く開発でき、開発者毎に異なる開発手法も統一できます。
前半は、アプリケーション開発手順1~3を解説し、次回、後半で手順4を解説します。

アプリケーション開発手順

動くアプリ完成までの手順を示します。

  1. 対象動作、「何を、どうするか」を明らかにする。この段階では、細かいことを気にする必要はありません。例えば、スイッチをスキャンする程度で十分です。
  2. サンプルソフトを探す。メジャーなマイコンは、必ず多くのサンプルソフトをベンダがサイト公開しています。この中から対象動作のサンプルを探します。
  3. サンプルソフトを読む。サンプルソフトは、「初期設定処理」、次に「ループ処理」の2構成で記載されるものが殆どです。たまに、メニュードリブン形式もありますが、これは、弊社メニュードリブンテンプレートと同様、処理抜出を容易にすることを目的にしたものです。
  4. サンプルソフトの必要部分をテンプレートへ組込み、デバッグ。

以上で、アプリが完成します。

マイコンの場合、組込み後、チューニングが必要な場合もありますが、アプリ完成後の処理ですし、アプリにも依存しますので、先ずは、動くアプリ完成までの手順を示しました。

RAD: Rapid Application Developmentツールを使う場合は、2のサンプルソフトをサイトから探す代わりにRADツールを使ってサンプルソフトを生成すると考えれば良く、同じ手順となります。

サンプルソフトベースの部品化

対象動作は、スイッチ入力処理、LED出力処理などできるだけ細かく分割し、部品化することがポイントです。
最後に、これら部品を組み合わせて1つのアプリケーションにします。部品毎にサンプルソフトを見つけ、デバッグすれば、バグもこの部品内に閉じ込めることができます。また、部品単位の流用性も高まります。

サンプルソフトを組合せてアプリケーション開発
サンプルソフトを組合せてアプリケーション開発

上級者との差が出る箇所と対策

手順1~3で重要なことは、「対象動作の明確化」と、「サンプルソフトの分離読解」です。分離解読とは、初期設定とループ処理を明確に分離して解読することで、処理内容は、大体把握すれば十分です(後述サンプルソフトの読み方参照)。

上級者は、多くのサンプルソフトを経験しているので、的確に対象動作を絞り込め、分離解読が、早く深い点が違います。さらに、上級者は、個人的なテンプレートを既に持っているので、サンプルの流用、組込みとデバッグが効率よくできます。

弊社マイコンテンプレートを活用すると、

  • サンプルソフトの組込みが簡単な、テンプレート獲得
  • 処理単体/結合デバッグが簡単で部品化も容易な、RAMを使った処理インタフェースの獲得

ができますので、上級者との差分を誰でも補えます。

サンプルソフトの選出

何回かサンプルソフトを読むと、より明確な対象動作が選べるようになります。逆に、サンプルソフトが見当たらない時は、絞り込みが不完全、または対象が間違っていると言えます。初めに全てのサンプルソフトをざっと眺めた後で、アプリをイメージするのも良い方法です。

但し、スイッチ入力処理は、注意が必要です。スイッチには、チャタリング対策が必須です。この対策は2つあり、1つがハードウエア、もう1つがソフトウエアの対策です。両者併用もあります。
個人的には、ハード対策の有無に関係なく、ソフト対策は必要と考えます。弊社シンプルテンプレートでチャタリング対策済みのスイッチ入力処理を添付しているのは、この理由からです。
チャタリングは、使用するスイッチでタイミングが異なりますので、対策済みサンプルをベンダは提供しにくいと思います。チャタリングに関しては、以前のブログ記事や、ネット検索すると、多くの情報がありますので、そちらも参照して下さい。

サンプルソフトの読み方

サンプルソフトは、「木を見て森を見ず」にならないように、細かいことは気(木?)にせずに、初期設定とループ処理の2つに分けて読みます。

初期設定は、コメントに注意し、周辺回路の使用方法が開発するアプリと同じがどうかを見極めます。同じなら、丸ごとそのままテンプレートへ流用します。異なる場合は、データシートなどで変更箇所を特定し、実際にサンプルに変更を加え、結果が正しく動作することを確認しておきます。

ループ処理は、無限ループで処理するものと、割込みで処理するものに大別できます。割込み処理は、基本的にそのままテンプレートへ流用します。
無限ループ処理は、何をトリガにアプリを起動しているかが解れば十分です。多くの場合、フラグポーリングやカウンタなどです。この起動トリガで関数化し、テンプレートへ組込みます。

テンプレートの狙い:複数サンプルソフト流用

よほどの上級者やツワモノを除けば、アプリ開発は、サンプルソフトの流用が王道です。敢えてリスクをおかしてサンプルソフト以外の方法でマイコンを動かす必要はないからです。ベンダサンプルは、典型的動作ですので、先のスイッチ処理の例外を除くと、流用可能なものが多いのも理由です。

但し、サンンプソフトは、1個の周辺回路の動作説明が主なので、実際のアプリで必要となる複数の周辺回路を組合せる記述はありません。これが、開発者毎に手法が異なる原因です。弊社テンプレートは、これに対して1つの解を提供します。

弊社マイコンテンプレートは、サンプル処理の流用が簡単で、複数サンプル処理を組込むのも容易です。従って、サンプルを活かした動くアプリの早期開発ができます。また、本テンプレートを用いれば、開発者毎で異なる開発手法を統一でき、可読性や流用性も高まります。次回、後半で詳細を説明します。

アプリケーション開発手順1~3のまとめ

  • 細かい単位の対象動作サンプルソフトを見つけ、初期設定とループ処理の2つに分けて読む
  • サンプルソフトを部品と見なし、複数部品の組合せでアプリケーションを開発
  • サンプルソフト獲得方法は、ベンダサイト、RADツールがある

次回は、手順4の部品化したサンプルソフトのテンプレートへの組込みとデバッグ、複数サンプルが同時に動くしくみを説明します。

 

補足:チューニングとマイコン性能

アプリケーション開発で最も厄介なのは、実はチューニングです。

アプリに最適なマイコンを選定していれば、一部アセンブラ化などのチューニングなしで動くアプリができます。しかし、この選定失敗、もしくは、選定マイコンが古いのにアプリ追加などで、性能を絞り出す場合などの、最後の手段としてチューニングもありえます。
但し、苦労してチューニングしても、トラブルフリーの経験がないので、絶対に避けるべきだと思います。結局、高性能マイコンへの置換えという結果になります。

では、マイコン性能はどの程度が正解でしょうか? マイコンでシステムを制御する場合、通常アプリ以外の処理ソフト、例えば、ハード/ソフトの出荷時のセルフテストや、入力が一定時間ない時のデモンストレーション表示なども必要です(自動販売機などでおなじみですね)。ここでは、これらソフトを「システム運用ソフト」と呼びます。

これらシステム運用ソフトは、通常アプリ動作中には、並列処理をしませんので、消費するのはROM/RAMです。ソフト開発者は、ROM/RAM量を見積もる時に、これら通常動作には現れないシステム運用ソフトも考慮する必要があります。経験では、通常アプリと同程度、つまりトータル2倍のROM/RAMは必要と思います。

また、必要となるマイコン性能は、通常アプリと、上の例で示したようなシステム運用ソフトの両方で考慮すべきです。処理能力に十分な余裕がないと、再現性のない取れにくいバグ発生のリスクも高まります。この処理能力も、2倍程度の余裕が必要だと思います。

ハードウエア設計の「ディレーティング50%」と同様、2倍の余裕がマイコン設計には必要と思います。

ルネサスお薦めのRL78/G1xマイコン製品

RL78/G1xの売れ筋が一目で解るルネサスのサイトが公開されました。1年ごとの集計結果で、ルネサスのお薦めマイコンとして「STAR Product」マークが製品名とともに表示されます。

STAR Product mark
STAR Product mark

RL78/G1xテンプレートのマイコンはルネサスお薦め!

弊社RL78/G1xマイコンテンプレートのRL78/G13とRL78/G14、どちらもこのルネサスお薦めマイコンです。

GROUP P/N PACKAGE CODE FLASH DATA FLASH SRAM
RL78/G10 R5F10Y16ASP#V0 10-LSSOP 225mil 0.65p 2KB 256B
RL78/G12 R5F1026AASP#V0 20-LSSOP 225mil 0.65p 16KB 2KB 1.5KB
R5F1027AANA#U0 24-HWQFN 4mm□ 0.50p 16KB 2KB 1.5KB
RL78/G13 R5F100ACASP#V0 30-LSSOP 300mil 0.65p 32KB 4KB 2KB
R5F100GEAFB#V0 48-LFQFP 7mm□ 0.50p 64KB 4KB 4KB
R5F100LEAFB#V0 64-LFQFP 10mm□ 0.50p 64KB 4KB 4KB
R5F100LGAFB#V0 64-LFQFP 10mm□ 0.50p 128KB 8KB 12KB
R5F100MJAFB#V0 80-LFQFP 12mm□ 0.50p 256KB 8KB 20KB
R5F100PJAFB#V0 100-LFQFP 14mm□ 0.50p 256KB 8KB 20KB
RL78/G14 R5F104BCAFP#V0 32-LFQFP 7mm□ 0.80p 32KB 4KB 4KB
R5F104FFAFP#V0 44-LFQFP 10mm□ 0.80p 96KB 8KB 12KB
R5F104LGAFA#V0 64-LFQFP 12mm□ 0.65p 128KB 8KB 16KB
R5F104PJAFB#V0M 100-LQFP 14mm□ 0.50p 256KB 8KB 24KB
RL78/L13 R5F10WLGAFB#30 64-LFQFP 10mm□ 0.50p 128KB 4KB 8KB
R5F10WMGAFB#30 80-LFQFP 12mm□ 0.50p 128KB 4KB 8KB

 

特に、RL78/G13のコードフラッシュ32~64KB製品や、RL78/G14のコードフラッシュ32KB製品をご利用の方は、RL78/G1xテンプレートも合わせてご検討ください。
RL78/G1xテンプレートをお使い頂ければ、RL78/G1x習得容易で、アプリケーションの早期開発ができます。もちろん、容量が大きいコードフラッシュ製品でも適用可能です。

LPCXpreeso824-MAXのCMSIS-DAP使用法

今回は、次期マイコンテンプレートのLPCXpresso824-MAXボードを、無償IDEのLPCXpressoで動作させる方法を示します。無償IDEでも、ROM 256KBまで開発できますので、LPC8xxには十分です。
LPCXpressoのインストールからアクティベーションの方法などは、トラ技サイトを参照してください。ここでは、LPCXpresso824-MAXボードとインスト済みのLPCXpresso IDEの設定を解説します。

LPCXpresso824-MAX and LPCXpresso IDE
LPCXpresso824-MAXとLPCXpresso IDE

mbed動作のLPCXpreeso824-MAX

LPCXpresso824-MAXボードは、mbed動作がデフォルトです。つまり、ボードとパソコンを接続すると、USBメモリとして認識され、このUSBメモリへmbedネット環境で作成したオブジェクトをダウンロードしさえすれば、LPC824が動きます。この時に必要なツールは、ネットアクセスのブラウザのみです。

このように手軽にネットでオブジェクトが作成できるのがmbedの利点です。しかし、デバッグ環境としては、今後の進展を待つ必要があります。効率的なデバッグを行うには、IDEデバッガは必須です。

mbed動作からCMSIS-DAPへの変更

ボードユーザマニュアルUM108304~5章にも方法が書かれていますが、要点を示します。この手順で、オブジェクト作成とLPCXpresso IDEデバッグができるローカル環境が整います。
1.mbed-windows-serial-portドライバをWindowsパソコンへインストール
2.LPCOpenのLPC824用サンプルプロジェクトv2.15 Release Date:01/08/2015をダウンロードし、LPCXpressoへインポート
※2015年3月最新版LPCXpresso v7.6.2_326をインスト済みならば、C:\nxp\LPCXpresso_7.6.2_326\lpcxpresso\Examples\LPCOpenフォルダ内に同じサンプルがあるので、ここからインポートしても良い。
3.periph_hello_worldプロジェクトをビルドし、デバッガ起動。起動時、下図CMSIS-DAP認識要

CMSIS-DAP認識
CMSIS-DAP認識

4.Tera Termなどのシリアル通信ソフトを1でインストしたmbed Serial Portと接続(115200bps, 8-Non-1)
5.デバッガでResume (F8)実行。シリアル通信ソフトのTerm画面にHello World!が2秒毎に表示

Hello world!表示とCMSIS-DAP、USB Com LEDs
Hello world!表示とCMSIS-DAP、USB Com LEDs

この時、ボードCMSIS-DAP LED緑が点灯し、シリアル通信時にUSB Com LED青が点灯します。これがCMSIS-DAP (Cortex Microcontroller Software Interface Standard – Debug Access Port) デバッグ状態のボードです。CMSIS-DAP認識は、プロジェクトデバッグ初回のみで、次回起動時はありません。

LPCOpenライブラリ

2でインポートしたLPCOpenは、LPCXpresso以外のKeilやIAR開発環境でも同じAPIを提供するなど、適用範囲が広く、可読性も優れたライブラリです。また、3で使用したperiph_hello_world プロジェクトを含め、LPC824周辺回路30種以上のサンプルソフトも付属しています。

mbed環境も多くのサンプルソフトがありますが、NXPのLPCOpenサンプルソフトは高品質で、NXP Forumサイトで情報共有もできます。

販売中のLPC812用テンプレートと同じく、LPC824用テンプレートもこのLPCOpenライブラリを使って開発します。

LPCXpresso824-MAXボードの留意点

LPCXpresso812やLPCXpresso1114/5ボードは、パソコンとの接続に一般的なUSBケーブルを使います。しかし、LPCXpresso824-MAXの接続には、スマートフォンの充電、データ転送に使われるMicro-USBケーブルが必要です。このケーブルは、ボードに付属していませんので別途必要です。

2でインポートした最新のLPCOpenライブラリv2.15は、LPCXpresso v7.5.0以降で動作確認されています。古い版使用時は、v7.5.0以降へ更新が必要です。
※私のパソコンのみの可能性もありますが、Windows8.1(無印)でLPCOpenライブラリをビルドすると本来発生しないハズのエラーが発生します(互換モード変更でも同じ)。Windows8.1ProとWindows7ではこの問題は発生しません(いずれも64bit版)。同じ現象の方は、Windows8.1 ProかWindows7のご使用をお勧めします。

ルネサスがRL78/G13 Stickスタータキット100台プレゼント中

ルネサスが、2015年3月11日~3月31日まで、RL78/G13 Stick スターターキットを、抽選で100名様にプレゼント中です。
応募は、期間中に「My Renesas」に新規登録、または登録情報の更新でも可能です。

RL78/G13 スタータキットは、弊社マイコンテンプレートでもサポートしています。プレゼントをゲットできた方も、残念ながらゲットできなかった方も、是非RL78/G1xテンプレートもご検討ください。
マイコンテンプレート概要と仕様を説明したページは、ダウンロードができます。現在RL78/G1xを含め4種類のマイコンに対応したテンプレートを各1000円(税込)で販売中です。

RL78/G13 Stick(RL78/G13 Promotion Boardとも呼ばれた)は、本ブログで最も記載回数が多い対象です。RL78/G13や、RL78/G14をページ右上のSearchに入力すると、関連記事が一覧できます。

LPC824向けLPC82xテンプレート開発着手

次期マイコンテンプレートの3候補マイコン、NXP LPC824、Freescale Kinetis L、ルネサスRL78/I1Dのうち、LPC824とmX-BaseBoardとの接続方法について検討します。

IoT向きマイコンの要件

2015年1月~2月の集中調査の結果、IoT向きのマイコンは、以下の要件を持ちます。
・バッテリ駆動可能な動作電圧(1.8~3.6V)
・12ビットADC
・DMA/DTCと省電力動作モード
・低価格(¥500以下目安)
3マイコンは、いずれも要件を満たしており、2015年3月現在のマイコンと評価ボードの価格は下記です。

マイコン
(パッケージ)
価格(入手先) 評価ボード(価格、入手先)
LPC824 (32HVQFN) ¥259(DigiKey) LPCXpresso824-MAX(¥2800、秋月電子)
Kinetis L04 (48LQFP) ¥220(チップワン) FRDM-KL05Z (¥1747、DigiKey)
RL78/I1D (48LQFP) ¥430(マルツオンライン) RTE5117GC0TGB00000R(価格不明)

 

IoT向き省電力マイコンテンプレート開発着手

ルネサスRL78/I1D評価ボードは、現在、個人入手できませんので、価格不明です。
NXPとFreescaleは、合併の結果現状のARM Cortex-M0+マイコンの供給状況が変わる可能性もあり、リスクが少ないRL78/I1Dから着手したいのですが、上記のように評価ボードが入手不可で、同じS3コアのRL78/G14ともピンコンパチではないため基板流用もできません

そこで、発売日が新しいLPC824から省電力マイコンテンプレート開発に着手します。CPUボードと周辺回路が実装済みのmX-Base Board(後述)の両方が、秋月電子から簡単に入手できることも理由です。

LPCXpresso824-MAXとmX-Base Boardの接続

LPCXpresso824-MAXは、mbedとしても動作するCPUボードです。販売中テンプレートのLPC812やLPC1114では、制御系ボードとするため、mX-Base Boardと接続して動作させましたので、LPC824でもこのmX-Base Boardを使います。

LPCXpresso824-MAXは、BaseBoardとArduinoの両方のコネクタを持っています。しかし、BaseBoardコネクタを使う場合、mX-Base BoardのEthernetコネクタが接触して直接装着ができません。

LPCXpresso824-MAXとmX Base Board接続(BaseBoardコネクタ利用)
LPCXpresso824-MAXとmX Base Board接続(BaseBoardコネクタ利用)

そこで、もう一方のArduinoコネクタを使いmX-Base Boardと下図のように配線します。

LPCXpresso824-MAXとmX Base Board接続(Arduinoコネクタ利用)
LPCXpresso824-MAXとmX Base Board接続(Arduinoコネクタ利用)

これで、BaseBoard実装のLCD、リセットボタン、外部SW、ブザー、ポテンショメータ、EEPROMをLPCXpresso824-MAXから制御できます。

LPC8xxテンプレートV2.1をメジャーアップデートしV3リリース

従来LPC8xxテンプレートV2.1(2015/01/20更新)に、新たにこのLPCXpresso824-MAX向けの省電力テンプレートを追加し、合わせてLPC8xxテンプレートV3とする予定です。

これにより、NXPのLPC800シリーズマイコンへの弊社LPC8xxテンプレート対応は下表となります。

対象マイコン 推薦制御系ボード 対応テンプレート
LPC824 LPCXpresso824-MAX + mX Base Board LPC82xテンプレート(2015/04発売予定)
・シンプルテンプレート
・メニュードリブンテンプレート
・省電力テンプレート
LPC822
LPC812 LPCXpresso812 + mX Base Board LPC81xテンプレート(2015/01/20 V2.1)
・シンプルテンプレート
・メニュードリブンテンプレート
LPC811
LPC810

 

※シンプル/メニュードリブン/省電力テンプレートとは、弊社テンプレートの適用例を示すためのアプリケーションソフトです。
例えば、シンプルテンプレートは、テンプレートにチャタリング対応済みのSW入力とLED出力の2処理を追加した例で、テンプレートの所定位置に、所望処理を追加すれば、だれでも簡単にアプリケーションが完成することを示す目的で作成しております。詳細は、マイコンテンプレートサイトをご覧ください。

次期マイコンテンプレートのターゲット考察

NXPとFreescaleの合併、予想さえしなかったことです。激動するマイコン世界ですが、現在のマイコンテンプレート状況を整理し、次期テンプレートのターゲットとなるマイコンについて考えます。

入手性の良いマイコンとテンプレート販売状況

以前紹介した入手性が良いマイコンが一目で解る、チップワンストップサイトのマイコン/開発ツール検索を今回も利用させていただきます。サイト中央のマイコン/ボードタグをクリックすると、8/16/32bit処理ビットとベンダ毎に分けられたマイコンが表示されます。

一覧表が以下です。緑色がARM仕様のマイコン、青色がベンダ仕様マイコン、赤囲みがテンプレート対応マイコンで、現在4種のテンプレートを1000円(税込)で販売中です。

入手性の良いマイコンとテンプレート提供状況
入手性の良いマイコンとテンプレート提供状況

表中NXPはARM Cortex-M0のみですが、Cortex-M0+のLPC8xxも供給しています。
32bitマイコンの主流は、緑のARMマイコンです。表内のARMコアの特徴をまとめたものが下表です。

ARMコア 名称 概要
Cortex-Mx エンベデッド プロセサ 32bitの高い処理効率を維持し、業界最先端の動作と最小限のスリープ/ダイナミック電力、最小限のダイ面積を目指し設計。以下の4サブ構成。
Cortex-M0:低消費電力マイコン
Cortex-M0+:超低消費電力マイコン
・Cortex-M3:汎用マイコン
・Cortex-M4:デジタル信号制御マイコン
Cortex-Ax アプリケーション プロセサ 高度なオペレーティングシステム:OSが実行可能なメモリ管理ユニットMMU搭載マイコン
ARMx Classic プロセサ ARM11、ARM9、ARM7などコスト効果の高いマイコン

 

32bitマイコンのテンプレート対象は、Cortex-M0/M0+です。
Cortex-M3クラスになると、高価なうえに動作周波数も70MHz以上でControlよりもComputeが得意になります。IoT向けPCのEdisonRaspberry Pi 2(Cortex-A7搭載)と競合する可能性もあります。Cortex-M0/M0+は、16bitマイコン市場の置換えも視野に入れたマイコンですので、今後の普及も期待できます。
16bitマイコンは、ルネサスの超低消費電力マイコンRL78に、RL78/G1xテンプレートを販売中です。

4種テンプレートに付記した動作電圧からみえるのは、そのマイコンの想定アプリケーションです。
FreescaleのKinetis Eは、5V耐性やノイズ耐力を高めたマイコンです。また、NXPのLPC8xxは、バッテリ駆動ができ、小ピンですがスイッチマトリクスによりピン配置の自由度が高く、LPC111xも同じくバッテリ駆動可能で、第3世代でアクティブ消費電流が116uA/MHzまで低下したマイコンです。ルネサスのRL78は、広い動作電圧がセースルポイントのマイコンです。

以上が現状マイコンテンプレートの状況です。「16bitのHigh Performanceマイコンから32bit Entry+alphaのマイコンで、容易に入手できメジャーなもの」へテンプレートを提供し、「対象マイコンの速習と早期アプリ開発」が誰でもできます。テンプレートの詳細は、マイコンテンプレートサイトを参照してください。

IoTアプリケーション向きの超低消費電力マイコンと次期テンプレート

開発アプリケーションに適したマイコンを選ぶこと、これが最も重要です。汎用マイコンでも、想定した応用の範囲内で能力を発揮するように設計されているからです。
次期テンプレートは、よりアプリケーション指向の強いマイコンを選びます。当りハズレはありますが、当たればより多くのテンプレートが売れる可能性があるからです。

プログ記載の2015年1月~2月に集中して最新マイコンドレンドを分析した結果、各ベンダは、巨大マーケットを持つ「IoTアプリと車載アプリ」へのマイコン開発に力点を置きつつあることが解りました。特に車載マイコンでのこの動きの結果、NXPとFreescaleの合併となったとも言えるでしょう。

次期テンプレートもこのドレンド:IoTアプリ向けの超低消費電力マイコンに開発します。例を挙げると、ARM Cortex-M0/M0+コアでは、より低い消費電力、高エネルギー効率と低コストを狙ったFreescaleのKinetis LシリーズやNXPのLPC82x、ルネサスRL78:S3コアでは、RL78/I1Dなどです。

これらには、従来テンプレートに添付したシンプル/メニュードリブンテンプレートに加え、IoTアプリ開発の重要なポイントになる省電力テンプレート(仮称)も加える予定です。

 

IntelシニアフェローStephen Pawlowski氏によると、「これからの10年は、エレクトロニクスのイノベーションの歴史で最もエキサイティングな時代になるだろう。」だそうです。弊社マイコンテンプレートが、このエキサイティングな時代に活躍する技術者/開発者の方へ、少しでもお役立てれば幸いです。

NXPがFreescaleを買収

弊社マイコンテンプレート提供中のNXPが2015年下半期までにFreescaleを買収、合併します。これにより、自動車向け、汎用マイコンのシェアが一社(NXP?)にまとまります。

両社提供のARM Cortex-M0/M0+マイコンの見直しや統合、新ブランド発表の可能性もあります。ARMマイコンの世界も集約されつつあるのでしょうか?
結果的として弊社マイコンテンプレートは、全ての上位陣をカバーするので、喜んで良いのかな?

最新マイコンのドレンド考察

IoTに向けて汎用マイコンも変化しつつあります。今回は、この変化について考えます。

ADC分解能12ビット

最近のマイコンADC分解能は、汎用タイプでも12ビットが標準的です。例えば、LPC824(NXP、2014/10発売)、RL78/I1D(ルネサス、2015/02発売)などです。従来10ビットに比べ4倍の分解能です。
接続されるセンサの性能向上や、マイコン向きの分解能として12ビットが選ばれたと思います。これ以上の分解能になると、キャリブレーションや測定誤差への対応が必須となり、ADC専用ICの領域となるからです。

CPU代替データ転送

DMA:Direct Memory Accessや、DTC:Data Transfer Controllerは、CPUに変わってデータを転送する機能です。CPU転送より低電力で動作するため、ADCとペアで使われるのが一般的です。ADC変換データをDMA/DTCを使ってRAMへ転送し、この間はCPUを休ませる、その目的は、消費電力の低減です。

CPU消費電流低下

マイコンCPU本体の消費電力が改善される好例が、LPC1114(NXP)です。トラ技2012年10月掲載のLPC1114評価ボードのCPUは、LPC1114/301でした。LPC1114/xx1 → xx2 → xx3(xx1の数字が世代を示し、現在は第3世代)で180uA/MHz → 140uA/MHz → 116uA/MHzと世代が進む毎にアクティブ消費電流が36%も低下しました。

これらの変化は、5Vレギュレータ動作から、バッテリーなどのより低く、しかも変動する電圧でも長時間動作する省電力マイコンが目的です。

基本動作モードと省電力動作モード

RL78カタログ資料より抜粋したRL78ファミリの動作モードを示します。

RL78ファミリの動作モード
RL78ファミリの動作モード

通常動作(MAIN RUN、ARMマイコンの場合はRUN)と低電力動作(HALT、ARMの場合はSLEEP)、動作停止(STOP)の基本3モードに加え、第4の新しい省電力動作モード(SNOOZE)があります。

SNOOZEは、HALTよりも更に低い電力で動作しますが、以下の点に注意が必要です。

  1. SNOOZE動作するには、STOP動作モードから入る必要あり。
  2. SNOOZE中に動作する周辺回路は機種によりに異なりRL78/G13、G14の場合は、ADC、CSI00スレーブ受信、UART0データ受信の3機能のみ。
  3. HALT → MAIN RUNに復帰する時間に比べ、起動時間がかかる。

これらに注意して、開発アプリでSNOOZEが有効に使えるか否かの判断が必要です。

例えば、RL78/G13でADCデータをDMAでRAM転送する場合には、SNOOZEは使えず、HALTで行う必要があります。あるいは、ADCはSNOOZEで行い、データ転送はCPUで行う方法もあります。
どちらが開発するアプリに適しているか、消費電力はどちらが低いか、SNOOZEからの復帰時間は問題ないかを検証し、決める必要があります。
最新マイコンRL78/I1Dは、RL78/G1xに比べこの制約が緩く、より簡単に広い条件で適用できる工夫も施されています。
また、さらに細かい省電力アプリへ対応すべく、10個もの動作モードを持つKinetis Lシリーズ(Freescale)などもあります。

Kinetis Lシリーズの動作モード
Kinetis Lシリーズの動作モード

ポイントは、各省電力動作モードの制約条件と復帰時間を考慮したうえでモード選択することです。

現行テンプレートの動作モード

販売中のテンプレートは、通常動作:MAIN RUNと低電力動作:HALT(SLEEP)の2動作モードに対応しています。これは、

  • この2動作モードは、全マイコンにあり、機種に依存しないテンプレートとして実現できること
  • 省電力化に最も効果があり、通常動作への復帰も高速なので確実(バグなし)に動作すること

が理由です。

省電力動作モードの注意点と裏ワザ

省電力動作モードには、多くの制約条件があります。言い換えると「動作するアプリや環境を想定した動作モード」とも言えます。この省電力動作モードの注意点をまとめます。

  • 想定したアプリや動作環境を見極め、それに沿って開発しないと徒労になる
  • 通常動作への復帰時間を吟味した上で使わなければ、取れにくいバグを生むリスクがある
  • 苦労して省電力動作モードを実装しても、そのモードの全体動作に対する相対時間が少なければ、得られる効果も少ない

実は、前述のLPC1114進化のように、マイコンそのものを初めから低消費電力版へ変えることが一番簡単で確実だったりします(裏ワザ?)。

省電力テンプレートの方針

テンプレートとしても新しい省電力動作モードへの対応が必要です。以下の方針で開発予定です。

  • 省電力アプリを特定し、その上で、応用範囲の広い適用例で開発
  • 省電力アプリの有効性を確実に示せるマイコンに実装(そもそも省電力動作モードそれ自身に、想定動作があるので機種依存性が生じるのも仕方がないかも…)

シンプル/メニュードリブンテンプレートに続く第3のテンプレート:省電力テンプレート(仮称)とは、
「通常時は現行テンプレートと同様MAIN RUNとHALT(SLEEP)で処理を行い、一定時間入力が無い場合は、STOPまたはSNOOZEになり、何らかの外部入力で通常動作へ戻る」
などでしょうか?

方針提案に対する、ご意見、ご希望など何なりとお気軽に、info@happytech.jpへお寄せください。参考にさせていただきます。

無償mbed OS 10月15日リリース予定

mbed OSリリーススケジュール(記事より抜粋)
mbed OSリリーススケジュール(記事より抜粋)

弊社ブログ記載のARM無償提供mbed OSのリリーススケジュールが、“ARM 「mbed OS」とは何か?その詳細と動向”記事にあります。本年2015年10月15日以降には、mbed OSを試せそうです。

mbed OS層構造

mbed OSの構造(記事より抜粋し加筆)
mbed OSの構造(記事より抜粋し加筆)

ARM Cortex-M0/M0+のマイコンに無償で使えるmbed OSは、図のように各種標準通信プロトロルを提供します。ROM容量の少ないマイコンは、この中の一部を選択して実装できるそうです。

CMSISとIPv4、IPv6実装済み無償OSがC++ APIで使える10月15日が待ち遠しいです。弊社テンプレート提供中のARMマイコン、LPC812、LPC1114/5、Kinetis Eにも適用できそうです。

実物を診ないと断言はできませんが、テンプレートもこのmbed OSの上(Applicationsの層)に配置できる気がします。超うすいテンプレートだからです。勝手にライバル視してきましたが、実は、CMSISと同じ感覚でネット接続APIが使える可能性もあり、ますます待ち遠しいです。
一方、IoT向けPC:Raspberry Pi 2に無償提供されるWindows 10にとっては、強力ライバルソフトになりそうです。Raspberry Pi 2は、ARM搭載ですので、当然このmbed OSが実装できると思うからです。

マイコンテンプレート利用法ページ追加

販売中の4種マイコンテンプレート説明資料に、テンプレート利用法ページを追加しました。
既にテンプレートご購入の皆様へは、近日中に追加済みのテンプレート説明資料をメールにて送付いたしますので、しばらくお待ちください。

テンプレート利用法ページの内容一部抜粋

テンプレート利用法ページには、ソースコードを見やすくするための記述の工夫テンプレート機能とその処理関数どこにユーザ関数を追加した結果、シンプル/メニュードリブンテンプレートになるのかを3ページにわたって示しております。
説明資料の全ページ内容は、テンプレートサイトの各テンプレート説明資料右下のもくじを参照して下さい。P1とP2は、サイトからダウンロード可能です。

RL78/G1xテンプレートの内容を一部抜粋します。他の3種LPC8xx、LPC111x、Kinetis Eテンプレートも同様です。

テンプレート機能とその処理関数
テンプレート機能とその処理関数(RL78/G1xテンプレートの例)
テンプレートに追加するユーザ関数の場所
RL78/G1xテンプレートに追加したユーザ関数:LedBluToggle()の例

これらのページにより、より具体的にテンプレート使用方法がお判り頂けると思います。

テンプレートご購入者様、ご検討中の方にとって一番知りたいことは、「テンプレートが簡単に使えるかどうか」です。追加したページが、このご参考になることを期待しております。