ルネサスのIDT買収とリスク分散

ルネサスエレクトロニクス(以下ルネサス)が米)IDT買収を発表したことは9月13日投稿済みです。
この買収にはいろいろな憶測が報じられています。これらをまとめ、技術者個人でのリスク分散を考えます。

ルネサスのIDT買収関連記事(2018年9月28日現在)

どの記事もルネサスのIDT買収を、社長兼CEO呉文精氏コメントのように肯定的には捉えていません。むしろリスクの方が大きく、買収が成功するかを危ぶむ声さえあります。

IDT技術のルネサス車載MCUへの応用/流用よりも、むしろNVIDAやインテルなど大手半導体メーカーの自動車半導体市場介入に対する衝突回避/防衛が真の買収目的だ、が各記事の主張です。

私は記事内容から、なぜ回避や防衛ができるのかはイマイチ理解できません。ただ巨大な買収額が、経営的な足かせとなる可能性があることは解ります。半導体業界の巨額買収は、ルネサスに限った話ではありません。

かなり昔、デバイス間通信にIDTの2ポートRAMを使った経験があり便利でした。IDT買収の日の丸MCUメーカー最後の生き残り:ルネサスエレクトロニクスには頑張ってほしいと思います。

技術者個人のリクス分散必要性

動きの激しいMCU半導体製品を使う技術者個人が生き残るには、リスク分散が必要だと思います。

例えば、業務で扱うMCU以外の開発経験を持つのはいかがでしょう。万一の際にも通用する技術を個人で準備しておくのです。その際には、手軽で安価、しかも実践応用もできることが重要です。

弊社マイコンテンプレートは、下記大手4メーカー6品種の汎用MCUに対応中です(各1000円税込)。

  • ルネサス)RL78/G1xテンプレート
  • NXPセミコンダクターズ)LPC8xxテンプレート
  • NXPセミコンダクターズ)LPC111xテンプレート
  • NXPセミコンダクターズ)Kinetis Eテンプレート
  • サイプレス・セミコンダクター)PSoC 4/PSoC 4 BLE/PRoCテンプレート
  • STマイクロエレクトロニクス)STM32Fxテンプレート
    ※各テンプレートに紹介ページあり

テンプレートを使うと新しいMCU開発を実践、習得できます。経験が有るのと無いのとでは雲泥の差です。
リクス分散の1方法としてご検討ください。

ルネサスエレクトロニクス、IDT買収

2018年9月11日、ルネサスエレクトロニクス(ルネサス)が米)Integrated Device Technology(IDT)を買収すると発表しました。
約67億ドル買収完了見込みの2019年前半には、IDTはルネサス完全子会社になります。

ルネサス、IDT買収の狙い

・補完性が高い製品獲得によるソリューション提供力の強化
・事業成長機会の拡大

ルネサスは、RFや各種アナログ・ミックスドシグナル機能を持つIDT製品を獲得し、これらをマイコンやパワーマネジメントICと組み合わせ、アナログフロントエンドを強化、これによりIoTや産業、自動車分野の事業領域拡大を狙うと発表しました。

2017年2月に32億1900万ドルで買収したアナログ半導体メーカの米)Inersilと今回のIDTとの事業重複は無く、ルネサス+IDT+Intersilでエンドポイントのインテリジェンスを抑え勝つ(=優勝を狙う)とルネサス)社長兼CEOの呉文精氏はコメントしています。

System on a chip(SoC)でルネサスMCUに強力なアナログ機能が実装される可能性が高まったと思います。

MicrochipのインテリジェントADC(ADCC)

同様の動向として、アナログフロントエンドに計算機能を備えたインテリジェントADCを使いAD変換結果に含まれるノイズを除去、MCU処理電力を低減するADCCデバイスをMicrochipが発表しました。

2018年9月19日水曜14時~15時に、「センサノードの低コスト設定:ADCC」と題して日本語Webinarsが予定されています。登録は必要ですが、どなたでも無料で視聴できオンライン質問にも回答してくれるそうです。興味ある方は、参加してはいかがでしょう。

QualcommのNXP買収断念とルネサスのIDT買収

Qualcomm による約470億ドルNXPセミコンダクターズ(NXP)買収は、断念という結果になりました。“NXP買収を断念したQualcommの誤算(前・後編)”によると、半導体業界はこの騒動からいろいろな教訓を学ぶべきだそうです。
また、同記事でNXP CEOのRick Clemmer氏は、

「QualcommとNXPの合併により、さらなるスマート化に向けたセキュアな接続を実現するというわれわれのビジョンに必要な、あらゆる技術を統合できる。これによって、最先端のコンピューティングやユビキタス接続を、セキュリティや、マイクロコントローラなどの高性能ミックスドシグナルソリューションと組み合わせることが可能になる。両社が協業することで、さらに完成度の高いソリューションを提供できるようになるだろう。特に、自動車やコンシューマー、産業用IoT、デバイスレベルのセキュリティなどの分野において、リーダー的地位をさらに強化し、幅広い顧客基盤との間で既に構築している強固な協業関係を、さらに拡大していくことが可能になる」

と語っています。

上記は、買収を免れたNXPにとっては実現しなかった訳です。コメント内容は、ルネサスのIDT買収狙いと重なる部分が多く、IDT買収がルネサスにとって重要であることの証拠と言えると思います。

企業買収は、巨大な初期投資が必要な半導体業界での生き残りと主要技術確保のための戦略です。
ルネサスとNXPのIoT、産業、自動車分野のMCU競争は、ますます激しくなるでしょう。

MCU統合開発環境の後方互換性検証

MCU統合開発環境は、後方互換が重要です。数年前に開発したプロジェクトを改良・改版する際には、最新の開発環境(IDE)でも開発当時と同じ動作が求められるからです。

ベンダー各社もこの点に留意してIDE改版を行っているハズです。ただ、リリースノートにも具体的な互換性説明などは見当たりません。そこで、MCU最新IDEの後方互換性を検証します。

本稿は、ルネサスエレクトロニクス(以下、ルネサス)の最新IDE:CS+に、弊社2015年開発のRL78/G1xテンプレートプロジェクトを適用し、発生するメッセージなどを示し、開発当時と同じ動作をするかを確認します。もちろん、これはあくまでも一例にすぎませんが、開発中にIDE更新に遭遇した際などの安心材料になれば幸いです。

ルネサス統合開発環境CS+

2018年9月最新ルネサスIDE CS+は、Ver.: V7.00.00(2018/07/20リリース)です。CS+は、業界標準のEclipseベースIDEではなくルネサス独自開発のIDEです。

好都合なことにWindows 10 1803をクリーンインストールしたので、まっさらなWindows 10へ最新CS+をインストールした条件で検証ができます(1803クリーンインストール顛末はコチラを参照)。

CS+ダウンロードサイトでカテゴリ:無償評価版を選び、分割ダウンロードか一括、CS+ for CCかCS+ for CA,CX のどれかのパッケージをダウンロード後、実行すれば必要なツール全てがWindowsへインストールされます。

統合開発環境CS+パッケージ
統合開発環境CS+パッケージ(一括ダウンロードの例)

関連投稿:CS+ for CCとCS+ for CA,CXの違い

既存プロジェクトを新しいCS+で開いた時のメッセージ

以下CS+ for CCの例で示しますが、CS+ for CA,CXでも同じです。

既存のプロジェクトを開く
既存のプロジェクトを開く。BB-RL78G13-64.mtpjをクリック。

CS+ for CCを起動し、既存のプロジェクトを開くでRL78/G1xテンプレートプロジェクトのCC-RLを選択すると、最初に警告メッセージが表示され、出力パネルにその内容、プロジェクト開発当時と新しいCS+での「プロジェクトの差分情報」が表示されます。

既存プロジェクトを開いた時に表示されるメッセージとその内容
既存プロジェクトを開いた時に表示されるメッセージとその内容

※“プロジェクト差分情報”は、新規CS+をインストールした時だけでなく、プロジェクト開発中にCS+更新に遭遇した際にも表示されます。

黒字の “デバイス・ファイルが更新……”は、CS+がサポートするMCUデバイスが増えたために発生します。あまり気にする必要はありません。

青字の “プロジェクト差分情報”は、新しいCS+を用いた結果、既存プロジェクトに生じた差分、影響のことです。

例えば、CS+のCC-RLコンパイラが改良・改版され、開発当時のコンパイル・オプションには無かった [間接参照を1バイト単位で行う] 選択肢が発生し、これに関しては、「いいえ」を選択したことなどが解ります。

これらの選択は、基本的に既存プロジェクトに影響が無い(少ない)方をデフォルトとしてCS+が選びます。このデフォルト選択が、CS+の後方互換を実現している鍵です。

後方互換の検証:プロジェクトビルド成功と評価ボードの動作確認

そのままビルド(B)>ビルド・プロジェクト(B)を実行すると、サブプロジェクトを含め全プロジェクトがリビルドされます。出力パネル青字は警告:Warring、赤字はエラー:Errorを示します。

全プロジェクトビルド結果
全プロジェクトビルド結果

出力パネルに赤字が出るのは問題ですが、青字内容に問題がなければ、新規CS+でもプロジェクトが正常にビルドできたことを示します。

そこで、ターゲット評価ボードへビルド出力をダウンロード、既存プロジェクト開発当時の動作確認ができ、最新CS+で後方互換が検証できました。

CS+の便利機能

ルネサスCS+には、プロジェクトと開発ツールをパックして保存する便利な機能があります。

CS+の便利機能
CS+の便利機能。プロジェクト開発時の環境を丸ごとそのまま保存できる。

この開発ツールとは、使用中の統合開発環境のことで、文字通りプロジェクトとCS+、デバイス・ファイル情報などのプロジェクト開発時の環境を丸ごとそのまま保存し、復元もできます。
但し、当然OS:Windowsまでは保存しなので、年2回の大規模OS更新やWindows 7サービス終了などには開発者自ら対応する必要があります。

後方互換とプロジェクト開発方針

IDEの後方互換は、開発者にとっては当然のことです。ただし、改良・改版された最新コンパイラ性能を、既存プロジェクトで最大限引き出しているかは疑問を持つ方もいるでしょう。個人的には、この点について以下のように考えます。

  • プロジェクト開発時、使用する統合開発環境のコンパイル・オプションは、最適化も含めてデフォルト設定で開発。
  • サイズ優先や速度優先の設定は、開発の最終段階で必要性がある時にのみ最小限設定し、その設定をソースに明記。

例えば、弊社マイコンテンプレートは、1つを除いて全て上記方針で開発しています。除いた1点とは、NXPのLPC8xxテンプレートのLPC810(ROM 4KB/RAM 1KB)の小ROMデバイスの1段最適化のみです。テンプレート(ひな形)の性質上、いろいろなプロジェクトへの適応性が高いのもこの方針の理由です。また、デフォルト設定と最小限設定なので、結果的に最新統合開発環境への後方互換も取りやすいと言えます。

経験上、コンパイル・オプションを操作して開発したトリッキーなプロジェクトは、設計段階(MCU選択やプログラム構成)の失敗だと考えています。個人的には、デフォルト設定で十分余裕(50%程度)がある設計がお勧めです。これを確かめるためにも、プロトタイプ開発は重要だというのが私の考えです。

MCU統合開発環境、後方互換のまとめ

MCU統合開発環境(IDE)とWindows環境の年間メジャー更新スケジュールは下図です(2018年7月9日投稿の再掲)。

主要開発環境の年間更新スケジュール
主要開発環境の年間更新スケジュール

プロジェクト開発中にこれら更新に遭遇することは少なくないでしょう。本稿は、ルネサスCS+を例に最新IDEの後方互換性を確認しました。EclipseベースのIDEでも同様です。まとめると、

  • IDE更新後、最初に既存プロジェクトを開く時の差分情報で、プロジェクトに生じた差分、影響を分析し、後方互換を検証
  • コンパイル・オプションはデフォルト設定が、更新された統合開発環境の後方互換を取りやすい

ことを示しました。

最新ARM Cortex-Mマイコン動向とIoT MCUを特徴付ける3要素

最新ARM Cortex-Mマイコン:MCU製品からその動向を調査します。前稿ルネサスエレクトロニクス(以下ルネサス)RL78ファミリの汎用MCU変遷に続き、ARM Cortex-MコアMCU編という位置づけです。最後に両者を比較し、IoT MCUを特徴付ける3要素についての私見を示します。

最新ARM Cortex-Mマイコン製品の特徴

本ブログ掲載中のベンダ各社とMCUです。

ブログ掲載中の各社MCU
ブログ掲載中の各社MCU

ルネサス以外は、全てARM Cortex-Mコアを用いています。これらをARMコア製品、一方ルネサスはNon ARMコア製品と呼ばれます。現在のMCUは殆どがARMコア製品です。

各社ともIoT向けのMCU新製品を発売中です。その中からNXPセミコンダクターズ(以下NXP)のLPC51U68 MCU(2018年3月発売)をピックアップし特徴を抽出します。

LPC51U68は、8/16ビット置換えを狙う低消費電力Cortex-M0+コアを最大100MHz動作まで高め、USB2.0、256KB ROM、96KB RAM実装、12bit 5Mspsと高機能ADC内蔵のMCUです。

LPC51U68 MCU Block Diagram (出典:LPC51U68 Fact Sheet)
LPC51U68 MCU Block Diagram (出典:LPC51U68 Fact Sheet)

コア速度のアプリケーション対応(置換えからIoT市場開拓へ)

32ビットCortex-M0/M0+コア本来の目的は、既存8/16ビットMCUの置換えです。従ってこれまでは、既存MCU(例えばルネサスS1/S2/S3コア)速度と同等の30~50MHzがCortex-M0/M0+コア動作速度でした。しかし、NXPはより低速で低消費電力な8MHzや15MHzのコア速度の新製品を発表しました。

関連投稿:8MHz Cortex-M0+コア採用のLPC8N04

関連投稿:15MHz Cortex-M0+コア採用のLPC80x

つまり、既存MCU置換えだけでなく、よりアプリケーションに適したコア速度採用のARMコア製品の一環として開発されたのが紹介した100MHz動作のLPC51U68です。

ARMコア製品は、8/16ビット置換えから、IoTアプリケーション市場開拓への展開も始めたと言えるでしょう。

IoT向きの周辺回路実装(汎用からIoTアプリケーションMCUへ)

従来MCUもUSB接続でプログラムダウンロードやデバッグはできます。これらに加えLPC51U68のUSBは、USB 2.0ホスト機能もライブラリで提供します。PC同様、USBキーボードやデータロガー用に簡単に大容量USBメモリがMCUに接続できるので、HMI(Human Machine Interface)に優れたIoTデバイスが開発できます。

ADCもE-meterなどにも使いやすいような高機能版が用いられています。

ROM/RAM容量が増えるのは、これらIoT向け周辺回路を制御・活用するために必要で、副次的なものと言えるでしょう。

評価ボードLPCXpresso51U68 (OM40005) Development Board価格も¥3,518(DigiKey調べ)であることから、これだけ機能が増えても、従来ARMコア製品と同レベルで入手できると思われます。

LPCXpresso51U68 (OM40005) Development Board
LPCXpresso51U68 (OM40005) Development Board

最新ARM Cortex-Mマイコン動向まとめ

NXP)LPC51U68だけでなく、競合他社Cortex-M0/M0+/M3新製品についても同様の傾向が見られます。最新Cortex-Mマイコンの動向をまとめたのが下記です。

  1. IoTアプリケーションのためコア動作速度を数MHz~100MHz超の範囲で電力消費最適化
  2. USBホスト機能や高機能アナログなど、IoTアプリケーション対応高機能周辺回路を実装

一方、前稿Non ARMコア製品のルネサスMCU動向をまとめると、

  1. 低消費電力16ビットS1/S2/S3コアの使い分けで、きめ細かな電力消費へ対応
  2. アナログ機能やモータ制御機能を追加実装し、IoTアプリケーションMCUへ展開

どちらも、無線通信やセキュリティの要求が高いIoT MCUに対して、従来の汎用MCU製品のままでは対応しにくく、より具体的なIoTアプリケーションへ向けた機能拡張を行い、セミASSP的なIoT MCU製品となっています。
※セミASSP:汎用MCUをベースに、特定アプリケーション向けに調整したMCU。汎用MCU開発に慣れた開発者が、特定アプリ開発に臨む時、ASSPに比べ馴染みやすく開発障壁が低い。

ARMコア製品が柔軟性や拡張性に富み、一方で、Non ARMコア製品のルネサスもIoT向きに汎用MCUを調整しています。いずれにしても汎用MCUは、よりアプリケーション向きのMCUへ変化しつつあります。

IoT MCUを特徴付ける3要素

IoT MCUは、以下3要素から構成されると考えると理解が容易になります。

  1. IoTアプリケーション対応高機能周辺回路
  2. MCUコア
  3. 汎用周辺回路:タイマー、GPIO、UART、I2C、一般的ADC

先ず、どのようなアプリケーションにMCUを使うかで「IoTアプリケーション対応周辺回路」が実装されます。例えば、USBホスト機能が必要なアプリであれば、NXP)LPC51U68などです。

次に、そのアプリケーション周辺回路制御に十分な動作周波数や性能をもつ「MCUコア」が決まります。

最後に、「汎用周辺回路:タイマーやGPIO、UART、I2C回路」の実装数がアプリケーションに対して十分か調べます。

IoT MCUの3要素
IoT MCUの3要素。NXP)LPC51U68の分解例と開発方法。

多くのアプリケーションに広く対応できる汎用MCUの汎用周辺回路のみで開発できるアプリケーションであれば、実績が多い汎用MCUを選び、IoTに必要となる無線やセキュリティ機能を外付け部品で構成すると良いと思います。

より具体的なIoTアプリケーションに対応する場合は、IoTアプリケーション対応周辺回路を持つ各社の新製品MCU(セミASSP MCU)を選び、開発するのが良いと思います。

「IoTアプリケーション対応高機能周辺回路」とは、文字通りアプリに応じた開発や応用、最適化が必要です。各社はこのIoTアプリケーション対応周辺回路に対して、ライブラリやアプリケーションノートを提供しますので、開発はそれらを応用、流用するとリスクが低くなります。

一方、「MCUコア」と「汎用周辺回路:タイマーやGPIO、UART、I2C回路、一般的なADC」は、既存の開発ソフトウェアやハードウェアがほとんどそのまま使える可能性が高い部分です。

IoT MCUを早期開発するには、この既存ソフトウェアやハードウェアを流用し、より多くの時間をIoTアプリケーション開発へ配分する方法が適します。弊社マイコンテンプレートは、この汎用開発部分に役立ちます。ご活用ください。

QUALCOMM、NXP買収断念

中国当局の承認さえ得られれば買収成立という段階までこぎつけた米)QUALCOMMによるオランダ)NXP買収が、買収断念の発表となりました。

QUALCOMM、NXP買収断念
QUALCOMM、NXP買収断念

米国と中国間の貿易紛争の影響です。先の投稿で示した7月25日買収期限を過ぎても、中国側の承認を得られなかった結果です。

買収破断の結果、NXPは、自動車やセキュリティ分野の強化を、QUALCOMMは、5Gなどの無線通信事業を柱にすることを発表したそうです。

我々MCU開発者にこの結果がどう影響するか、本ブログで扱うLPC8xxやLPC111x、Kinetisデバイスにどう影響するか、数年後には明らかになるかもしれません。

NFCを使うLPC8N04のOTA

5/31~6/21の4回に渡り行われたNXPセミコンダクターズ LPC80x WebinarでLPC80xシリーズ概要が解ります(8/16ビットMCUの置換えを狙う32ビットARM Cortex-M0+コア採用のLPC80xシリーズ特徴や商品戦略が解るWebinarスライドは、リンク先からダウンロード可能)。

LPC8xx Family History (Source:Webinar Slides)
LPC8xxは、LPC81x/LPC82xから、2017年高集積LPC84x、2018年価格高効率LPC80xへ展開(出典:Webinar Slides)

LPC8xxファミリは、2016年発売のLPC81x/LPC82xをベースに、2017年にLPC84xで高集積大容量化、2018年はLPC80xで価格効率を上げる方向に発展中です。

関連投稿:LPC80xの価格効率化の方法

ベースとなったLPC810、LPC812、LPC824に対して弊社は、LPC8xxテンプレートを提供中です。このテンプレートは、発展したLPC84xやLPC80xへも適用できると思います。

*  *  *

さて、本投稿は、今後IoT MCUの必須機能となる可能性が高いOTA(Over The Air)について、LPC8N04スライドにその説明がありましたので、速報としてまとめます。

NFCを使うLPC8N04のOTA更新

LPC8N04 は、近距離無線通信(NFC)機能を搭載し15MHz動作のLPC802/LPC804よりもコア速度をさらに8MHzへ下げ、NFCアプリケーション開発に適したMCUです。スマホとNFCで連動する温度センサーロガーの動作例がNXPサイトの動画で見られます。

関連投稿:LPC8N04の特徴

無線ペアリングが簡単にできるNFC搭載MCUは、家電や産業機器の故障診断、パラメタ設定などの分野へ急成長しています。Webinarスライドでは、このNFCを使った電力供給やMCUファームウェア更新方法(OTAテクニカルノート:TN00040)も紹介されています。

IoT MCUには、製品化後にも無線更新できるセキュリティ対策は必須です。OTAはこの実現手段の1つで、具体的にどうすればOTAができるのかがTN00040に簡単ですが記載されています。

前提条件として、LPC8N04のブートROMバージョンが0.14以上であること、OTA実行中は電池かUSBでの電力供給などが必要です。Androidを使ったNFC OTA動作例が下図です。

LPC8N04 FW Update Over NFC (Source:TN00040)
LPC8N04のNFCを使ったOTA更新(出典:TN00040)

更新には、LPC8N04のSBL(Secondary Boot Loader)を使い、通信は暗号化されていますので、OTA中のセキュリティも万全です。OTA用のアプリケーション開発には、通常開発にリビジョン番号(図の1.0.0、1.1.0)付与が必須など様々な制約(オーバーヘッド)があります。

OSを使わないアプリケーション開発の場合、開発者自らがこれらOTAオーバーヘッドの追加が必要になるなど煩雑ですが、決まり文句として納得するか、または、IoT MCU用RTOSとして期待されるAmazon FreeRTOS提供のOTAなどを利用するしかなさそうです。

関連投稿:Amazon、IoTマイコンへFreeRTOS提供

今回はLPC8N04のNFCによるOTAを示しました。IoT無線通信がどの方式になっても、おそらく今回のような方法になると思います。SBL利用や暗号化、更新NG時の対処など留意事項が多く、現場へ行ってIDEで再プログラミングする従来方法よりも洗練されている分、リスクも高くなりそうです。

NXP LPC80xの新しい動き

NXPからNFC機能搭載LPC8N04発表に続き、新たにLPC802とLPC804がLPC800 MCUファミリに追加されました。従来LPC8xxファミリのLPC810やLPC824から仕様の新しい変化が感じられます。

わずか30秒のLPC802評価ボードLPC804評価ボードの綺麗な動画を見るだけでもキーポイントが解ります。

LPC80x評価ボード価格(価格は全てDigiKey調べ)

仕様の変化

LPC8xxファミリのラインアップが下記です。

LPC8xx Family (Source:NXP)
LPC8xxファミリラインアップと新規追加LPC80x (Source:NXP)

15MHzコア速度

LPC8xxファミリは、32ビット ARM Cortex-M0+コアを用います。Cortex-M0+は、8/16ビットMCUの置換えが目的の低消費電力コアです。従来は最大動作周波数30MHzでしたが、LPC80xはこれが15MHzになっています。

最大動作のスペックで、運用時は必要に応じ消費電力を抑えため動作周波数を下げるのが常套手段ですが、LPC80xではこの最大スペックが初めから15MHzになっています。これは、性能と電力消費のバランスを見直し、32ビットコアならばこのスペックでも8/16ビットMCUに十分対抗できると判断したためと思われます。

8/16ビットMCU市場を32ビットMCUで獲得するには、「従来以上に消費電力の低さが必要」なのです。

EEPROM based Flash

従来はFlashと記述されたユーザプログラム領域が、EEPROM Flashに変わっています。
※LPC8xxファミリは、Flashがユーザプログラム領域、SRAMはユーザデータ領域、ROMはデバイスに始めから実装済みのNXP提供プログラム領域(簡単に言うとライブラリ)です。弊社LPC8xxテンプレートに使用例があります。
※LPC8N04の4KB EEPROMは文字通りデータ保存用のEEPROMデバイスをSoCでMCUへ内蔵したものです。LPC8N04はコチラの投稿を参照してください。

LPC802 and LPC804 Block (Source:Mouser Electorinics Japan)
LPC802 and LPC804 Block (Source:Mouser Electorinics Japan)

このEEPROM based Flashと明示の意味するところ、従来との差、目的など、現時点ではよく解りません。しかし、明示する訳があるハズです。判明次第、投稿予定です。

Programmable Logic Unit(PLU)内蔵

LPC804ブロック図では、ピンク色のProgrammable Logic Unit(PLU)、ユーザ変更可能なディスクリートロジック機能も内蔵しています(簡単に言うとPLD:Programmable Logic Deviceです)。

PLU Tool Schematic design (Stource:Part 3 PLU Tool Schematic design Video)
PLU利用のロジック例 (Stource:Part 3 PLU Tool Schematic design Video)

このPLUを使うと、WS2812 LEDやDCモータ制御、パターンジェネレータなどが簡単に実装できるようです。

レジスタプログラミング方式のサンプルソフト提供

ARMコアのソフトウェア開発は、CMSIS:Cortex Microcontroller Software Interface Standardで流用性を高める記述が標準的です。しかし、8/16ビットMCUのソフトウェアは、ハードウェアレジスタを直接アクセスするレジスタプログラミングが主流でした。このレジスタプログラミングを好む開発者も多いと聞いています。

LPC80xのサンプルソフトは、このレジスタプログラミング方式のCode Bundleで提供されます。

関連投稿:CMSIS構造や目的は、コチラの投稿の、“CMSIS”章を参照してください。

8/16ビットMCU市場置換えと開発者ニーズへの最適化LPC80xデバイス

8/16ビットMCUの市場置換えとその開発者ニーズを満たすという目的に、従来LPC8xxファミリよりもさらに最適化した32ビットMCU、これがLPC80xだと思います。評価ボードも低価格で提供中です。

また、日本時間、金曜午前0時~午前1時の1時間に、全4回のWebinarが予定されております。本投稿以降は、6月15日(金)と6月22日(金)の午前0時からです。英語ですが、使用スライドは4回全てダウンロードできますので興味がある方は登録し御覧ください。

2017年アナログICメーカー売上高ランキング

2017年のアナログICメーカー売上高トップ10が、5月2日EE Times Japanで発表されました。

2017年アナログICメーカー売上高ランキング(出典:記事)
2017年アナログICメーカー売上高ランキング(出典:記事)

アナログ市場全体の成長率は10%、そのうちの上位10社のみで59%ものシェアを占めます。唯一マイナス成長となったNXPは、昨年汎用ロジック/ディスクリート事業をNexperiaへ売却したためです。

MCUメーカーのアナログICシェア

2017年アナログIC売上高シェア
2017年アナログIC売上高シェア。ブログ掲載中のMCU各社もランクインしている。

本ブログで扱っているMCUベンダのSTMicroelectronics(シェア5%)、NXP Semiconductors(4%)、ルネサスエレクトロニクス(2%)などもこのトップ10に入っています。一方Cypress Semiconductors のMCU PSoC 4などは、コンパレータやアンプなどのアナログ機能が他社MCUよりも充実していますが、売上高トップ10には入っていません。ADCやDACなどのアナログ単体ICの範疇にPSoC 4が入らないためかもしれません。

これらMCU各社をハイライトして、2017年アナログIC売上高シェアをグラフにしました。Texas InstrumentsもMCUを販売していますが、ブログの対象外ですので外しています。

IoTでは、とりわけMCUのフロントエンドにアナログ機能が必要です。好調なアナログ市場の伸びに伴って、アナログ機能をMCUに搭載したデバイスが発表される可能性があると思います。

NXPのQUALCOMMによる買収、取りやめ?

日経新聞4月20日に、“クアルコム、止まらぬ受難 NXP買収に暗雲”記事が掲載されました。
記事では、トランプ米大統領のBroadcomのQUALCOMM買収禁止命令の報復として、中国当局が承認に難色を示し、7月25日まで買収期限を再延長し、最悪の場合、買収が取りやめになることもあるそうです。

2017年半導体売上高ランキング

2017年の半導体売上高ランキングもEE Times Japanで発表されました。日経記事に登場したイスラエル)NVIDIAが10位、オランダ)NXPは9位、米)QUALCOMMは6位、Broadcomは5位です。

半導体売上高トップ10ランキング(出典:記事)
半導体売上高トップ10ランキング(出典:記事)

仮にNXPの買収が取りやめになった場合、NXPにとってそれが良いのか悪いのかは、判りません。ただ急成長する自動車分野の制御にMCUの老舗、NXPの名前が残るのは悪くないと思います。※ルネサスMCUが、日立、NEC、三菱の統合であり、3社の名前の記憶が薄くなっていくのもさみしいものですから。

決着は、今年の夏頃(2Q 2018)になりそうです。

技術レベルとは異なる政治、経済次元での買収結果が、MCU技術にどのように影響するかは、注意深く見守る必要があります。

NXPのMCUXpresso Support Devices Table(Mar. 2018)へ更新

NXPのMCUXpresso Support Devices Tableが、3月9日更新されました。Change Logページ記載のとおりLPC80X、LPC8N04、LPC540XXが更新され、本ブログ対象のLPC8xxにもSDKやCFGが2Q 2018に提供予定です。LPCOpenライブラリのバグ問題が、新しいSDKで解決されることを期待しています。

NXP MCUXpresso Supported Devices Table (Mar 2018).
NXP MCUXpresso Supported Devices Table (Mar 2018). Product Family filtered with LPC 8xx.

関連投稿

NFC機能搭載マイコンLPC8N04、LPC800シリーズに追加

Eclipse IDEベース統合開発環境のプロジェクトImport、Renameの方法

統合開発環境のデファクトスタンダードがEclipse IDE。本ブログ対象ベンダのNXP)MCUXpresso IDE、ルネサス)e2studio、Cypress)PSoC Creator、STM)SW4STM32など全てこのEclipse IDEをベースとした統合開発環境です。

ベンダやマイコンが変わっても殆ど同じ操作でエディットやデバッグができるので、慣れが早く、本来のソフトウェア開発に集中できます。但し、オープンソース開発なので、毎年機能追加や変更があり、2018年は6月にバージョン4.8、コードネームPhoton(光子の意味)への改版が予定されています。

本投稿は、2017年版Eclipse IDEバージョン4.7、Oxygenベースの各社IDEプロジェクトインポート、リネームの方法を説明します。
弊社マイコンテンプレートを使ってソフトウェア開発をする時、これらの操作を知っているとテンプレート:ひな型活用のプロジェクト開発がより簡単です。

IDEの例としてSW4STM32を用います。IDEは、Workspace:ワークスペースと呼ぶフォルダ単位で機能します。ワークスペース内には複数プロジェクトが存在でき、2重起動ができます。

プロジェクトImport

マイコンテンプレートは、テンプレートの具体的な応用例にシンプルテンプレートプロジェクトやBaseboardテンプレートプロジェクトをArchives形式で提供します。Archives形式は、配布に都合が良くEclipse IDEの標準方法ですので、IDEダイアログに従って操作すれば「複数の方法」でプロジェクトインポートができます。

このArchiveプロジェクトの「最も簡単」なワークスペースへのインポート方法が下記です。

  • Windowsで、Archiveを適当な場所で解凍 → 事前に作成したIDEワークスペースへ解凍フォルダ毎コピー
  • IDEで、File>Import>General>Existing Projects into Workspace実行 → インポートProjects選択
Import Existing Projects into Workspace
Import Existing Projects into Workspace。プロジェクトをインポートする方法は、マルチプラットフォーム対応のEclipse IDEの場合、複数ある。

IDEで直接Archivesプロジェクトを解凍しワークスペースへインポートすることもできますが、フォルダ選択などのダイアログ操作は面倒です。マルチプラットフォーム対応のEclipse IDEたるゆえんですが、WindowsかmacOSの上で使うのであれば、この方法が簡単です。

プロジェクト名Rename

※Rename後、Renameプロジェクトの再ビルドが失敗する場合があります。Rename前に、ワークスペース毎バックアップするなどの事前対策を実施後、Renameを実行してください。

ワークスペースに複数プロジェクトが存在するには、別々のプロジェクト名が必要です。例えば、シンプルテンプレートを使って開発したプロジェクトが既にあるワークスペースへ、もう一度シンプルテンプレートを使って新たなプロジェクトを追加作成する場合を考えます。

開発したプロジェクト名は、SimpleTemplateのままです。これをRenameしないと新たにシンプルテンプレートをインポートできません。この時は、開発したプロジェクト選択後、右ボタンクリックで表示されるメニューからRenameを選択し、別プロジェクト名に変更します。

Rename Project Name
Rename Project Name。元々のEclipse IDE守備範囲外のファイル名は、手動リネームが必要。

注意点は、この操作でプロジェクト名変更をIDEは認識しますが、IDE以外のツールで作成したファイル名などは、そのままとなる点です。図はSTM)SW4STM32の場合です。Debugフィルダ下の.cfg/ioc/pdf/txtの4ファイルがそれらです。これらファイルは、手動でのRenameが必要です。これを怠るとRenameしたプロジェクトの再ビルドやデバッグが失敗します。

これら手動Renameが必要なファイルは、各社のAPI生成ツールなどに関連したファイルで、他社IDEでも同様です。元々のEclipse IDE守備範囲外のこれらファイルは、プロジェクト名Rename時、手動Renameが必要ですので注意してください。

Rename後、再ビルドが成功することを確認してください。再ビルドが失敗する場合には、プロジェクトフォルダ毎コピー&ペーストを実行し、ペースト時にRenameしたい別プロジェクト名を設定する方法でRenameを試してください。

別プロジェクトファイルのコピー、ペースト

別プロジェクトファイルを当該プロジェクトへコピー、ペーストする方法は、同じワークスペース内であれば簡単です。ファイル選択後、コピー:Ctrl+Cとペースト:Ctrl+Vでできます。

ワークスペースが異なる場合は、IDEの2重起動を使うとファイル選択ミスがありません。

IDEは、起動中でももう1つ同時起動が可能です。IDE起動時に、異なるワークスペース選択をすれば、コピー対象プロジェクトのファイルをIDEで目視しながら選択できます。もちろん、Windowsエクスプローラでファイルを直接選択しペーストも可能ですが、普段IDEで見慣れたファイル表示で選択する方がミスは少ないです。同一ファイル名の上書き前の確認も行います。

エクスプローラでファイル表示をすると、普段IDEで見慣れないファイルなども見られます。これらが選択のミスを生みます。IDEは、必要最低限のファイルのみ表示しているのです。

IDE画面のリセット

デバッグやコンソールなど複数Perspectiveを表示するIDE画面は、時に隠したPerspectiveを表示したくなります。PerspectiveをIDE初期状態に戻すのが、Window>Perspective>Reset Perspectiveです。

Reset Window Perspective
Reset Window Perspective。IDEの初期状態ウインド表示に簡単に戻せる。

この方法を知っていると、使わないPerspectiveを気軽に非表示にできるので、画面の有効活用ができます。

まとめ

Eclipse IDEベースの各社開発環境で知っていると便利な使い方をまとめます。

  • プロジェクトインポート:IDEのExisting Projects into Workspaceを使うと簡単
  • プロジェクト名リネーム:自動リネームはEclipse IDE関連のみ。API生成ツール関連ファイルは手動リネーム要。
  • 別プロジェクトファイルのコピー&ペースト:IDE2重起動を使い、ファイル選択ミスを防ぐ
  • IDE画面リセット:利用頻度の低いPerspectiveを非表示にし、画面有効活用
Eclipse Base IDE Project Import and Rename
Eclipse Base IDE Project Import and Rename

マイコンテンプレート活用の最初の段階が、テンプレートプロジェクトのワークスペースへのインポートです。これらインポートしたテンプレートへ変更を加え、開発プロジェクトにします。

この開発プロジェクト名をリネームし、同じワークスペースへ、再びテンプレートプロジェクトをインポートします。ワークスペース内は、リネームした色々な既成開発プロジェクトから成り、様々なプロトタイピング開発へも応用できるでしょう。

ワークスペースが異なるファイル操作には、IDE2重起動でファイル選択のミスを防ぎます。

これらのTipsを知っていれば、既存資産を流用、活用し、本来のソフトウェアに集中しミスなくプロトタイピング開発ができます。