STM32FxテンプレートV2発売

STマイクロエレクトロニクス統合開発環境STM32CubeIDEのHAL APIを利用し開発したSTM32FxテンプレートVersion2を発売します。

上記サイトよりテンプレート説明資料P1~P3が無料ダウンロードできますので、ご検討ください。本稿は、この「ダウンロード以外」の資料項目を簡単に示します。

全ツールビルトインSTM32CubeIDE

STM32CubeIDEは、従来は別ツールとして提供してきたSTM32CubeMXがビルトイン済みです。しかも開発ツール全てが自動的に最新版へ更新します。もちろんHelp>Check for Updatesで手動更新も可能です。

2020年5月15日現在のブログ関連STM32MCUに関係するSTM32CubeIDE状況が下図です。

STM32CubeIDE状況(2020年5月15日現在)
STM32CubeIDE状況(2020年5月15日現在)

STM32FxテンプレートV2は、HAL(Hardware Abstraction Layer)API利用アプリケーション開発用テンプレートですので、MCU性能過不足時、他のSTM32MCUコアへも開発アプリケーションが流用可能で、プロトタイプ開発に最適です。

STM32FxテンプレートV2ダウンロード説明資料以外の概略

以下、単語の頭に付くSTM32は省略して記述します。また、付属説明資料も同様にSTM32を省略記述していますので、ご注意ください。

AN記載CubeMXプロジェクトが読めない時の対策

アプリケーション開発の出発点となるビルトインツール:CubeMXが最新版へ自動更新されるのは、次々に発売される最新STデバイスを直ぐに開発できるメリットがあります。しかし、逆に開発者が参照するアプリケーションノート(AN)記載のCubeMXプロジェクトとの版数差が大きくなるデメリットもあります。

この版数差が大きくなると、AN記載CubeMXプロジェクトが、ビルトインCubeMXで読めない場合があります。特にF0/F1シリーズなど古くから提供されてきたデバイスのANに顕著です。STM32FxテンプレートV2付属説明資料で、この対策を示しています。

CubeIDE新規プロジェクト作成(1)/(2)/(3)の違い

STM32CubeIDEの3新規プロジェクト作成の差
STM32CubeIDEの3新規プロジェクト作成の差

CubeIDEユーザマニュアル:UM2553には、本日時点で新規プロジェクト作成説明は(1)/(3)のみです。未説明の最新版新規プロジェクト作成(1)/(2)/(3)の違いなど、開発をスムースに進める様々なTipsも説明資料に加えています。

CubeMX変更箇所、別資料化

STM32FxテンプレートVersion1では、CubeMX周辺回路の設定をテンプレート説明資料内に記載しておりました。ご購入者様からのご質問も、このCubeMX設定に関するものが多く、このツールの重要性が判ります。

そこでVersion2は、このCubeMX設定をCubeMX変更箇所.pdfとして別資料化し、CubeIDEプロジェクト内に添付しました。CubeMXプロジェクト編集時に、同時参照ができます。

STM32CubeIDEプロジェクト内添付のSTM32CubeMX変更箇所説明資料
STM32CubeIDEプロジェクト内添付のSTM32CubeMX変更箇所説明資料

例えば、ベースボードテンプレートのLCD接続に利用したSTM32F0評価ボード:Nucleo-F072RBのGPIOピン設定方針なども記載しています。CubeMXピン配置は、MCUパッケージで選択しますので、評価ボード利用のCubeMX使用ピン設定時に、下図は便利だと思います。

ベースボードと評価ボード接続時のSTM32CubeMX使用ピン設定方針
ベースボードと評価ボード接続時のSTM32CubeMX使用ピン設定方針

STM32FxテンプレートV2と添付説明資料を使うと、STM32汎用MCU開発をスムースに進められます。

STM32FxテンプレートV2のご購入、お待ちしております。

STM32CubeMX使い方刷新STM32Fx/G0xテンプレートV2発売5/15、5/30

サードパーティ仏)AC6社の統合開発環境SW4STM32で開発したSTM32FxテンプレートとSTM32G0xテンプレートを、新しいSTマイクロエレクトロニクス純正STM32CubeIDE対応のVersion2:V2へ更新し販売開始します(STM32Fxテンプレートは2020/05/15、STM32G0xテンプレートは2020/05/30)。

V2では、V1ご購入者様から頂いたご意見ご感想を反映し、新しいSTM32CubeIDEやビルトインSTM32CubeMX使い方説明に工夫を加え、開発トラブル回避、既存アプリケーション資産活用方法などの新たなTipsも添付解説資料に加えました。

テンプレートと合わせてスムースなSTM32MCUアプリケーション開発にお役に立てると思います。

本稿は、説明を工夫したSTM32CubeIDEビルトインSTM32CubeMX使い方の一部を紹介します。

STM32CubeMX使い方:コツ

※以下、用語の頭に付く「STM32」は省略して記述します。

MCU周辺回路の初期化コードを自動生成するCubeIDEビルトインCubeMXも、以前投稿したスタンドアロンCubeMXの使い方と同じです。

CubeMXはSTM32MCU開発の出発点となるツールですので、十分理解した上で着手したいものです。テンプレートV2では、ビルトインCubeMXが生成するファイルに着目し、説明に以下の「使い方のコツ」と「簡単な順位」を追加しました。

CubeMXは、生成するファイル数が多い上に、使用するMCU周辺回路が増えると、生成コード量も多くなり、初めての方には少し解りにくいツールです。弊社テンプレートV1も、このCubeMXに関する質問を多く頂きました。それでも、コツを知っていれば十分使いこなせます。

そのコツとは、以下2点です。
・チェックが必要な自動生成ファイルは、main.hのみ
・main.cに自動追加される周辺回路ハンドラと、初期化コードが分かれば使える

F1シリーズSTM32F103RBの評価ボード:Nucleo-F103RBに弊社テンプレートを応用した例で説明します。

STM32CubeMX生成のF1BaseboardTemplateファイル構成
STM32CubeMX生成のF1BaseboardTemplateファイル構成

CubeMXが自動生成するファイルが、赤:CubeMX生成欄の9個です。このうち注目すべきは、太字赤☑で表示したmain.hとmain.cです。

main.hは、CubeMXで設定したユーザラベル、評価ボードならばB1[Blue PushButton]やUSART_TX/RX、LD2[GreenLed]などを定義した生成ファイルです(※[ ]内は、自動生成時に削除されますので覚え書きなどに使えます)。

main.hのコメント:Private definesの後にこれらの定義が生成されます。これら定義をチェックしておくと、「CubeMX自動生成コードを読むときに役立ち」ます。

main.cは、CubeMXが生成するメイン処理で、評価ボードのCubeMXデフォルトでコード生成:(Alt+K)した場合には、main.cのコメント:Private variablesの後にUSARTハンドラ:huart2と、コメント:Private function prototypesの後にUSART2の初期化コード:MX_USART2_UART_Init()と、その「初期化コード本体がmain.cソースの後ろの方に自動生成」されます。

その他の7個ファイルは、当面無視しても構いません。CubeMXデフォルトのHAL (Hardware Abstraction Layer)APIを利用し、割込みを使わない限り、ユーザコードには無関係だからです(※7個ファイルを知りたい方は、関連投稿:STM32CubeMX生成ファイルのユーザ処理追記箇所を参照してください)。

CubeMXが周辺回路:USART2初期化コードとそれに使う定義を自動生成済みなので、後は、main.cの無限ループ内の指定区間:USER CODE BEGIN xyz~USER CODE END xyzに、Usart2やLD2を使ったHAL APIユーザコードを追記すれば、アプリケーションが完成します。

追記したユーザコードは、再度CubeMXでコード生成しても、指定区間のまま引き継がれます。

ちなみに、アプリケーションで使用可能なHAL APIは、Ctrl+Spaceでリスト表示されます(Content Assist)。そのリストから使用するHAL APIを選択すれば、効率的なユーザコード追記が可能です。
※Content Assistの賢いところは、「ソースコード記述の周辺回路ハンドラを使ってHAL APIをリスト化」するところです。記述なしハンドラのAPIはリスト化されません。

つまり、CubeMXのPinout & Configurationタブで周辺回路を設定後コード生成しさえすれば、直ぐにユーザコードを追記できるファイルが全て自動的に準備され、これらファイルの指定区間へユーザコードを追記すれば、アプリケーションが完成する、これがCubeMXの使い方です。

このCubeMX使い方理解に最低限必要なファイルが、簡単順位:0のmain.hとmain.cの2個です。CubeMX生成ファイル数は9個ありますが、先ずはこの2個だけを理解していれば十分です。

LD2を点滅させるアプリケーションなどを指定区間へ自作すると、具体的に理解が進みます。

STM32CubeMX使い方:周辺回路のファイル分離

評価ボードのCubeMXプロジェクトファイル(*.ioc)は、デフォルトでB1[Blue PushBotton]とUSART2、LD2[GreenLed]を使っています。これらは、評価ボード実装済み周辺回路です。

これら評価ボード実装済み周辺回路へ、弊社テンプレートを適用したのが、シンプルテンプレートです(表:シンプル追加の欄)。

例えば、B1スイッチ押下げ状態をSW_PUSH、USART送信タイムアウトをUSART2_SEND_TIMEOUTなどソースコードを読みやすくする定義の追加は、CubeMX生成main.hの指定区間へ追記することでもちろん可能です。

しかし、他MCUコアへの移植性や変更のし易さを狙って、あえて別ファイル:UserDefine.hへこれらを記述しています。

同じ狙いで、LD2とB1、USART2のユーザ追記制御部分を、Led.cとSw.c、Usart2.cへファイル分離しています。ファイル分離により、HAL API利用のためMCUコア依存性が無くなり、例えば別コアのF0やG0評価ボードで同じ周辺回路を使う場合は、そのファイルのまま流用可能になります。

これらファイル分離した周辺回路の追記制御部分を、main.cの無限ループと同様に起動するのが、Launcher.cです。

つまり、シンプルテンプレートは、評価ボード実装済み周辺回路に、何も追加せずに弊社テンプレートを適用したシンプルな応用例です。その理解に必要なファイルが、緑:シンプル追加欄の☑で、簡単な順に1~5の番号を付けています。

CubeMXのそのままの使い方で周辺回路を追加すると、生成ファイル数は、赤:9個のままですが生成コード量が増えます。周辺回路の初期設定コード増加は当然ですが、この部分はCubeMX自動生成のためミス発生はありません。

しかし、ユーザコード指定区間へ、追加した周辺回路の制御コードを追記するのは、ユーザ自身です。様々な周辺回路制御が混在し追記量が増えてくると、バグやケアレスミスの元になります。

この対策に、周辺回路毎にファイルを分割し、この分割したファイルへ制御コードを記述するのが、シンプルテンプレートです。1周辺回路の制御コードが1ファイル化されていますので、簡単順位1~5の内容は、どれもとても簡単です。

さらに、ADC制御やLCD制御など、殆どの組込アプリケーションで必要になる周辺回路を追加し、Baseboardと評価ボードを結線、デバッグ済みのアプリケーションがベースボードテンプレートです(橙:ベースボード追加欄の3個)。

ユーザ追加ファイルは、全てMCUコア依存性がありません。CubeMXのHAL APIコード生成を行えば、コアに依存する部分は、CubeMX生成ファイル内に閉じ込められるからです。つまり、ユーザ追加ファイルは、全てのSTM32MCUへ流用できる訳です。

これらシンプルテンプレート、ベースボードテンプレートから新たなSTM32MCUアプリケーション開発を着手すれば、新規にアプリケーションをゼロから開発するよりも初期立上げの手間を省け、さらに機能追加や削除も容易です。

STM32CubeMX使い方:周辺回路プロパティ、既存AN利用法

CubeMXへ追加した周辺回路のプロパティ設定値やその理由、更に、既存アプリケーションノート利用方法など、新しいSTM32CubeIDE開発トラブルを回避し、スムースに開発着手できる様々なTipsをテンプレート添付説明資料へ加えています。

マイコンテンプレートサイトでSTM32Fxテンプレートは2020/05/15、STM32G0xテンプレートは2020/05/30発売開始です。ご購入をお待ちしております。
※STM32Fx/G0xテンプレートV1ご購入後1年以内の方は、後日V2を自動配布致しますのでお待ちください。

STM32CubeMXのLow-Layer API利用法 (2)

STM32G0x専用テンプレートで使うSTM32CubeMXのLL API利用法第2回は、LL APIとHAL APIの違いを説明します。
専用テンプレートはLL、汎用テンプレートはHALを使う理由がお判りになると思います。

LL(Low-Layer)とHAL(Hardware Abstraction Layer)相対比較

第1回で示したLL API関連資料一覧のUM2319の最初のページに、LLとHALの定義が示されています。

・LL:HALよりもハードウェアに近く、高速で軽量なエキスパート向けレイヤー
・HAL:ハードウェア抽象化で、STM32MCU間で最大限の移植性を保証するレイヤー

MCUハードウェアに依存するLLは、高速・軽量ですが移植性が低いので、LL APIを利用するソフトウェア(=アプリケーション)はそのMCU専用になります。一方、HALはMCU移植性が高いため、HAL API利用アプリケーションはSTM32MCU間で汎用的に使えます。

HALの方が現代的で少ないユーザ記述でアプリケーション開発ができ、さらに汎用なので開発労力が無駄にならない利点があります。しかし、HALが隠蔽している制御の分Flash(ROM)やRAM容量が必要で、LLに比べ低速です。モーター制御など高速処理が必要な部分にはLLの方が向いているかもしれません。

以前の投稿STM32CubeMXの使い方で示した、HAL APIとLL API相対比較表を再掲します。

HALとLL比較(出典:STM32 Embedded Software Overvire)
HALとLL比較(※説明のため着色しています。出典:STM32 Embedded Software Overvire)

専用テンプレートと汎用テンプレート

LL APIの利点は、ハードウェア性能を活かし少ない容量で高性能アプリケーション開発ができる点です。これは、小Flashで高性能なSTM32G0xデバイスに最適と言えるでしょう。

現状はSTM32G0xが「単独デバイス」でSTM32F0/F1両方のMCU性能をカバーしているので「専用テンプレートが最適」だと言えます。しかし、「STM32G0xシリーズに更に高性能なSTM32G1xデバイス」が発売されれば、移植性が高いHALでSTM32G0xソフトウェア開発を行う方が良くなる可能性はあります。

但しこの場合には、HAL API利用の販売中汎用STM32FxテンプレートをSTM32G0xデバイスへ適用すれば済みます。汎用性を示すこの適用例は、近く投稿する予定です。

特定ハードウェア性能を活かす専用アプリケーションが、少ないROM/RAM容量でも開発できるLL APIメリットを示すデバイス例としてSTM32G0xを選び、専用テンプレートを開発中です。

LL APIとHAL APIのアプリケーションサイズ実例比較

LL API利用時、容量がHAL APIに比べどの程度小さくなるかを実例で示します。

これも前の投稿STM32CubeMXの使い方で示したように、一般的にはLLの方がHAL比60~80%小さくなると言われます。

実例に評価ボードNucle-G071RBに処理は何もせず、64MHz動作のみをLL APIとHAL APIだけを変えてビルドした結果が下記です(SW4STM32 v2.8.1、STM32CubeMX v5.1.0、STM32G0 v1.1.0)。

  text data bss 使用容量 容量比(%)
LL API 3120 12 1564 4696 59
HAL API 9680 20 1708 11408 100

LL API利用の方が 59%小さく実現できることが判ります。

LL APIとHAL API混合利用時の注意点

AN5110には、LLとHAL両方を混在させた公式サンプルプロジェクトのExamples_MIXがNucleo-G071RBでも9例と少ないながら掲載されています。

LLとHAL混在利用の公式サンプルプロジェクト(出典:AN5110)
LLとHAL混在利用の公式サンプルプロジェクト(出典:AN5110)

LLとHALを混在利用時は、色々な注意点があります。UM2319の5章に詳細がありますが、一部抜粋します。

・同じ周辺回路をHALとLLで混在制御するのは避ける
・LLはHALがハンドルしているレジスタを上書きすることがあるので注意

また、UM2303の2章にLLとHALの示すアーキテクチャが示されています。

STM32CubeG0 Firmware Architecture(出典:UM2303)
STM32CubeG0 Firmware Architecture(※説明のため着色しています。出典:UM2303)

つまり、上層HALが下層LLを利用する場合がある訳です。LLは、HALがどのように周辺回路を制御しているかを知ることなく直接ハードウェアレジスタにアクセスします。混在時はレジスタ競合などの詳細な注意がAPI利用者側で必要です。

Nucleo-G071RB 利用時LLとHAL混在利用は、Examples_MIXの9例を除いては避けた方が良さそうです。
BSP(Board Support Package)も、同じ理由でSTM32G0x専用テンプレートには使いません。

※以上は、同一周辺回路でLLとHALを混在利用する場合の注意点です。
※では、周辺回路が異なれば混在は問題ないのでしょうか? 例えば、I2CはHAL、GPIOはLLの場合などです。この場合でも、HALがLLを利用することを考慮すると、アプリケーションレベルでの安全側評価では混在は避け、LLまたはHALに統一して利用する方が無難だと思います。

STM32CubeMXのLow-Layer API利用法 (2):LL APIとHAL APIの違いまとめ

STM32G0x専用テンプレートは、HAL APIとの混在利用は避け、LL APIのみで開発します。

従って、STM32G0xデバイス専用のアプリケーションとなります。
汎用テンプレートSTM32Fxテンプレートは、HAL APIを使っていますので、STM32MCUで汎用的に使えるアプリケーションです。
※このSTM32Fxテンプレート汎用性を示すため、STM32G0xデバイスへこの汎用テンプレートを適用した例を示す予定です。

LLとHAL混在アプリケーション開発は、レジスタアクセス競合などの詳細注意が、API利用アプリケーション側で必要です。
公式サンプルプロジェクトExamples_MIXで示されたやむを得ない場合を除いては、避けた方が無難です。

STM32CubeMXのLow-Layer API利用法 (1)

STM32G0x専用テンプレートで使うSTM32CubeMXのLL(Low-Layer) API利用法を3回に分けて投稿します。

第1回:LL API初期化処理(本稿)
第2回:LL APIとHAL APIの違い
第3回:STM32CubeMXのLL API利用時注意点と第1回~第3回全体まとめ

第1回は、LL API初期化処理です。組込みソフトウェアは、初期化処理と無限ループ内処理の2つから構成され、LL APIでも汎用テンプレートで使ったHAL(Hardware Abstraction Layer)APIでもこの2構成は同じです。

LLとHALに関するSTマイクロエレクトロニクス(以下STM)資料は数多くあります。ただSTMは、STM32ソフトウェア開発は、基本的に「HAL API利用を推薦」していると思います。MCUハードウェア差を隠蔽でき、開発ソフトウェア移植性にも優れているからです。また、STM32CubeMXで生成する関数もHAL APIがデフォルトです。

STM32G0xシリーズLL API関連ソフトウェア資料一覧

筆者がそう考えるからかもしれませんが、STM32G0xシリーズのLL API関連資料は、投稿時点では未だ少ない状況で、リストアップすると表1の4個程度です。近くより小ピン小容量のSTM32G0xがリリースされますので、もっと多くなると期待しています。
※5番目のSTM32Cube ファームウエア テクニカル・プレゼンテーションにはLL API関連はありませんが、BSPやUSB制御をSTM32G0x専用テンプレートでも使う可能性を考慮して追加しました。

高性能ハードウェアを活かしコードサイズもHALより小さいSTM32G0x専用LL API関連資料4+1個の範囲でその利用法をまとめます。

表1 STM32G0xシリーズLL API関連ソフトウェア資料一覧(2019年3 月末)
資料名 概要
AN5110 STM32CubeMXで生成可能なSTM32G0公式サンプルプロジェクトの一覧表。HAL APIのみ、LL APIのみ、HALとLL混在などに区分けされたアプリケーションノート。
UM2303 STM32CubeMXを使いSTM32G0ソフトウェア開発着手時のユーザマニュアル
UM2319 STM32G0のHAL APIとLL APIユーザマニュアル
STM32Cube G0 Firmware Package STM32G0公式サンプルプロジェクト概要を示すオンライントレーニング資料
STM32Cube ファームウエア テクニカル・プレゼンテーション STM32シリーズSTM32CubeMXのHAL/BSP/ミドルウェア/USBライブラリの日本語解説書

STM32CubeMX LL API利用法の習得アプローチ

表1の概要を読むと、実践的にはAN5110のLL APIのみのサンプルプロジェクトとUM2303、万全を期すにはUM2319のLL API解説章の理解が必要です。

そこでLL API利用法は、実践的アプローチから着手し、不明な点やレファレンスが必要な時にUM2319を参照することにします。

STM32G0のLL API利用例:AN5110のExamples_LL

STM32G0x専用テンプレート動作確認評価ボードは、Nucleo-G071RBです。Nucleo-G071RBは、AN5110のExamples_LLで示されたLL API利用サンプルプロジェクト数が75個と掲載ボード中最も多いので前章アプローチに最適です。

これら多くのLL APIサンプルプロジェクトから、2つのGPIOプロジェクトに着目します。この2プロジェクトは、どちらも評価ボード実装済みLD4を250ms毎に点滅させます。

GPIOサンプルプロジェクト差
2つのGPIOサンプルプロジェクト差(※説明のため着色しています)

MXアイコンが付いているGPIO_InfiniteLedToggling_Initは、STM32CubeMXで生成可能、GPIO_InfiniteLedTogglingは生成不可です。その差は、Descriptionによると初期化処理(Initialization FunctionとUnitary Service Function)です。両者ソースコードの初期化処理を下図に示します。

GPIO_InfiniteLedToggling_InitとGPIO_InfiniteLedTogglingの初期化処理の差
GPIO_InfiniteLedToggling_Init(左)とGPIO_InfiniteLedToggling(右)の初期化処理の差

MX_GPIO_Init()が、STM32CubeMX生成可能プロジェクト、Configure_GPIO()が、生成不可プロジェクトの初期化処理です。

つまり、
・MX_GPIO_Init()=Initialization Function (generated by STM32CubeMX)
・Configure_GPIO()=Unitary Service Function (generated by User or by Peripheral Library)
です。※()内は、筆者が追記。

MX_GPIO_Init()は、STM32CubeMXが生成した初期化処理で、MX_が接頭語として付いていることからLLとHAL混在時でも使える関数です。一方、Configure_GPIO()は、MX_GPIO_Init()と同じ機能ながら少ないソースコードで記述できています。

その結果、Configure_GPIO()の方が、MX_GPIO_Init()よりも高性能で小サイズとなります(初期化処理以外は、どちらも同じ)。

MX_GPIO_Init()は、付属オリジナルSTM32CubeMXプロジェクトに変更を加えた時にでも中身はSTM32CubeMXが自動生成する関数で置換えられるだけで、MX_GPIO_Init()はそのまま残ります。一方、Configure_GPIO()は中身のユーザ修正が必要です。

結局、STM32CubeMXで生成可能なGPIO_InfiniteLedToggling_Iniプロジェクトは、ユーザが何らかの変更を加えても初期化処理をSTM32CubeMX任せにでき、無限ループ内にある変更処理に集中できる訳です。

STM32G0xのLL API利用法 (1):初期化処理まとめ

・初期化処理生成はSTM32CubeMXを使う方法と、高性能小サイズなユーザ自作方法の2つがある
・STM32CubeMX生成の初期化処理関数名は、HAL API混在時でも使用可能なMX_が接頭語
・STM32CubeMXを使うとプロジェクト変更時、無限ループ内処理のみに集中できる

STM32CubeMXは、LL APIまたはHAL APIの利用切替えが周辺回路毎に設定可能です。そこで、たとえLL APIのみ利用するプロジェクトでも、初期化処理関数の接頭語には、後々の周辺回路のHAL利用・変更・追加などに備えてML_を付けるのだと推測します。

LL API利用時、初期化処理をSTM32CubeMX任せにすると、ユーザ自作よりも多少サイズが犠牲になります。但しその差は、着目したプロジェクトGPIO_InfiniteLedToggling_Init:2808B、GPIO_InfiniteLedToggling:2604Bと微々(7.3%減)たるものです(SW4STM32 v2.8.1、STM32CubeMX v5.1.0、STM32G0 v1.1.0)。

公式サンプルプロジェクト応用が簡単にできることを考慮すると、その差を十分補える効果があります。

STM32G0x専用テンプレートのLL  API初期化処理方針

以上のことから、LL APIを利用するSTM32G0x専用テンプレートの初期化処理は、STM32CubeMX任せにします。

勿論、STM32G0x専用テンプレート用STM32CubeMXプロジェクトも添付いたしますので専用テンプレート応用・流用は簡単となります(汎用STM32Fxテンプレートは、既にテンプレート用STM32CubeMXプロジェクト添付済みです)。

朗報:STM32G0公式サンプルプロジェクトがSTM32CubeMXで生成可能

STマイクロエレクトロニクス(以下STM)の新MCU:STM32G0xシリーズだからこそできた快挙です。AN5110 – Rev 3 – February 2019で、STM32G0公式サンプルプロジェクトが、付属STM32CubeMXプロジェクトファイル(拡張子.ioc)で生成できるようになりました(Table 1のMXアイコン部分)。

AN5110のTable 1
AN5110掲載のTable 1(一部抜粋)

従来サンプルプロジェクトとSTM32G0サンプルプロジェクト比較

例えば、従来のSTM32F0公式サンプルプロジェクトは、エキスパート自作のもの(多分、むかしの標準ペリフェラルライブラリ利用)でした。STM32ソフトウェア開発は、今はSTM32CubeMXコード生成出力へユーザコードを追加する方式です。

従って、従来サンプルソースコードを利用するには、エキスパート作成の必要部分を解読後カットし、STM32CubeMXで生成した自分のソースコードへペーストして流用してきました。

AN5110は、この公式サンプルプロジェクトが、付属STM32CubeMXで直接生成できることを示しています。サンプルプロジェクト流用・活用が、これまで以上に簡単・便利になります。従来のソースコードカット&ペーストから、付属STM32CubeMX変更と生成コードへユーザコードを追加すれば済むからです。

STM32ソフトウェア開発の最重要ツール:STM32CubeMX活用に即した方法がAN5110と言えます。

2019年3月末時点では付属STM32CubeMXプロジェクトファイル未完成

重要なのは、ここからです。

3月末時点では、公式サンプルプロジェクト内のSTM32CubeMXプロジェクトファイルが未完成です。例えば、Table 1一番上のNucleo-G071RBのADC_AnalogWatchdogプロジェクト付属STM32CubeMXプロジェクトファイルを開いた様子が下図です。

ADC_AnalogWatchdogの.ico
図1 ADC_AnalogWatchdogサンプルプロジェクト付属STM32CubeMXプロジェクトファイルの.iocを開いた様子

このままコード生成してもADC_AnalogWatchdogサンプルプロジェクトはできません😴。

ADC_AnalogWatchdogプロジェクトだけではなく、全ての公式サンプルプロジェクトで同様です。

つまり、現時点では、残念ながら公式サンプルプロジェクト内の付属STM32CubeMXプロジェクトファイルは未完成です。公式サンプルプロジェクトの素:STM32G0 1.1.0改版を待たねば、AN5110は実現しません。
前投稿で書いたようにSTM32G0 1.1.0(2019/02/26)は、STMに買収されたAtollic TrueSTUDIOへも未対応でした(図1にTrueSTUDIOフォルダが無いことからも判る)。

新しいMCU発売にはありがちですが、開発に一番重要なツール完成には、開発元ベンダーであっても年単位の時間が必要です(AN5110 Revision historyより)。

STM32CubeMXを使って公式サンプルプロジェクトを生成するAN5110の方向性は、正しいと思います。
新MCU:STM32G0シリーズSTM32G0だけでなく、他の既存MCU:STM32F0/F1シリーズSTM32F0/F1などもこの方向の対応を期待します。

まとめ

以上のように、STM32G0x専用テンプレート開発環境は整いつつありますが、少し待ってから、具体的には、STM32CubeMXへインストールするSTM32G0xシリーズMCUパッケージ、STM32G0 V1.1.0改版を待ってから先へ進めた方が良さそうです。

この改版までの待ち時間は、STM32G0x専用テンプレート開発で使うLL(Low-Layer)APIの習得に充てます。

TrueSTUDIOとSTM32CubeMXインストール方法、STM32G0xとSTM32F0xの差異

STM32G0x専用テンプレートのIDE:TrueSTUDIOを使った開発環境構築手順も、汎用STM32Fxテンプレートのそれと同じです。

本稿はSTM32G0x専用テンプレート開発用IDE TrueSTUDIOとスタンドアロン版STM32CubeMXのインストール方法を示し、インストールしたSTM32CubeMXを使って同じ汎用MCUでもSTM32G0xとSTM32F0xのどこが違うかを具体的にまとめます。

STM32G0x専用テンプレートIDE:TrueSTUDIOを使った開発環境構築手順

2017年5月投稿のSW4STM32のIDE構築手順が左側、これがTrueSTUDIOに変わると右側になります。

表1 TrueSTUDIOとSTM32CubeMXインストール手順とSW4STM32構築時の比較
手順 SW4STM32で構築(2017年5月) TrueSTUDIOで構築(本稿)
1 SW4STM32インストールとUpdate TrueSTUDIOインストールとUpdate
2 STM32CubeMXプラグインとUpdate STM32CubeMXスタンドアロン版とUpdate
3 評価ボードMCUコアのライブラリダウンロード STM32G0パッケージのダウンロード
4 ライブラリのファイル構成確認 同左(しかし、当面見合わせ)
5 評価ボードデモソフト説明と構築環境の動作検証 同左(しかし、当面見合わせ)

差分はIDEと、STM32CubeMXスタンドアロン版をインストールする点、評価ボードがNucleo-F072RBからNucleo-G071RBに変わったので、STM32CubeMXへダウンロードするMCUパッケージにSTM32G0を加える点です。

前半で手順1~5の簡単な説明、後半は、インストールしたSTM32CubeMXを使って同じ汎用MCUグループのSTM32G0xとSTM32F0xが、電源ピン数やデフォルト使用周辺回路が異なることを示します。

手順1 TrueSTUDIOインストールとUpdate

Atollic TrueSTUDIO for STM32 9.3.0(2019/2/22リリース)は、atollicサイトからダウンロードボタンのクリックで入手できます。以後、Windows版で説明します。

ダウンロード後、インストーラを実行すると言語選択ダイアログが現れます。日本語を選択するとインストール後のTrueSTUDIOメニューも自動的に日本語化されます。
インストール後、ヘルプ(H)>更新の検査、をクリックしTrueSTUDIO を最新状態にします。

※TrueSTUDIOインストール検討中の方は、手順4を読んだ後に再検討してください。

手順2 STM32CubeMXスタンドアロン版とUpdate

コード生成ツールSTM32CubeMX V5.1.0は、SW4STM32と今回インストールするTrueSTUDIOの両方で使います。そこで、各IDEのプラグインではなく、スタンドアロン版としてインストールします。インストール方法は、UM1718 Rev28の3.2を参照してください。
インストール後、Help>Check for Updates、をクリックしSTM32CubeMXを最新状態にします。

※UM1718は、チュートリアルも豊富でSTM32CubeMXの重要マニュアルです。全356ページと分量は多いのですが、読む章を選択するなどして目を通すことをお勧めします。

スタンドアロン版はSTM32CubeMX更新が簡単で、1つのSTM32CubeMXで両方のIDEに生成ファイルを出力する時に便利です。

手順3 評価ボードMCUコアのライブラリダウンロード

評価ボードNucleo-G071RBのMCUコアは、Cortex-M0+です。STM32Fxと同じMainstream(≒汎用)MCUですが、新世代の汎用MCUです。
関連投稿:STM32G0x専用Edge MCUテンプレート開発

STM32CubeMXのHelp>Manage embedded software packagesでSTM32G0を選択し、最新版Package1.1.0をインストールします。

STM32G0インストール
STM32G0 MCU Packegae 1.1.0のインストール

手順4 ライブラリのファイル構成確認

STM32CubeMXは優れものソフトウェアで、IDEプラグインからスタンドアロン版へ途中変更してもデフォルトRepositoryディレクトリ(C:\Users\ユーザ名\STM32Cube\Repository)を変えなければ、プラグイン版Packagesの各MCUパッケージがスタンドアロン版へそのまま引き継がれます。

ただし今回のSTM32G0は、ライブラリファイル構成がSTM32F0/F1をインストールした時と一部異なります。

Repository/STM32Cube_FW_G0_V1.1.0\Projects\NUCLEO-G071RB\Templatesフォルダ内にTrueSTUDIOフォルダが無いのです(EWARM/MDK-ARM/SW4STM32は以前と同様有るが、UM1718にもTrueSTUDIO説明無し)。

残念ながら、手順3でインストールしたSTM32G0は、TrueSTUDIOへ生成コードを現状は出力できないようです😴。

SW4STM32の必然性
TrueSTUDIOではなくSW4STM32の必然性を示す結果となった

という訳で、手順4と5以降は、STM32G0がTrueSTUDIOへ対応した後に検証を行います。Communityによると次版のSTM32G0で対応予定だそうです。

STM32G0x専用テンプレート開発IDEに、SW4STM32からSTM買収後のAtollic TrueSTUDIOへの変更必要性を示すつもりが、今現在は、SW4STM32の使用を続ける必然性を示す結果となりました😴。

STM32CubeMXを使ったSTM32G0xとSTM32F0xの差異まとめ

TrueSTUDIOへ生成コードを出力しなければSTM32CubeMXに問題はないので、(個人的にはマルチOS対応SW4STM32が好きですし……気を取り直して…)、STM32CubeMXを使いSTM32G0xとSTM32F0xの違いをまとめます。

STM32G0xもSTM32F0xも共にMainstream、つまり、汎用MCUに属します。しかし、STM32CubeMXを使うと、評価ボード実装の同じ64ピンパッケージでも、電源ピン数やデフォルト利用の周辺回路が異なることが良く判ります。

Nucleo-G071RBとNucleo-F072RB差異
Nucleo-G071RB(左)とNucleo-F072RB(右)の利用ピン差異

Tips:STM32G0 1.1.0では、評価ボードNucleo-G071RB使用中のLD4(PA5)とB1(PC13)がPinout & Configurationに表示されません。その理由は不明ですが、手動で追加設定する必要があり上左図は設定済みのものを示しています。ちなみに、上右図Nucleo-F072RBは、LD2とB1がデフォルトで表示されます。

電源ピン(VDD/VSS)数

STM32G0xは、黄色で示された電源ピン(VDD/VSS)が1組、一方STM32F0xは4組あります。STM32G0xのCortex-M0+コアと70nmプロセスの結果、電力供給1組でも十分動作します。

不要になった電源ピンは、GPIOに変更し同じ64ピンパッケージでもSTM32F0xよりも多くの外部制御が可能です。

パッケージのピン配置

STM32G0xシリーズのパッケージピン配置が下図です。将来リリース予定の4パッケージピン配置は一貫しています。これにより、基板アートワークや周辺部品の配置も一貫した設計計画が立てられます。

電源ピンはどのパッケージでも1組で、左辺中央です。

STM32G0xシリーズパッケージピン配置(出典:STM32G0 and CubeMX Webinar)
STM32G0xシリーズのパッケージピン配置(出典:STM32G0 and CubeMX Webinar)

デフォルト利用周辺回路

STM32G0xのConnectivity(通信処理)は、デフォルトでLPUART1(Low Power UART、Stopモードからの再起動可)ですが、STM32F0xはUSARTです。STM32G0xもUSARTを実装していますが、低電力動作に適したLPUARTを推薦しているためと思います。

LPUARTとUSARTの差異(出典:STM32G0オンライントレーニング)
LPUARTとUSARTの差異(出典:STM32G0オンライントレーニング)

その他の差異

これら以外にも、STM32G0xは、USB Type-C™ Power Delivery controllerや2.5MspsのADC、メモリープロテクションなどIoT Edge MCU向きの周辺回路を実装済みです。

また、Nucleo-G071RB評価ボードのUSBはMicro-Bコネクタ、Nucleo-F072RBはMini-Bコネクタです。

USB Micro-BとMini-Bコネクタ(出典:ウィキペディア)
USB Micro-BとMini-Bコネクタ(出典:ウィキペディア)

まとめ

STM32G0x専用テンプレート開発に使うTrueSTUDIOとSTM32CubeMXインストール方法を示し、そのSTM32CubeMXを使ってSTM32G0xとSTM32F0xの差異を示しました。

STM32CubeMXは2重起動可能です。STM32G0xとSTM32F0xそれぞれのSTM32CubeMXプロジェクトファイルを同時に開いて比べると、各デバイスのデータシートで比べるより差異が早く良く判ります。

STM32G0x専用テンプレート開発IDEには、当面、筆者が好きなSW4STM32が適していることも判りました。

STM32MCUのアンチ・タンパ機能

STマイクロエレクトロニクス(以下STM)のSTM32MCUマンスリー・アップデート最新10月号から、アンチ・タンパ機能を紹介します。

関連投稿:「日本語マイコン関連情報」のSTM32マイコン マンスリー・アップデート

タンパとは

タンパ:tamperとは、(許可なく)いじくることです。例えば、MCUパッケージをこじ開けるなどの行為(=タンパイベント)を検出した場合、内部バックアップ・レジスタを全消去し、重要データが盗まれるのを防ぐのがアンチ・タンパ機能です。MCUハードウエアによるセキュリティの一種です。

※マンスリー・アップデート10月号、P13の“STM32のココが便利”、今月のテーマ:~その2~参照

セキュリティの重要性がユーザで認識されつつあるので、開発者としては、「タンパ保護」、「アンチ・タンパ」、「RTCレジスタ保護」、「GPIO設定ロック」などのキーワードは覚えておくと良いでしょう。基本機能実装後にセキュリティを追加する時や、他社差別化に役立つからです。

STM32MCUのセキュリティ機能

マンスリー・アップデート9月号、P12今月のテーマにもセキュリティ機能がありますが、これはSTM32MCU独自というより、ARM Cortex-MコアMCU全てに実装の機能です。STM32MCUと他社の差別化には使いにくいと思います。

差別化に適すのは、ARM Cortex-Mコア以外の周辺回路です。そこで、RTCとGPIOについて、本ブログ掲載中の評価ボード実装MCU、STM32F072RB(Cortex-M0)とSTM32F103RB(Cortex-M3)のタンパ機能設定方法をデータシートで調べました。

出典:STM32F071x8 STM32F071xBデータシート 2017/1版
出典:STM32F103x8 STM32F103xBデータシート 2015/8版

関連投稿:STM32マイコンの評価ボード選定

RTC

MCUで処理実時刻を記録する場合などには、RTCが便利です。

RTCのアンチ・タンパ機能は、アラーム・タイムスタンプとRTCレジスタ保護の2つがあります。RTCレジスタ保護は、RTCレジスタへのアクセス手順のことです。RTC利用時、通常レジスタと異なる面倒な手順でRTCレジスタを設定しているのをサンプルソフトで見た記憶があります。

アラーム・タイムスタンプは、タンパイベント発生時のカレンダーを記録する機能です。但し、データシート内の説明は少なく、実際にソフトウェアでどのように設定すれば機能するかは不明です。

試しにSTM32CubeMXでSTM32F072RBのRTCを設定すると、Tamper 2のみ設定可能です。ヘルプ資料UM1718の説明も少なく、やはり詳細は不明です。
但し、将来アンチ・タンパ機能を実装するなら、Tamper 2に連動してアクティブ化するPA0ピンは、リザーブした方が良さそうです。

STM32F072RBのTamper 2とPA0
STM32F072RBのTamper 2に連動してアクティブ化するPA0ピン

同じ理由で、STM32F103RBならPA13ピンをアンチ・タンパ機能用にリザーブできると良いでしょう。

GPIO設定ロック

GPIO機能を固定するGPIO設定ロックについては、データシート内をTamperで検索してもヒットせず記述もありません。

まとめ

STM32MCUのアンチ・タンパ機能を、STM32マイコン マンスリー・アップデートから抜粋、解説しました。

ユーザがMCUセキュリティを重視しつつあるので、STM32MCUハードウエアが提供するセキュリティの一種であるアンチ・タンパは、他社差別化機能として役立つと思います。

そこで、STM32F072RBとSTM32F103RBのRTC/GPIOソフトウェアでのアンチ・タンパ設定方法をデータシートで調査しましたが、具体的情報は得られませんでした。

対策として、RTC/GPIOサンプルソフトから設定を得る方法があります。但し、ソースコードには、アンチ・タンパ機能の目的や、なぜ面倒な設定手順が必要かについての記述は無いので、マンスリー・アップデートのアンチ・タンパ、RTCレジスタ保護やGPIO設定ロックの理解が、サンプルソフト解読に必要だと思います。

STM32Fxテンプレート発売

2016年MCUシェア第5位のSTマイクロエレクトロニクス(STMicroelectronics、本社スイス)のSTM32F0:Cortex-M0とSTM32F1:Cortex-M3向けのテンプレートを開発しましたので、販売開始します。従来テンプレートと同額の1000円(税込)です。

STM32Fxテンプレートの特徴

STM32Fxテンプレート構成
STM32Fxテンプレート構成
  • Cortex-M0とCortex-M3両コア動作のテンプレート
  • 移植性、可読性が高いHALドライバを使ったので、他コアへの流用、応用性も高い
  • カウントダウンループを使ったCortex-M系コードテクニックで開発

従来テンプレートは、ARM Cortex-M0/M0+とルネサスS1/S2/S3コアが対象でした。

つまり、8/16ビットMCUの置換えを狙ったCortex-M0/M0+と、RL78汎用MCUへテンプレートを供給していました。しかし、IoTの通信処理や要求セキュリティを考慮すると、より高性能なMCUも視野に入れた方が良いと感じていました。また、Cortex-M3デバイスの低価格化も期待できます。

初めてCortex-M3のSTM32F103RB:NUCLEO-F103RBへもベアメタルのテンプレートを開発したのは、以上のような背景、理由です。

ST提供のHAL:Hardware Abstraction Layerドライバは、移植性、可読性が高く、Cortex-M0/M3両対応のテンプレートも簡単に開発できました。Cortex-M3よりもさらに高性能なMCUが、ベアメタル開発を行うかは疑問ですが、HALを使ったので適用できると思います。

動作確認評価ボードは、STM32F072RB:Cortex-M0/48MHzとSTM32F103RB:Cortex-M3/64MHzですので、これはあくまで私見、見込みですが…、HALドライバならば問題なく適用できるハズです。

HALドライバ作成にSTM32CubeMXを使うと、異なるコア動作速度(M0:48MHz、M3:64MHz)でも、同じ周辺回路ならば、同じHAL APIが使えます。

今日現在、このSTM32CubeMX周辺回路のGUI設定に関する詳しい資料が見当たりません。そこで、テンプレート添付資料では、テンプレートのSTM32CubeMX設定方法や、SW4STM32開発ヒントやTipsなど開発に役立つ情報を満載しています。初めての方でもSTM32MCUの開発障壁を低く出来ます。

また、本テンプレートをプロトタイピング開発に使って、MCU性能の過不足を評価するのも便利です。ボードレベルでピンコンパチなSTM32 NUCLEO評価ボードですので、評価ボード単位の載せ替え/交換も可能です。

さらに、デクリメントループを使ってループ終了を行っているなど、Cortex-M系のコード作成にも注意を払いました。

*  *  *

マイコンテンプレートサイトへ、STM32Fxテンプレートを掲載します(9月2日追記:サイト更新完了しました)。
添付資料のP1~P3、もくじの内容を掲載しております。P1~P3は、資料ダウンロードが可能です。STM32Fxテンプレートをご購入の上、是非、ご活用ください。

STM32CubeMXの使い方Tips

STM32CubeMXは、STM32Fxマイコンのコード生成ツールとして良く出来ています。但し、現状1つ残念なことがあります。HAL:Hardware Abstraction Layerに加え、BSP:Board Support Packagesをドライバとして出力しないことです。そこで、現状のHALドライバのみ出力に対策を加えます。

STM32CubeMX
STM32CubeMX

STM32Fxファームウエア構成

STM32Fx Software Structure
STM32Fx Software Structure

STM32Fxファームウエア構成が上図緑線の個所です。STM32Fxマイコンサンプルソフトは、使用するファームウエアライブラリに応じて、Low Layer examples、Mixed HAL & Low Layer examples、HAL examplesの3種類あります。

各ファームウエアの差や、サンプルソフトの場所は、以前記事で解説しました。ここでは、STM32F0からSTM32F1へのポータビリティが最も高いHALライブラリ(=ドライバ)を使うサンプルソフト:HAL examplesに的を絞って解説します。

HAL Examples

このサンプルソフトの優れた点は、評価ボード実装済みの青SW(USER Blue)と緑LED(LD2)のみで全てのサンプルソフト動作を確認できることです。SW入力と、LED点滅間隔を変えることで、正常/NG/入力待ちなど様々なサンプルソフトの動作状態を表現します。

この青SWと緑LEDを制御するには、GPIO定義とHALライブラリを組合せた一種のサブルーティンがあると便利です。このサブルーティンが、BPS:Board Support Packagesです。例えば、下記などです。

BSP_LED_On()、BSP_LED_Off()、BPS_LED_Toggle()、BPS_PB_GetState()

BSP_が先頭に付いているので、一目で評価ボード実装済みの青SWや緑LEDを制御していることが判りますし、HALライブラリを使って表現するよりも、可読性もより高まります。BPSの中身は、HAL自身ですので、Drivers層のBSP、HALともに同じ黄緑色で表示しています。

HAL exampleは、これらBSPとHAL両方を使って記述されています。

STM32CubeMX

STM32CubeMXは、最初に使用する評価ボードを選択後、コード生成が行えます。

STM32CubeMX Board Selector
STM32CubeMX Board Selector

但し、生成コードに含まれるのは、HALドライバのみです。BSPは、HALサブルーティンですので、自作もできますが、評価ボードを選択するのですから、せめてHALのみか、それともHALとBSPの両方をドライバとして出力するかの選択ができるように改善してほしい、というのが私の希望(最初に言った現状の残念なこと)です。

もしHALとBPSドライバ両方がSTM32CubeMXで出力されると、多くのHAL Examplesを殆どそのまま流用できるメリットが生じます。HAL Examplesは、残念ながらエキスパートの人手で開発したソースですが、これを自動コード生成の出力へ、より簡単に流用できる訳です。

STM32CubeMX出力ファイルへのBSP追加方法

BSPドライバを自動出力しない現状のSTM32CubeMXで、上記希望をかなえる方法は、簡単です。

STM32CubeMX出力ファイルへのBSP追加
STM32CubeMX出力ファイルへのBSP追加

手動でBSPのstm32f0xx_nucleo.cとstm32f0xx_nucleo.hをSTM32CubeMX生成プロジェクトのSrcとIncフォルダへコピーし、main.cのL43へ、#include “stm32f0xx_nucleo.h”を追記すればOKです。
※stm32f0xx_nucleo.c/hは、\STM32Cube\Repository\STM32Cube_FW_F0_V1.8.0\Driversにあります。

たとえSTM32CubeMXで再コード生成しても、stm32f0xx_nucleo.c/hはそのままですし、追記した部分もそのまま転記されます。この方法で、HAL Examplesの流用性が向上します。

HAL Examplesを読むと、周辺回路の細かい設定内容が解ります。この設定をそのままSTM32CubeMXに用いれば、周辺回路の動作理解が進み、さらに自動コード生成ソースへ、Examplesソースをそのまま流用できるので、評価ボードでの動作確認も容易です。

まとめ

現状のSTM32CubeMXは、BSPドライバを出力しません。対策に、手動でBSPドライバを追加する方法を示しました。これによりエキスパートが開発したサンプルソフトを、より簡単に自動生成ソフトへ組込むことができます。

開発中の弊社STM32Fxテンプレートも、サンプルソフトを流用/活用が使いこなしのポイントです。そこで、このBPSを組込む方法をSTM32Fxテンプレートへも適用し、サンプルソフト流用性向上を図っています。

STM32F0ソフトをF1変更時のHAL利用効果

STM32ソフト開発に、HAL:Hardware Abstraction Layerライブラリを使えば、文字通りARMコアを抽象化したソフトが作れます。コード生成ツールSTM32CubeMXが、HALをデフォルトで使うのもこの理由からです(HALとLLライブラリについては、6月5日記事も参考にしてください)。

そこで、STM32CubeMXのHAL出力とF0:Cortex-M0評価ボードSTM32F072RB(48MHz)で動作するSTM32Fxシンプルテンプレートを、F1:Cortex-M3評価ボードSTM32F103RB(64MHz)へ載せ替えた時のソースコード変更箇所を示し、HALを使ってARMコアを抽象化した結果、ソースコードのどこが共通化でき、どこが異なるのかを具体的に示し、HALの利用効果を評価します。

※STM32Fxシンプルテンプレート仕様は、前回記事参照。
※STM32F072RBとSTM32F103RBは、ARMコアのみが異なる評価ボードで、実装済みの緑LEDとユーザ青SWも同一GPIOピンを使用しているので、STM32F0:Cortex-M0からSTM32F1:Cortex-M3へのソフト載せ替え評価に最適。

STM32FxシンプルテンプレートのSTM32F0からSTM32F1へのソースコード変更箇所

(1)HALライブラリのインクルード

結果から言うと、ARMコア抽象化機能を持つHALライブラリを使えばユーザが追記したソースコードは、大部分を共通にできます。
しかしHALライブラリ自身は、ARMコアにより異なります。このため、HALライブラリをインクルードするソースコードの箇所は、下記のようにstm32f0xx_hal.hからstm32f1xx_hal.hへ変更が必要です。

HALライブラリインクルード:STM32F0(左)とSTM32F1(右)
HALライブラリインクルード:STM32F0(左)とSTM32F1(右)

(2)割込み:NVICプログラマーズモデル

Cortex-M0/M0+は、割込み最大数32、優先度レベル4、一方Cortex-M3は、割込み最大数240、優先度レベル8~256とコアで異なるモデルですので、割込み関連ヘッダファイルの変更が必要です。

NVICプログラマーズモデル:STM32F0(右)とSTM32F1(左)
NVICプログラマーズモデル:STM32F0(右)とSTM32F1(左)

※STM32Fxシンプルテンプレートは、SysTick割込み以外はポーリングを使っています。GPIO割込みは、未使用です。この箇所は、デモソフトのGPIO割込み利用部分が参考になるため、テンプレートにそのまま流用した結果、変更が必要になった箇所です。

テンプレートへGPIO割込み処理を追加し、更にARMコアを変更する場合には、このNVICプログラマーズモデルの違いで変更が必要になります。

*  *  *

HALライブラリを使った結果、上記2か所以外のユーザソース、ヘッダファイルは、STM32F0とF1のMCUで共通化できました。共通ソースコードの一部を示します。動作クロックが48MHzと64MHzと異なりますが、同じHAL API:HAL_UART_Transmit()によりUART2送受信(19200bps 8-Non-1)ができています。

HAL_UART_Transmit()によるUART2送信
HAL_UART_Transmit()によるUART2送信

Cortex-M3のSTM32F103RB(64MHz)動作STM32Fxシンプルテンプレートファイル構成が下記です。

Simplate Template for STM32F1 Project Explorer
Simplate Template for STM32F1 Project Explorer

弊社が追加したソースファイルやヘッダファイルは、Pascal形式でファイル名を付けますので、図示のように赤で色分けしなくても一目でSTM32CubeMX生成ファイルとの区別ができます。

STM32CubeMX生成ファイルのHALライブラリインクルード部分は、STM32CubeMXが当該HALライブラリ(stm32f1xx_hal.h)を、また割込みは、当該NVICプログラマーズデモルに応じたソースを「上書きで」生成しますので、コア載せ替えによる修正箇所は、弊社追加ソースファイルとヘッダファイルに限定できます。

この限定ファイル(1)と(2)の個所のみを変更すれば、STM32F0ソースコードをF1へそのまま使えます。HALライブラリ利用によるソース/ヘッダの共通化効果は、非常に高いと言えるでしょう。

弊社ソースファイル、ヘッダファイルの変更箇所は、#ifdefプリプロセッサを使って、コアによる差分箇所を1つへまとめることも可能です。リリース版では、これを採用したいと考えています。HALライブラリ利用により、ARMコアに依存しないSTM32Fxテンプレート構想(x=0 or 1)が実現します。