RL78マイコン,MCU:マイコン,LPCマイコン,Kinetisマイコン,STM32マイコン,PSoC/PRoCマイコン,MSP432マイコン,Cortex-M0+コア,Cortex-M0コア,Cortex-M3コア,Cortex-M23コア,Cortex-M4コアIoTデバイス,微細化,汎用MCU,製造プロセス,半導体,Flash

先端半導体の供給不足
先端半導体の供給不足

COVIC-19の影響で自動車、ゲーム機、PC、5Gスマホに搭載される先端半導体の供給不足が発生中です。自動車は生産調整、ゲーム機も品薄のため販売中止のニュースが流れています。一方で、任天堂Sonyは、ゲーム機好調で、業績上方修正も発表されました。

本稿は、これら先端半導体とMCUに使っている半導体の違いを、筆者を含めたマイコン開発者向けにまとめました。

先端半導体供給不足

AppleやQualcommなどの半導体ベンダの多くは、設計・開発は行うものの、生産は台湾TSMCやUMCなど世界に数社しかない先端半導体受託生産会社(ファウンドリー)へ製造依頼するファブレス企業です。このファウンドリーの先端半導体生産量がボトルネックとなり供給不足が発生しています。

需要に追いつくよう生産設備も増設中ですが、スグには対応できません。その結果、価格競争が起こり、ゲーム機など高パフォーマンスで高価格でもOKなデバイスが優先、一方、コスト要求の強い自動車向けデバイスなどは後回しになった結果が、最初のニュースの背景です。

MCU半導体と先端半導体の差

半導体の製造や生産技術は、ムーアの法則に則り、年々微細化が進みます。これは、MCU半導体でも先端半導体でも同じです。違いは、「製造プロセスの世代」と「大容量フラッシュ搭載の有無」です。

最先端半導体の微細化技術は、28nm→14nm→7nmと製造プロセス世代が進み現在5nmなのに対し、MCU半導体は、現在28nmの1つ手前、40nmです。

※微細化の指標は、いかに細いロジック配線を実現できるかで表されnm:nanometerは、1 nm = 0.001 µm = 0.000001 mm:10億分の1メートル。

MCU半導体の微細化が遅れる理由は、MCUデバイスには簡単に微細化できない大容量Flashメモリの内蔵が必須だからです。

つまり、我々が開発するアプリケーションは全てMCUに内蔵される訳で、ここがPCやゲーム機の外付けメモリ+キャッシュ内蔵の制御系と根本的に異なる点です。

最新MCU微細化技術

上記の難しい大容量Flash微細化にも、技術革新が起きつつあります。詳細を知りたい方は、世界最小のメモリセルで最先端マイコンの低価格化を牽引する相変化メモリの記事を参照してください。

IoT MCU開発には、エッジAIや無線通信、高度セキュリティ、OTA:Over The Air更新など従来MCUに無い多くのIoT機能追加が必要です。これら機能実装には、更なる大容量Flash搭載が必須です。

IoT MCUの将来
IoT MCUの将来

大容量Flashの低価格実装と製造プロセスの世代が進めば、MCUデバイスの開発アプリケーション適用幅は大きくなると筆者は思います。つまり、より汎用化すると思います。

現在のMCUは、アプリケーション毎に内蔵周辺回路やFlash/RAM容量が異なるなど多品種でデバイス選択時、開発者を悩まします。しかし、近い将来、IoT MCUデバイス選択に開発者が悩むことも無くなるかもしれません。

関連投稿:無線STM32WBと汎用STM32G4比較の6章

MCU大手ベンダは自社製造中

NXP/ST/Renesas などの大手MCUベンダもファウンドリーを利用しますが、どこも自社工場でも製造を行っています。各社の会社紹介パンフレットには、必ず自社製造拠点の図がありますし、販売後10年間のデバイス供給保証も謳っています。

ARM社提供のCortex-Mコア設計図は同じでも、それを活かす実装設計・開発・製造がベンダ毎に異なるので他社差別化ができる訳です。

また、これらMCUベンダは、自社デバイスと並行して自動車向けデバイスの設計・開発・製造も行っています。ADASやMCU微細化技術の進化、ファウンドリーの供給不足状況などが、MCUベンダ各社に今後どのように影響するかは注目して行きたいと思います。

関連投稿:5G、Wi-Fi6、NXP、STマイクロエレクトロニクスの3章:NXP対応

まとめ

  • MCU半導体と先端半導体には、製造プロセス世代と大容量Flash搭載有無に差がある
  • 現状のMCU半導体は、大容量Flash搭載の40nmプロセス、先端半導体は、5nmプロセス
  • IoT MCUの更なる大容量Flash実装に向け、MCU微細化技術革新が起こりつつある
  • 大容量Flash低価格実装と製造プロセス進化によりIoT MCUはより汎用化する
  • COVID-19による先端半導体供給不足がMCU半導体ベンダへ影響するかは、要注目

RL78マイコン,MCU:マイコン,STM32マイコンIoTマイコン,STM32CubeMX,プロセス,微細化,コード生成ツール,AI,RZ,STM32Cube.AI

スマホの顔/指紋認証や、写真の高度処理などにAI機能(機械学習)が搭載され始めています。本稿は、AI機能搭載プロセッサ最新記事からルネサスマイコン:MCU関連を抜き出し、さらに、STマイクロエレクトロニクスのコード生成ツールSTM32CubeMXに追加されたAI機能拡張パックSTM32Cube.AIを紹介します。

ルネサスMCU AI機能の現状

2019年1月10日のEE Times Japanに、“2019年も大注目! 出そろい始めた「エッジAIプロセッサ」の現在地とこれから”が掲載されました。

MCUだけでなく、スマホ、車載などAI機能を処理するプロセッサ全般の現状分析と今後について、分かりやすく解説されています。AI機能の搭載は、一過性ブームではなくADAS(先進運転支援システム)やセキュリティなど更に多くの処理へ適用されると予想しています。

この記事で、昨年本ブログ投稿のRZファミリ搭載「DRP(Dynamically Reconfigurable Processor)」の現状(図1)と、7nm製造プロセス換算での性能比較(図5)が示されています。

関連投稿:NXPとルネサスのMCU開発動向、ルネサスのMCU開発動向の章

図1:AIプロセッシングを実行する演算器の関係(出典:テカナリエレポート)
図1:AIプロセッシングを実行する演算器の関係(出典:テカナリエレポート)

図5:7nmプロセスで製造した場合の性能(出典:カタリナレポート)
図5:7nmプロセスで製造した場合の性能。小さい程高性能。(出典:カタリナレポート)

日本オリジナルのルネサスAI IPが、公表通り推論処理能力1000倍の開発ロードマップで進めば、低コスト/低電力なMCU AI機能が実現できそうです。RZだけでなく、RL78やRX MCUへの搭載も期待します。

STM32CubeMXにAI機能拡張パックを提供

STMのコード生成ツールSTM32CubeMX version 5.0.1以降から、AI機能実装の拡張パックSTM32Cube.AIが2019年1月3日に発表されました。

Cortex-M4クラスの低電力MCUが前提ですが、ニューラルネットワークを使ったHuman Activity Recognition:人間活動認識(HAR)や、Acoustic Scene Classification:音響シーン分類(ASC)のアプリケーションに適しているそうです。

Human Activity Recognition (HAR)(出典:Neural Networks on the STM32)
Human Activity Recognition (HAR)(出典:Neural Networks on the STM32)

Audio Scean Classification (ASC)(出典:Neural Networks on the STM32)
Audio Scean Classification (ASC)(出典:Neural Networks on the STM32)

MCU AI機能の搭載

現状は、ルネサスはRZ、STMはCortex-M4と高性能MCUがAI機能の対象デバイスです。

例えば、スマホで指紋認証時、本人なのに認証されないとイラッ😡ときます。安全側評価で仕方がないとは思いますが、リアルタイムで結構な処理を行っているのでしょう。例外処理で、カメラ起動などは認証なしで動作させるなどの工夫が見られます。

AI機能は、このように相手が人間なだけにリアルタイムで高負荷な処理になります。MCUへのAI機能搭載は、このかなり高いハードルをこなせる処理能力が必要です。記事にもあるように、プロセス微細化による低コスト/低電力化や、開発環境を含めたベンダー側の対応が普及の鍵になるでしょう。

個人的には、AI機能の「アプリケーションレベルでのライブラリ化」を望みます。ベンダー側でMCU処理能力に応じてライブラリ内部を工夫し、開発者である我々は、MCU選択でAI機能レベル(誤認識率、深層解析能力など)も選択できれば嬉しいですね😁。

RL78マイコン,MCU:マイコンIoTマイコン,Synergy,OTA,RHファミリ,RL78ファミリ,RXファミリ,RZファミリ,28nm,プロセス,微細化

ルネサスエレクトロニクスは2018年3月28日、車載マイコンRHファミリに28nmプロセス採用マイコンのサンプル出荷を開始しました。従来の40nmに比べ、高性能、低消費電力で大容量フラッシュメモリ内蔵の世界初、世界最高性能のルネサスオリジナルコアマイコンです。

ルネサスマイコンの命名則

車載マイコンRHファミリは本ブログ対象外です。しかし、車載マイコンが、全てのマイコンを引っ張って発展させているので、注目しています。ここでは、ルネサスマイコンの名前の付け方を簡単に説明します。

先頭に「R」が付くのが新生ルネサス誕生後に発売のマイコンです。汎用マイコンが、図のRL78、RX、RZの3ファミリ、車載アプリケーション特化マイコンが今回発表のRHファミリです。

一部例外はあるものの、殆どがルネサスオリジナルのNon ARMコアマイコンです。

ルネサス汎用マイコン
ルネサス汎用マイコンファミリ。用途、性能に応じてRL78、RX、RZと3ファミリある。(出典:汎用マイクロコンピュータラインアップカタログ)

汎用マイコンだけでも、用途や性能(ルネサスはソリューションと呼ぶ)に応じてRL78、RX、RZと3ファミリあり、さらにそのファミリの中で、RL78/G1x、RL78/F12など細かくシリーズに分かれた名前構造なので、解り難いです。

ちなみに本ブログ対象はRL78ファミリですが、RXも対象に入れるか検討中です。個人レベルでも開発環境を整え易いか否かが基準です。RXファミリの場合、実装メモリが大きいのに無償Cコンパイラの容量制限≦128KBがネックになっています。

他のH8や78K0Rなどは、日立やNEC、三菱電機などルネサスに統合前の各社マイコンの名称です。簡単に旧マイコン名が消える海外ベンダと異なり、旧会社のマイコン名をいつまでもカタログに記載するのも善し悪しです。

ルネサスSynergyは、これらNon ARMコアとは別に他社に遅ればせながら開発したARMコアマイコンファミリです。遅れた分、他社同様の売り方はせず、ルネサスSynergy Software Packageというルネサスが動作保証する専用ライブラリを提供し、開発者がアプリケーションのみを開発する方法で販売中です。個人レベルでは、特に価格で手を出しにくいと思っています。

28nmプロセス、大容量メモリの用途

ルネサスRHファミリで向上された性能を、具体的にどこで使うのかが解る図が、記事にありました。

大容量メモリの利用割合
大容量メモリの利用割合。アプリ増加比率よりも、データ、Safety、Security、Driversの増加比率が大きい。OTA利用により最低2面構成のメモリが必要の可能性もある。(出典:記事)

左側の色分けメモリマップから、アプリケーションのメモリ比率の増加よりも、Data、Safety、Security、Driversの増加比率が大きいことが判ります。つまり、開発するアプリケーションよりも、アプリが使うデータや安全性確保、ドライバーの増加がメモリ増大要因です。このドライバーの中にアプリが使うライブラリなども含まれると思います。

また、図では判りませんがOTA:Over-The-Airには、同じメモリが最低2面必要になるかもしれません(関連投稿は、コチラのIoT端末の脆弱性対応はOTA更新が必須を参照)。OTAに万一失敗しても、最悪更新前に戻るには、更新前と更新後のメモリが必要なのがその理由です。

いずれにしても大容量メモリは必須です。また、プロセス細分化でより低消費電力で高速動作を実現しています。
大容量メモリ実装、プロセス細分化は、車載マイコンに限った話ではありません。汎用マイコンでも同じです。

製造は、世界最大の半導体製造ファウンダリである台湾)TSMCが行うので、パソコンのCPU同様、マイコン:MCUも28nmプロセスへ一気に変わる可能性もあります。

半導体プロセス微細化の懸念

一方で、半導体プロセスの微細化は利益につながるのか2018年3月28日、EE Times Japanという記事もあります。28nmよりも先、10nm以下のモバイルプロセサでの話ですが、マイコンでもいずれ同じ時代が来るでしょう。

汎用マイコン技術は、先行する車載マイコンやモバイル半導体技術をベースに発展します。

先行の動向を知ることは、無駄ではありません。少し先を見越して、隠しコマンドなど遊び心がある工夫をソフトウェア、ハードウェアにこっそり入れておくのも開発者の数少ない楽しみの1つだと思います。