100MBフラッシュマイコンとFreeRTOS

ルネサス、100MB超の大容量フラッシュ内蔵、160℃で10年以上のデータ保持もできる車載可能な次世代マイコン実現にメドの記事が、EE Times Japanで12月6日発表されました。

ルネサス100MBフラッシュマイコン実現にメド
ルネサス100MBフラッシュマイコン実現にメド(記事より)

これは、ルネサスが車載半導体シェア30%を狙う動きとリンクしています。マイコンは、ROM128KB、RAM128KB(Cypress PSoC 4 BLEの例)の「キロバイト」容量から、5~6年後には「メガバイト」へと変わろうとしています。

FreeRTOS

Richard Barry氏により2003年に開発されたFreeRTOSもVersion 10が発表されました。12月3日投稿で示したようにアマゾンがAWS:Amazon Web Service接続のIoT MCUにFreeRTOSカーネルを提供したことで、マイコンへのFreeRTOS普及が一気に進む可能性があります。

Amazon FreeRTOS
Amazon FreeRTOS(サイトより)

従来のFreeRTOSは、5KB以下のROMにも収まりリアルタイム性とマルチタスク処理が特徴で、小容量マイコンでも十分に使えるRTOSでした。しかし、Amazon FreeRTOSの魅力的ライブラリをフル活用すると大容量ROM/RAMが必要になるハズです。フラッシュ大容量化、製造技術の細分化の流れは、マイコン高性能と低消費電力ももたらし、Amazon FreeRTOSを使用しても問題はなさそうです。

世界的な電気自動車化:EVシフトの動きは、マイコンに数年で激しい変化を与えます。弊社もCortex-M0\M0+コアに拘らず、STM32F1で使ったCortex-M3コアなどの更に高性能マイコンにも手を伸ばしたいと考えています。

ポイントは、FreeRTOSだと思います。その理由が以下です。

Amazon FreeRTOS対応のSTM32L475 Discovery kit for IoT Nodeのサイトで、AWS経由でどのようにクラウドに接続し、評価ボード実装済みの各種センサデータをグラウド送信する様子や、逆にグラウド側からボードLEDを制御する様子が英語Video(約11分)に紹介されています。
英語ですが、聞き取り易く、解り易いので是非ご覧ください。

Videoで使用したサンプルソフトも同サイトからダウンロードできます。殆ど出来上がったこのサンプルソフトへ、必要となるユーザ処理を追加しさえすれば、AWS IoT端末が出来上がります。

追加ユーザ処理は、FreeRTOSのタスクで開発します。タスクの中身は、初期設定と無限ループです。無限ループは、使用マイコン(Videoの場合はSTM32L4+)APIとFreeRTOS APIの組合せです。

つまり、従来マイコン開発に、新たにFreeRTOS API利用技術が加わった構成です。従来マイコン開発は、マイコンテンプレートで習得できます。但しFreeRTOS利用技術は、別途習得する必要がありそうです。

その他の細々したクラウド接続手続きは、通信プロトコル上の決まり文句で、独自性を出す部分ではありません。

マイコンテンプレートサイト、レスポンシブ化完了

その弊社マイコンテンプレートサイトのレスポンシブ化が完了しました。閲覧の方々が、PCやスマホで画面表示サイズを変えても、自動的に最適表示に調整します。

また、サイト運営側も従来サイトに比べ、ページ追加/削除が容易な構成に変わりました。より解りやすく充実したサイト内容にしていきます。動作テストを十分にしたつもりですが、ご感想、バグ情報などをメールで頂ければ幸いです。

Amazon、IoTマイコンへFreeRTOS提供

Amazon:アマゾンがFreeRTOSをカーネルにして、IoT端末とのクラウド接続、セキュリティ確保、将来的にOTA:Over The Airによるアップデート機能をライブラリで提供というニュースが入りました。

嬉しいのは、「FreeRTOS」と「OTA機能がRTOSで提供」されることです。

Amazon FreeRTOS

IoT端末とクラウドを接続するには、IoT通信プロトコルが必要です。BLE:Bluetooth Low EnergyやThreadが有力ですが、国内外の網側事情が異なるため、実質的なIoTプロトコル実装は間違いなく大変です。

もしこのIoT通信機能が、最大手アマゾンの無償ライブラリで提供され、マイコンUARTと同様にIoT Communication APIを使え、しかもセキュリティ対策済みであるならば、IoT端末は爆発的に普及するでしょう。普及の足かせとなっているIoT通信とセキュリティ問題が解決されるからです。

Amazon FreeRTOS
Amazon FreeRTOS利用イメージ (出典:記事、AWS)

現在Amazon FreeRTOSのハードウエアパートナーは、テキサス・インスツルメンツ:TI、マイクロチップ、NXP、STマイクロエレクトロニクスの4社で、NXPは、LPC54018 IoT Module、STMは、STM32L4 Discovery Kit IoT Node評価ボードでサポートするそうです。

NXP、STMいずれもかなり高性能MCU評価ボードを使っていますが、これは高機能IoTエンド端末(≒簡易スマホ)を想定しているからだと思います。FreeRTOSカーネルなので、ROM/RAMが少ない低価格IoTエンド端末にも実装できるハズです。

弊社ブログでも紹介してきたFreeRTOS自身は、様々なベンダの低価格MCUにも実装実績があります。

残念ながら弊社のFreeRTOSサンプルソフトは、NXPのLPCXpresso824-MAX上で完全動作しているとは言えませんが、近いうちにSTMのSTM32F103RB(Cortex-M3:64MHz、ROM/RAM:128KB/20KB)で再チャレンジし、新たにFreeRTOS版のテンプレートを開発できないか検討中です。
※FreeRTOSサンプルソフトは、2020年版に更新しました。LPCXpresso824-MAXサンプルソフトは削除しました。

OTA機能

出荷後の組込みソフトを更新したいことは良くあります。但し、Windows更新でも失敗があるように、技術的にハイリスクで、また更新費用を顧客が負担してくれないこと(ノーリターン)も多いので、悩ましい事柄です。

Amazon FreeRTOSのOTAがRTOS関連のみか、または、RTOSにとってのアプリ、つまり開発ソフトも含むかは不明ですが、たとえRTOSのみであってもOTAが提供されれば好都合です。セキュリティ起因の不具合解消に役立つからです。

従来のベアメタル開発でもOTA関連の資料は、英語版で難解な記事はあります。しかし、私の場合は、結局現地でIDE書き換えの経験が多いです。リクスを少しでも下げたいのもあります。RTOSが機能提供してくれれば、責任転嫁(?)ですが助かります。

弊社FreeRTOSへの取組み

IoTクラウドサービスは、アマゾンのAmazon Web Services IoT:「AWS IoT」が先行し、マイクロソフトの「Azure IoT」、これらを追いかけるグーグルの「Weave」とアップルの「HomeKit」、その後ろにARMの「mbed Cloud」という状況だそうです。アマゾンは最先端を走っているのです。

先行アマゾンが2017年末に発表したAmazon FreeRTOSの詳細は不明ですが、IoT MCUのRTOSにFreeRTOSが有力であるのは、確実になりそうです。

FreeRTOSソフト開発の場合、タスク自体は簡単で単純な初期設定+無限ループ構成です。タスク同期やタスク通信にRTOS APIが使えれば、それ程難しくはないと(今は)考えています。この考え方が、タスクが増えたりプライオリティを変えたりしても正しいか、間違っているかは、実践経験あるのみです。

個人で実践できるFreeRTOS動作環境の構築が、弊社FreeRTOS版テンプレートの目標となりそうです。

レスポンシブサイトと説明資料

HappyTechサイトを年内完成目標に、レスポンシブ対応:Responsive Web Designへ改良します。

数年前にサイトを開発した時は、1ページ表示が流行っていたので、これに倣って(ならって)開発しました。しかし、スマホやタブレットなどのモバイルデバイスが増え状況が変わりました。

サイト内容のコンテンツ追加・削除もしにくい構成でしたので、流行のレスポンシブサイトに変更します。

Responsive Web Design
Responsive Web Design

レスポンシブテンプレートを探す

手っ取り早くレスポンシブサイトを開発する方法は、ネットに溢れるレスポンシブテンプレートを利用することです。

私は、HTML5 UPというサイトのテンプレートを利用しました。テンプレート説明資料はありませんので、開発には、多少のHTML、CSSの解読技術とベース知識が必要です。

レスポンシブテンプレートメリット

記載内容はそのままに、ユーザが使う画面大小に合わせて自動的に表示レイアウトを変えるのがレスポンシブサイトです。ご覧のブログはWordPressを使っていますので、利用テーマをレスポンシブ版に変えればそれで出来上がりますが、サイトの場合は、自分でHTMLとCSSを使って作り直す必要があります。

基本部分が出来上がったHTML5 UPテンプレートに、修正を加え動作を確認しながら、短期にサイトを開発できるのがテンプレート利用のメリットです。

マイコンテンプレートメリット

このメリットは、弊社マイコンテンプレートでも全く同じです。

サイト開発と同様、マイコンも動き出すまでに手間がかかります。また、動き出した後も、修正や変更が生じます。テンプレートを使うと、この動き出しまでの時間を、殆ど0に短縮できます。

マイコンAD変換:ADCを例に説明します。

ADCは、サンプルソフトも多く使い方も良く知られています。しかし、実際にセンサを接続して動作させると、複数回ADCの平均を計測値とするか、あるいは、1回のADCを計測値とするかは、アプリにより異なります。

通常は、ノイズ対策として平均値を用いる場合が多いです。それでも、測定間隔や何回の計算で平均を求めるかについては、センサとマイコンを接続し、実際に動作させカット&トライ:試行錯誤で決めるのがBestです。

この試行錯誤に適したソース構成が初めから出来上がっていれば、試行も容易でスパゲッティーコード(!?)にもなりません。

つまり、立ち上げを早くし、実動作に近い環境でプログラミングでき、しかもスパゲッティー化を避けられるのがマイコンテンプレートのメリットです。

マイコンテンプレート説明資料

説明資料があると、テンプレート修正や変更が容易になります。テンプレート開発者の考え方、指針が解るからです。最近のソースコードは、数行に渡るほどの多くの英語コメントが付いていますが、コメント文だけでは、これら考え方、指針は表現できません。

説明資料が無い場合は、どこを修正・変更すれば良いがが不明で、この場所を探すのに余分な時間が必要になります。マイコンソースコードは、その傾向が特に強く修正や変更で直にスパゲッティーコードになります。

標準的な決まりが多くあるHTMLやCSSと異なり、マイコンソースは比較的自由に記述できるからです。その結果たとえ同じ職場でも、他人が開発したマイコンソースは解読が難しいのが現状です。標準的な知識レベルがバラバラなのも原因の1つでしょう。デサインレビューの結果が反映され難いのです。

そこで、マイコンテンプレートには説明資料を添付し、標準的と思う私の考え方や開発指針を多く記載しています。テンプレートソースコードにも豊富な(冗長な!?)日本語コメントが付いています。

勿論、これら考え方や指針は、あくまでご購入者様のテンプレート理解が目的で、押付けではありません。テンプレート版権は、ご購入者様個人に帰属しますので、ご自分の考え方を反映した改良も自由です。

ご購入者様のご質問にも丁寧にお答えします。

マイコンテンプレートは、初心者~中級者向けです。しかし、全ての方のレベルに合わせた説明は、不可能です。それぞれの方でご質問は、異なります。広いレベルの方に参考になると思ったご質問に関しては、テンプレート改版時、説明資料へ付け加えています。

以上の方針で、マイコンテンプレート説明資料やソースコードを作成しています。

マイコンテンプレートご購入者は、または購入検討中の方であっても、いつでも、どのようなご質問でも、大歓迎です。お気軽にinfo@happytech.jpまでお寄せください。

SPI/I2Cバスの特徴と最新表示デバイス

IoT MCUは、従来の2×16文字のLCDから、SPIバス接続でよりリッチな表示ができるものへと変わりつつあると前投稿で述べました。

SPIバスは、従来MCUでも実装しています。ただし、多くの場合I2Cとポート共用で、センサやEEPROMとI2C接続するサンプルソフトが多数派でした。IoT MCUでは、センサ接続とリッチ表示を同時にサポートするので、I2C/SPIポートを2個以上装備するMCUが多くなりました。

本稿は、SPI/I2Cバスの特徴と、SPI接続の最新表示デバイスを示します。

SPIバスとI2Cバスの特徴

SPI Bus vs. I2C Bus (Source: Wikipedia)
SPI Bus vs. I2C Bus (Source: Wikipedia)

SPI(3線式)とI2C(2線式)は、どちらも制御ボード内で使うシリアル通信インタフェースです。少ない線数で複数デバイスを接続できますので、制御ピン数を少なくしたいMCUには適しています。
※SPI:Serial Peripheral Interface
※I2C:Inter-Integrated Circuit

仕様の解説などは、ネット内に数多くありますので省略します。

前投稿のNXP Swiss Army Knife Multi toolのWebinarで示されたSPIとI2Cの特徴に、MCU使用例を加筆したのが下表です。

SPI vs. I2C (Source: NXP Swiss Army Knife Multi tool Webinar)
  SPIバス I2Cバス
長所

・高速

・5V/3.3V デバイス混在可能

・2線でバス接続可能
短所

・デバイス毎にチップセレクト必要

・4動作モードがあるためバス接続時面倒

・低速

・同一Vddでデバイスプルアップ

使用例 リッチ液晶ディスプレイ, SD/MMCカードなど EEPROM, 加速度センサ, 気圧センサなど

※NXPは、当初I2Cバスで液晶ディスプレイ接続を試みたが、結局SPIバス接続になったそうです。Webinarだと、アプリケーションノートに記載されないこのような貴重な情報が入手できます。

SPI接続の最新表示デバイス

検討の結果NXPは、128×64ドット1.3“のOLED: Organic LED(有機LED)ディスプレイをMicro SDカードとSPIバス接続しています(前回投稿Swiss Army Knife Multi tool Block図参照)。
※有機LEDは、輝度や視野角、消費電力などの面で優れた特性を持つLEDです。

SPI OLED Display
SPI OLED Display

*  *  *

一方CypressのCY8CKIT-062-BLE Webinarでは、264×176ドットのE-INKディスプレイシールドが使われました。E-INKディスプレイは、電源OFFでも表示が残る画期的な表示デバイスです。しかもシールド基板なので、Arduinoコネクタを持つMCU評価ボードへの装着も可能です。

E-INK Display Shield
E-INK Display Shield

記載インタフェース信号名から、このE-INKディスプレイもSPI接続であることが解ります。

SPI E-INK Display
SPI E-INK Display (Source: PSoC® 6 BLE Pioneer Kit Guide, Doc. # 002-17040 Rev. *B, Table 1-3)

CY8CKIT-062-BLEは、このE-INKディスプレイのシールド基板付きで8,600円(Digi Key調べ)で入手可能なのでお得です。

しかし、E-INKディスプレイの制御方法が、PSoC Creatorの専用ライブラリ経由で、PSoC MCUファミリで使うには(多分)問題ありませんが、他社評価ボードでこのシールドを使う時は、専用ライブラリの詳細解析などが必要になると思います。

まとめ

SPIバスとI2Cバスの特徴と、SPI接続の最新表示デバイスを2つ示しました。

MCU評価ボードで使われた有機LEDディスプレイやE-INKディスプレイには、I2Cよりも高速なSPIバスが接続に使われています。

有機LEDディスプレイは、輝度や視野角、消費電力などの面で従来LEDディスプレイよりも優れています。

E-INKディスプレイシールドは、電源OFFでも表示が残りArduinoコネクタを持つ他社評価ボードにも装着可能ですが、Cypress制御ライブラリの解析が必要になります。

そこで、SPIバス接続を使ったArduinoシールド基板で、リッチ表示可能、サンプルソフトなどの情報多数、入手性が良く低価格、という条件で調べたところ、Adafruit(エイダフルート)の1.8“カラーTFTシールド(128×160ドット)、microSDカードスロットとジョイスティック搭載(秋月電子3,680円)を見つけました。

1.8" TFT Shield Schematic
1.8″ TFT Shield Schematic

TFT コントローラICのST7735Rのデータシートも開示されていますので、OLEDやE-INKシールドよりも使いやすいと思います。

しかも、メニュー表示した画面に、付属ジョイスティックを使ってユーザが処理選択することもできるので、お勧めのSPI接続表示シールド基板です。

マイコンデータシートの見かた(その2)

現役STマイクロエレクトロニクスの「メーカエンジニアの立場」から記載された、ユーザ質問の多かった事項を中心にマイコンデータシートの見かたを解説する記事(連載2回目)を紹介します。

全3回の連載記事内容

第1回:凡例、絶対最大定格、一般動作条件、電源電圧立上り/立下り(2017年10月1日投稿済み
第2回:消費電流、低消費電力モードからの復帰時間、発振回路特性(← 今回の投稿)
第3回:フラッシュメモリ特性、ラッチアップ/EMS/EMI/ESD、汎用IO、リセット回路

記事タイトル:データシート数値の “裏の条件” とは

先入観を与える前に、記事を読んでください。消費電流、復帰時間、発振回路特性の留意点が記述されています。記事タイトルの “裏の条件” とは何でしょうか?

私は、データシート数値は、理想的動作環境のマイコン単体の最高数値、これが裏の条件と理解しています。
例えば、車の性能を燃費で比較する方は、普通の運転では絶対に達成できないカタログ燃費で車を評価します。マイコンも同じです。データシート数値は、このカタログ燃費相当だと思います。

カタログ燃費(出典:日本自動車工業会)
カタログ燃費(出典:日本自動車工業会)

実際は、この最高数値にマージンを入れて考える必要があります。どの程度のマージンを入れるかが問題で、安全側評価ならデューティ50%、つまり性能半分位が良いと思います。

但し、これもマイコン単体の話で、マイコン:MCUと電源、発信器や必須周辺回路を含めた制御系で考えると、どの程度マージンを入れるかは複雑怪奇になります。

そこで、ベンダ開発の評価ボードを手本とする考え、つまり、10月1日投稿で示した評価ボードをハードウエアテンプレートとして用いる考え方を、私は提案しています。

10月15日記事のように、評価ボードでもWi-Fi起動時電流に電源部品の余裕が(短時間ですが)少ないものもありますが、大方のベンダ評価ボードは、実用に耐えられる厳選部品が実装済みです。そこで、プロトタイピング時には、この評価ボードで制御系を作り、実装部品のマージンが十分かを評価するのです。

マージンが足りない場合には、同じ評価ボードへ、より高性能な部品を載せ替えるなどの対策が簡単にできます。制御される側もこのようなモジュールで開発しておけば、モジュール単位の設計、変更が可能です。

ソフトウエアも同様です。評価ボードを使えば、少なくとも最低限のソフト動作環境は整いますので、プロトタイピングのソフトをなるべく早く開発し、動作マージンを確認しておきましょう。

完成・出荷時には、ソフトへ様々な機能が後追加されるので、プロトタイピング時はハード同様デューティ50%、つまりROM/RAMの残りに50%位は残しておくと安心です。

ソフトウエアのプロトタイピング開発には、弊社マイコンテンプレートが最適です。

連載第2回範囲のデータシートの見かたまとめ

  • 水晶振動子のMCUクロック供給は、発振波形が正弦波に近いため貫通電流が増え消費電流大となる。
  • 未使用GPIO端子は、外来ノイズ対策に10k~100kプルアップorダウンし、電位固定が望ましい。
  • データシート低消費電力復帰時間がクロックサイクル規定の場合はそのまま使え、㎲規定の場合は参考値。
  • 外付け水晶振動子の利用時は、ベンダ推薦部品を使う。
  • 内蔵発振回路の利用時に、MCU温度変化やリフローによる機械的応力による周波数変動が無視できない場合は、周波数トリミングソフトを組込む。
  • PLL動作最低/最高周波数の設定ミスは多いが、マージンがありそのまま動作するので注意。

マイコンデータシートの見かた(その1)

現役STマイクロエレクトロニクスの「メーカエンジニアの立場」から記載された、ユーザ質問の多かった事項を中心にSTM32マイコンデータシートの見かたを解説する記事(連載1回目)を紹介します。

全3回の連載記事内容

予定されている第2回、第3回の解説内容が下記です。

第1回:凡例、絶対最大定格、一般動作条件、電源電圧立上り/立下り(← 今回の記事)
第2回:消費電流、低消費電力モードからの復帰時間、発振回路特性
第3回:フラッシュメモリ特性、ラッチアップ/EMS/EMI/ESD、汎用IO、リセット回路

今回の第1回を読むと、データシートの読み誤り易いポイントが説明されており、興味深いです。ハードウエアに興味がある、または、ハードも自分で設計するソフトウエア開発者は、読むことをお勧めします。

マイコンハード開発を数回経験すると、おおよその感触とデータシートの見る箇所が解ってきます。私も新人の頃は、網羅されたデータシートの、”どこの何を見れば良いかが判らず”困惑したものでした。

ハードウエアテンプレートは評価ボードがお勧め

私は、使用するマイコンの評価ボードを、ハードウエアのテンプレートとして使います。
例えば、STM32F072RB(=NUCLEO STM32F072RB)は、配線パターン(=gerber files)や使用部品リスト(=BOM)もサイトに公開されています。

これらのデータは、「短納期を要求される開発者の立場」なら、網羅的記載のデータシートよりも、効率よく回路設計をする手助けとなります。

データシートを見ることは、間違いなく重要です。

しかし、具体的にハードウエア設計をする時は、評価ボードのような既に設計済みの「ブツ」を参考にしながら、なぜこの部分はこうなっているのか?などの疑問を持ってデータシートを見る方が、効率が良く、しかも、分厚いデータシートのポイントを理解するのにも役立ちます。

アナログとデジタル電源の1点接地や、パスコン実装位置などは、文字で注意書きをいくらされても解り難くいものです。この点、実物は、文字に勝ります。

ソフトウエアテンプレートはマイコンテンプレートがお勧め

ソフトウエア開発は、マイコンテンプレートの宣伝をするな!と思われた、勘のいい読者の方は、コチラのサイトを参照してください。

サンプルソフトは、”メーカ立場での提供ブツですが、”開発者の立場からの実物として、STM32ファミリ、サイプレスPSoC、NXPのLPC8xx/LPC111x/Kinetis、ルネサスRL78/G1xの各種マイコンテンプレートを、ソフトウエア開発者様向けに提供中です。

連載第1回範囲のデータシートの見かたまとめ

第1回記事の範囲で、マイコンハード開発ノウハウをまとめると、以下になります。

  • マイコン外部接続ハード駆動能力は、I2C、USART、数点のLED直接駆動可能端子を除いては極小で基本的には直接駆動はしない。
  • 外部接続ハードの駆動と接続方法は、Baseboard(mbed – Xpresso Baseboard)や、各種Arduinoシールドを参考にする。
  • マイコン電源は、評価ボードのパターン、実装部品も含めてまねる。
  • 開発製品版の未使用(空き)端子処理は悩ましいが、ソフトはデフォルト、ハードはソルダーブリッジ経由で接地。

私は、今後の連載を読んで、未使用(空き)端子処理の見識などを深めたいと思っています。

STM32Fxテンプレート発売

2016年MCUシェア第5位のSTマイクロエレクトロニクス(STMicroelectronics、本社スイス)のSTM32F0:Cortex-M0とSTM32F1:Cortex-M3向けのテンプレートを開発しましたので、販売開始します。従来テンプレートと同額の1000円(税込)です。

STM32Fxテンプレートの特徴

STM32Fxテンプレート構成
STM32Fxテンプレート構成
  • Cortex-M0とCortex-M3両コア動作のテンプレート
  • 移植性、可読性が高いHALドライバを使ったので、他コアへの流用、応用性も高い
  • カウントダウンループを使ったCortex-M系コードテクニックで開発

従来テンプレートは、ARM Cortex-M0/M0+とルネサスS1/S2/S3コアが対象でした。

つまり、8/16ビットMCUの置換えを狙ったCortex-M0/M0+と、RL78汎用MCUへテンプレートを供給していました。しかし、IoTの通信処理や要求セキュリティを考慮すると、より高性能なMCUも視野に入れた方が良いと感じていました。また、Cortex-M3デバイスの低価格化も期待できます。

初めてCortex-M3のSTM32F103RB:NUCLEO-F103RBへもベアメタルのテンプレートを開発したのは、以上のような背景、理由です。

ST提供のHAL:Hardware Abstraction Layerドライバは、移植性、可読性が高く、Cortex-M0/M3両対応のテンプレートも簡単に開発できました。Cortex-M3よりもさらに高性能なMCUが、ベアメタル開発を行うかは疑問ですが、HALを使ったので適用できると思います。

動作確認評価ボードは、STM32F072RB:Cortex-M0/48MHzとSTM32F103RB:Cortex-M3/64MHzですので、これはあくまで私見、見込みですが…、HALドライバならば問題なく適用できるハズです。

HALドライバ作成にSTM32CubeMXを使うと、異なるコア動作速度(M0:48MHz、M3:64MHz)でも、同じ周辺回路ならば、同じHAL APIが使えます。

今日現在、このSTM32CubeMX周辺回路のGUI設定に関する詳しい資料が見当たりません。そこで、テンプレート添付資料では、テンプレートのSTM32CubeMX設定方法や、SW4STM32開発ヒントやTipsなど開発に役立つ情報を満載しています。初めての方でもSTM32MCUの開発障壁を低く出来ます。

また、本テンプレートをプロトタイピング開発に使って、MCU性能の過不足を評価するのも便利です。ボードレベルでピンコンパチなSTM32 NUCLEO評価ボードですので、評価ボード単位の載せ替え/交換も可能です。

さらに、デクリメントループを使ってループ終了を行っているなど、Cortex-M系のコード作成にも注意を払いました。

*  *  *

マイコンテンプレートサイトへ、STM32Fxテンプレートを掲載します(9月2日追記:サイト更新完了しました)。
添付資料のP1~P3、もくじの内容を掲載しております。P1~P3は、資料ダウンロードが可能です。STM32Fxテンプレートをご購入の上、是非、ご活用ください。

STM32CubeMXの使い方Tips

STM32CubeMXは、STM32Fxマイコンのコード生成ツールとして良く出来ています。但し、現状1つ残念なことがあります。HAL:Hardware Abstraction Layerに加え、BSP:Board Support Packagesをドライバとして出力しないことです。そこで、現状のHALドライバのみ出力に対策を加えます。

STM32CubeMX
STM32CubeMX

STM32Fxファームウエア構成

STM32Fx Software Structure
STM32Fx Software Structure

STM32Fxファームウエア構成が上図緑線の個所です。STM32Fxマイコンサンプルソフトは、使用するファームウエアライブラリに応じて、Low Layer examples、Mixed HAL & Low Layer examples、HAL examplesの3種類あります。

各ファームウエアの差や、サンプルソフトの場所は、以前記事で解説しました。ここでは、STM32F0からSTM32F1へのポータビリティが最も高いHALライブラリ(=ドライバ)を使うサンプルソフト:HAL examplesに的を絞って解説します。

HAL Examples

このサンプルソフトの優れた点は、評価ボード実装済みの青SW(USER Blue)と緑LED(LD2)のみで全てのサンプルソフト動作を確認できることです。SW入力と、LED点滅間隔を変えることで、正常/NG/入力待ちなど様々なサンプルソフトの動作状態を表現します。

この青SWと緑LEDを制御するには、GPIO定義とHALライブラリを組合せた一種のサブルーティンがあると便利です。このサブルーティンが、BPS:Board Support Packagesです。例えば、下記などです。

BSP_LED_On()、BSP_LED_Off()、BPS_LED_Toggle()、BPS_PB_GetState()

BSP_が先頭に付いているので、一目で評価ボード実装済みの青SWや緑LEDを制御していることが判りますし、HALライブラリを使って表現するよりも、可読性もより高まります。BPSの中身は、HAL自身ですので、Drivers層のBSP、HALともに同じ黄緑色で表示しています。

HAL exampleは、これらBSPとHAL両方を使って記述されています。

STM32CubeMX

STM32CubeMXは、最初に使用する評価ボードを選択後、コード生成が行えます。

STM32CubeMX Board Selector
STM32CubeMX Board Selector

但し、生成コードに含まれるのは、HALドライバのみです。BSPは、HALサブルーティンですので、自作もできますが、評価ボードを選択するのですから、せめてHALのみか、それともHALとBSPの両方をドライバとして出力するかの選択ができるように改善してほしい、というのが私の希望(最初に言った現状の残念なこと)です。

もしHALとBPSドライバ両方がSTM32CubeMXで出力されると、多くのHAL Examplesを殆どそのまま流用できるメリットが生じます。HAL Examplesは、残念ながらエキスパートの人手で開発したソースですが、これを自動コード生成の出力へ、より簡単に流用できる訳です。

STM32CubeMX出力ファイルへのBSP追加方法

BSPドライバを自動出力しない現状のSTM32CubeMXで、上記希望をかなえる方法は、簡単です。

STM32CubeMX出力ファイルへのBSP追加
STM32CubeMX出力ファイルへのBSP追加

手動でBSPのstm32f0xx_nucleo.cとstm32f0xx_nucleo.hをSTM32CubeMX生成プロジェクトのSrcとIncフォルダへコピーし、main.cのL43へ、#include “stm32f0xx_nucleo.h”を追記すればOKです。
※stm32f0xx_nucleo.c/hは、\STM32Cube\Repository\STM32Cube_FW_F0_V1.8.0\Driversにあります。

たとえSTM32CubeMXで再コード生成しても、stm32f0xx_nucleo.c/hはそのままですし、追記した部分もそのまま転記されます。この方法で、HAL Examplesの流用性が向上します。

HAL Examplesを読むと、周辺回路の細かい設定内容が解ります。この設定をそのままSTM32CubeMXに用いれば、周辺回路の動作理解が進み、さらに自動コード生成ソースへ、Examplesソースをそのまま流用できるので、評価ボードでの動作確認も容易です。

まとめ

現状のSTM32CubeMXは、BSPドライバを出力しません。対策に、手動でBSPドライバを追加する方法を示しました。これによりエキスパートが開発したサンプルソフトを、より簡単に自動生成ソフトへ組込むことができます。

開発中の弊社STM32Fxテンプレートも、サンプルソフトを流用/活用が使いこなしのポイントです。そこで、このBPSを組込む方法をSTM32Fxテンプレートへも適用し、サンプルソフト流用性向上を図っています。

評価ボードNUCLEO-F072RB/F103RBのピン選択指針

STマイクロエレクトロニクスの評価ボード、NUCLEO-F072RBやNUCLEO-F103RBを使って、ボード外部と接続する際の、ピン選択に関する指針を示します。

NUCLEO-F072RBの外部接続ピン
NUCLEO-F072RBの外部接続ピン

評価ボードのピン配置とSTM32CubeMXのピン選択

評価ボードには、外部接続用のピンとしてArduinoピン(ピンク色)と、NUCLEOボード独自のMorphoピン(青色)があり、Morphoピンの一部は、Arduinoピンと共用(赤囲み)です。2つの黄色マークは後述します(評価ボードのユーザマニュアルは、コチラを参照)。

Arduinoピンは、メスコネクタ、一方Morphoピンは、オスコネクタを使っており、ブレッドボードや弊社マイコンテンプレートで使うBaseboardとの接続には、Arduinoピンを使いオスーオス結線が便利です(Baseboardやオスーオス結線のメリットはコチラの記事を参照)。

評価ボードNUCLEO-F072RB (=STM32F072RB)やNUCLEO-F103RB (=STM32F103RB)を使う時のコード生成ツールが、STM32CubeMXです(STM32CubeMXはこちらの記事などを参照)。

STM32CubeMXは、MCUパッケージイメージから使用ピンを選択、設定します。色付きピンは、既に評価ボードで使用済みのピン、灰色ピンが未使用ピンです。

例えば、灰色ピンのPB7は、I2C 1_SDA~GPIO_EXIT7までの広い範囲で自由に機能を設定可能です。

STM32CubeMXのピン選択
STM32CubeMXのピン選択

STM32F072RBとSTM32F103RBは、どちらもLQFP64パッケージでピンコンパチです。緑色のB1 [Blue Push Button] :PC13と、LD2 [Green LED] :PA5の2ピンを評価ボードで使用しますので、前述の評価ボード接続ピンに、既に使用済みという意味で黄色マークを付けました。

長くなりましたが、ここまでが、前置きです。これらの前置きを知ったうえで、STM32CubeMXで自由に設定できる灰色ピンの内どれを使うと、効果的な評価ボード開発ができるのかを明らかにするのが本記事の目的です。

STM32CubeMXのピン選択指針

STM32F072RBやSTM32F103RBのソフト開発の場合、最初にSTM32CubeMXで使用ピンを決め、コード生成をします。もちろん使用ピンは、コード生成後も変更できますが、変更のたびに再コード生成が必要です。再コード生成の手間は、できれば避けたいです。

こんな時、ピン選択の指針があると便利です。

前置き情報から、Arduinoピンを使うと、ブレッドボードやBaseboardとの接続が、オスーオス結線で簡単、市販Arduinoシールドも使えることが判ります。そこで、Morpho ピンで、Arduinoピンと共用しているピンを昇順に抜粋すると、下記になります。

GPIOA:            PA0/PA1/PA2/PA3/PA4/PA5/PA6/PA7/PA8/PA9/PA10
GPIOB:            PB0/PB3/PB4/PB5/PB6/PB8/PB9/PB10
GPIOC:            PC0/PC1/PC7/PC9

GPIOAが多数ですが、Arduinoピン名をみるとA0などのアナログ入力ピンとの共用が多いので、デジタル入出力と思われるD0~D15での共用が多いGPIOBから先に割り当てる方針を立てました。

BaseboardとのLCD接続

この方針でBaseboardのLCDと接続し、LCD出力した例を示します。本方針が、LCD接続では有効であることが判ります。

NUCLEO-F072RBとBaseboard接続しLCD出力
NUCLEO-F072RBとBaseboard接続しLCD出力

まとめ

開発中のSTM32Fxマイコンテンプレートは、テンプレート応用例としてシンプル/Baseboardテンプレートの2つを添付します。シンプルテンプレートは、評価ボード単体で動作しますので、使用する外部接続ピンに悩む必要はありません。

Baseboardテンプレートは、評価ボードとBaseboardを接続して動作させますので、効果的な接続方法として、評価ボード外部接続ピンの選択指針を検討しました。

デジタル接続なら、Arduinoピンとのデジタル共用が多いGPIOBから選択し、アナログ接続なら、GPIOAから選択する指針を示し、この指針に基づいてBaseboardのLCDと接続し出力を確認しました。

追記

評価ボードのArduinoとMorphoの共用コネクタ部分の回路図を抜粋したのが下図です。

NUCLEO64 Boardのコネクタ回路図
NUCLEO64 Boardのコネクタ回路図(ユーザマニュアルより)

評価ボード裏面のジャンパー(回路図のSBxxなど)を、工夫(オープン/ショート)すると、ArduinoピンとMorphoピンの共用ピンをさらに変更できることが判ります。よく考えられた評価ボードです。

ARM Cortex-M3低価格化への期待

ARM Cortex-M3の設計開始時ライセンス費用がCortex-M0同様、無償化されることが発表されました。

これにより、新たに商品化されるCortex-M3コアを使ったMCU価格が下がる可能性があります。Cortex-M0(ARMv6-M)を100%とする性能比較をみると、Cortex-M3(ARMv7-M)の性能向上比が大きいことが判ります。

Performance of Cortex-M
Performance of Cortex-M

RTOSやIoT通信などのMCU環境の変化を考慮すると、コストパフォーマンスに優れたCortex-M3を次期MCU選択肢に、より入れやすくなります。