アナログ機能内蔵マイコンの開発ポイント

ルネサス業績回復後の最初のマイコンが、RL78/I1Dでした。そして第2弾マイコンが、RL78/G1Gです。
2015/4/9発行のルネサスサポート情報 vol.240、「RL78ファミリ カタログ」最新版から、これら両マイコンの位置づけが良く解ります。

RL78ファミリカタログ

最新版2015.03と旧版を比較すると、「RL78/G1G」と「RL78/I1D」が、機種ページの最初に搭載されています。お薦めマイコンのSTAR ProductであるRL78/G13やG14よりも前のページです。ルネサスの力の入れ様が表れているのでしょう。

RL78/G1G

RL78/G1G(RL78ファミリカタログP8より抜粋)
RL78/G1G(RL78ファミリカタログP8より抜粋)

RL78/G1Gは、RL78/G14とソフト互換性を持ちます。従って、開発にG14のサンプルソフトが使えます。つまり、RL78/G1xテンプレートも使えると言うことです。

このRL78/G1Gのように、ADC以外のPGA:プログラマブル ゲイン アンプや、コンパレータなどのアナログ回路をマイコンに内蔵するのがIoT向け汎用マイコンのトレンドです。モータ制御向きアナログ機能内蔵機、これがRL78/G1Gです。

RL78/I1D

RL78/I1D(RL78ファミリカタログP9より抜粋)
RL78/I1D(RL78ファミリカタログP9より抜粋)

一方、センサ制御向きアナログ機能の内蔵機が、RL78/I1Dです。センサ信号増幅用のオペアンプやウィンドウモード対応のコンパレータを持ちます。

SNOOZEモード動作例のCPU起動要否判定を行うDOC:データ演算回路で、ADCデータのノイズ除去後に、SNOOZEからRunへ復帰させます。SNOOZEで全処理を実行する主役、それが「DOCとDTC」です。

RL78/I1DもS3コアなので、RL78/G1xテンプレートの対象機種です。残念ながら、評価ボード:RTE5117GC0TGB00000Rが、前回ブログ記事と同様、現在も入手できません。

アナログ機能内蔵マイコンの開発成功には?

RL78/G1GとRL78/I1D、ともにアナログ機能内蔵なので、実際に使用するアナログ機器と接続した実機テストは、デジタル単独の場合と比較して、より複雑で難易度も高くなります。High/Lowの2値のデジタル信号と異なり、アナログ信号だからです。

だからこそ、デジタル部分の制御ソフトウエアの開発は、より早くする必要があります。そして、アナログ実機信号に対応して調整する時間を多く取ることが成功のポイントです。この為に、弊社RL78/G1xテンプレートのご検討をお勧めします。テンプレートを使ったアプリケーション開発の手順は、こちらのページにまとめています。ご参照ください。

マイコンテンプレート活用のアプリケーション開発(後半)

マイコンテンプレートを使ったアプリケーションの開発方法(後半)は、手順4:サンプルソフトのテンプレートへの組込みとデバッグ、複数サンプルが同時に動くしくみを解説します。

アプリケーション開発手順(再掲)

アプリケーション完成までの手順1~3の詳細は、(前半)に記述済みです。

  1. 対象動作の明確化
  2. サンプルソフト獲得
  3. サンプルソフトを初期設定とループ処理の2つに分けて解読し、部品化
  4. 部品のサンプルソフトをテンプレートへ組込み、デバッグ

サンプルソフトとテンプレートの構造

サンプルソフトを組込んだテンプレート構造
サンプルソフトを組込んだテンプレート構造

ルネサスのRL78/G13アプリケーションノート:R01AN0451JJ0301をサンプルソフトにした例で説明します。サンプルソフトは、初期設定とループ処理から成ります。hdwinit()が初期設定、main()がループ処理です。このアプリノートでは、無限ループ内でスイッチ入力:P0と、LED出力:P1を同時に行っています。詳細は、R01AN0451JJ0301を参照して下さい。

サンプルソフトのループ処理
サンプルソフトのループ処理

このサンプルをテンプレートへ組込んだテンプレート構造が右側です。テンプレートでは、スイッチ入力処理と、LED出力処理は、別々に起動します。このテンプレート構造から、これら以外の別サンプルN処理や、割込み起動のサンプルX/Y処理が追加可能なことが判ります。例えば、ブザ音の発生処理などをここへ追加すると、簡単に処理の追加ができます。
つまり、テンプレートは、「複数処理を起動する仕組みを、初めから持っている」のです。ここがサンプルソフトと最も異なる点です。
スイッチ入力とLED出力を分離したのは、スイッチの入力スキャンタイミングを、チャタリング対応で簡単に変更することが目的です(補足参照)。

テンプレートに付属している「シンプルテンプレート」が、このスイッチ入力とLED出力を組込んだテンプレートに相当します。また、更に、LCD表示やI2C入出力などの、組込みマイコンに必要となる処理をほぼ全て加え、完成形の形にしたのが、「メニュードリブンテンプレート」です。

マイコンテンプレートの仕組み

  • サンプル初期設定は、丸ごとそのままテンプレート初期設定へ流用 → 複数サンプルの初期設定は、挿入順にそのまま実行
  • 時分割で複数の無限ループ生成 → サンプルの起動関数追加により、複数処理を実行
  • サンプル割込み処理は、そのままテンプレート割込み処理へ流用 → 複数の割込み処理時は、割込み優先順位に注意
  • 関数の引数は、インタフェースRAM経由 → 関数入出力確認がRAMでできるので、単体/結合デバッグ、処理の部品化が容易

インタフェースRAMのメリットは明らかです。例を示します。上記テンプレートに、スイッチに応じてブザ音発生処理を追加するとします。

スイッチ入力処理で、スイッチ入力結果をRAMへ出力します。ブザ音発生処理は、このRAMを参照し、音を発生させます。RAMインタフェースを使えば、どちらの処理もRAMで動作が分離され、そのRAM値により処理が正しく動作しているかが解ります。RAM値は、デバッガで変更やモニタもできますので、処理単体デバッグが簡単です。仮に、片方の処理が未完成であっても、RAM設定/モニタで結合デバッグもできます。

ブザ音処理の追加前と後で、スイッチ入力処理には影響が無いことも判ります。つまり、処理の部品化も可能です。

割込み処理は、優先順位に注意が必要です。テンプレートは、時分割ループ生成のために、SysTickタイマと呼ばれるタイマを使います(その名が示すように、システムのチックタック動作タイマ)。SysTickタイマの割込み優先順位は高く、サンプルで割込み処理が使われても、このSysTickタイマよりは低い優先順位です。

注意が必要なのは、複数サンプルの割込み処理をテンプレートへ追加する場合です。割込みには、デフォルト優先順位があります。このデフォルト順位で処理できるか、変更が必要かの検討が必要です。
デフォルト順位でOKなら、そのままテンプレートへ流用します。変更する場合は、マイコンに依存しますので、データシートを参照して順位を変更してください。

RL78/G1xタイマの検討優先順位設定に関しては、過去のブログ記事を参照してください。

アプリケーション開発手順4のまとめ

  • サンプルソフト初期化関数は、そのまま丸ごとテンプレート初期設定へ挿入
  • サンプルソフトのループ処理は、サンプル起動関数を適切なテンプレート時分割ループへ挿入
  • サンプルソフトの割込み処理は、割込み優先順位に注意し、テンプレートの割込み処理へ挿入
  • 関数間は、部品化のため、RAMインタフェースを使い、単体/結合デバッグを行う

テンプレートですから、部品化した関数の挿入でアプリが完成します。また、部品の再利用を容易にするため、部品単位でファイル化します。複数の割込み処理は、優先順位に注意し、必要なら設定を変更します。関数間は、RAMで切り離し、関数単位でのデバッグを容易にします。

テンプレートを使うと、開発者毎に異なるアプリ開発手法が統一でき、また、処理がファイル単位で部品化できますので、流用性や可読性も良くなります。

マイコンテンプレート販売中

前半、後半と長い説明になりましたが、マイコンテンプレートを使ったアプリケーション開発手順を示しました。シンプルテンプレート、メニュードリブンテンプレートが付属した、4種類のマイコンテンプレートを、各1000円(税込)で販売中です。

IoT向き省電力マイコンのLPC824は、2015/04Eに加わる予定です。

テンプレート名
(MCUコア)
対応マイコン
(ベンダ)
評価ボード:動作確認ハードウエア ブログタグ
RL78/G1xテンプレート v3.1
(RL78-S2/S3
RL78/G13
RL78/G14
(Runesas)
・BB-RL78G13-64(推薦ボード)
・G13スタータキット
・G14スタータキット
・QB-R5F100LE-TB
・QB-R5F104LE-TB
RL78/G13
RL78/G14
LPC8xxテンプレート v2.1
(Cortex-M0+
LPC812
LPC824
(NXP)
・LPCXpressoLPC812 + Baseboard
・LPCXpresso824-MAX + Baseboard
LPC812
LPC824
LPC111xテンプレート v1.1
(Cortex-M0
LPC1114
LPC1115
(NXP)
LPCXpressoLPC1114 + Baseboard LPC1114
Kinetis Eテンプレート v1.1
(Cortex-M0+
Kinetis E
(Freescale)
FRDM-KE02Z40M Kinetis E

 

テンプレートソースをご覧になれば、文書で示したものよりも、より直接的にテンプレートの処理内容がご理解いただけると思います。
また、テンプレート本体とサンプルソフト流用部分のソース間には、5行以上のスペースを入れ、視覚的にもテンプレートと流用部分の切れ目が判る工夫をしています。
サンプルソフト流用部分は、オリジナルの英語コメントですが、テンプレート本体は、日本語コメントで(冗長に?)説明を加えています

概要と仕様の説明資料は、マイコンテンプレートサイトから無料ダウンロードもできます。

テンプレートは、処理が何もない時は、Sleepする消費電力低減機能や、WDT:ウオッチドックタイマ処理、テンプレート本体の暴走監視機能など、アプリとして最低限必要な機能も実装済みです。

零から始めるアプリ開発に比べ、実務に直結した弊社マイコンテンプレートを活用して頂ければ、マイコンの習得と、可読性、流用性に優れたアプリケーションの早期開発ができます。是非、ご検討ください。

 

補足:スイッチ入力処理のチャタリング対応

サンプルソフト:R01AN0451JJ0301は、スイッチ入力処理にチャタリング対応がありません。マイコンの入力処理には、チャタリングに対するノイズ対策は必須です。ソフトウエア対策として、複数回スキャンし、入力が同値の時に、値を確定する方法が一般的です。弊社シンプル/メニュードリブンテンプレートは、この方法を採用しております。

この処理には、何回一致を判定するか、スキャンタイミングはどの程度か、の2パラメタがあり、使用スイッチに応じてこのパラメタを決める必要があります。弊社では、2回一致、10msタイミングで、タクトスイッチ入力処理を行っています。

テンプレートでご利用の実際のスイッチに応じて、これらパラメタ、特に回数のパラメタを変更すると効果が高いと思います。

マイコンテンプレート活用のアプリケーション開発(前半)

マイコンのアプリケーション開発方法として、マイコンテンプレートを使った方法を前後2回に分けて示します。
テンプレートを使えば、マイコン習得と可読性、流用性に優れたアプリが素早く開発でき、開発者毎に異なる開発手法も統一できます。
前半は、アプリケーション開発手順1~3を解説し、次回、後半で手順4を解説します。

アプリケーション開発手順

動くアプリ完成までの手順を示します。

  1. 対象動作、「何を、どうするか」を明らかにする。この段階では、細かいことを気にする必要はありません。例えば、スイッチをスキャンする程度で十分です。
  2. サンプルソフトを探す。メジャーなマイコンは、必ず多くのサンプルソフトをベンダがサイト公開しています。この中から対象動作のサンプルを探します。
  3. サンプルソフトを読む。サンプルソフトは、「初期設定処理」、次に「ループ処理」の2構成で記載されるものが殆どです。たまに、メニュードリブン形式もありますが、これは、弊社メニュードリブンテンプレートと同様、処理抜出を容易にすることを目的にしたものです。
  4. サンプルソフトの必要部分をテンプレートへ組込み、デバッグ。

以上で、アプリが完成します。

マイコンの場合、組込み後、チューニングが必要な場合もありますが、アプリ完成後の処理ですし、アプリにも依存しますので、先ずは、動くアプリ完成までの手順を示しました。

RAD: Rapid Application Developmentツールを使う場合は、2のサンプルソフトをサイトから探す代わりにRADツールを使ってサンプルソフトを生成すると考えれば良く、同じ手順となります。

サンプルソフトベースの部品化

対象動作は、スイッチ入力処理、LED出力処理などできるだけ細かく分割し、部品化することがポイントです。
最後に、これら部品を組み合わせて1つのアプリケーションにします。部品毎にサンプルソフトを見つけ、デバッグすれば、バグもこの部品内に閉じ込めることができます。また、部品単位の流用性も高まります。

サンプルソフトを組合せてアプリケーション開発
サンプルソフトを組合せてアプリケーション開発

上級者との差が出る箇所と対策

手順1~3で重要なことは、「対象動作の明確化」と、「サンプルソフトの分離読解」です。分離解読とは、初期設定とループ処理を明確に分離して解読することで、処理内容は、大体把握すれば十分です(後述サンプルソフトの読み方参照)。

上級者は、多くのサンプルソフトを経験しているので、的確に対象動作を絞り込め、分離解読が、早く深い点が違います。さらに、上級者は、個人的なテンプレートを既に持っているので、サンプルの流用、組込みとデバッグが効率よくできます。

弊社マイコンテンプレートを活用すると、

  • サンプルソフトの組込みが簡単な、テンプレート獲得
  • 処理単体/結合デバッグが簡単で部品化も容易な、RAMを使った処理インタフェースの獲得

ができますので、上級者との差分を誰でも補えます。

サンプルソフトの選出

何回かサンプルソフトを読むと、より明確な対象動作が選べるようになります。逆に、サンプルソフトが見当たらない時は、絞り込みが不完全、または対象が間違っていると言えます。初めに全てのサンプルソフトをざっと眺めた後で、アプリをイメージするのも良い方法です。

但し、スイッチ入力処理は、注意が必要です。スイッチには、チャタリング対策が必須です。この対策は2つあり、1つがハードウエア、もう1つがソフトウエアの対策です。両者併用もあります。
個人的には、ハード対策の有無に関係なく、ソフト対策は必要と考えます。弊社シンプルテンプレートでチャタリング対策済みのスイッチ入力処理を添付しているのは、この理由からです。
チャタリングは、使用するスイッチでタイミングが異なりますので、対策済みサンプルをベンダは提供しにくいと思います。チャタリングに関しては、以前のブログ記事や、ネット検索すると、多くの情報がありますので、そちらも参照して下さい。

サンプルソフトの読み方

サンプルソフトは、「木を見て森を見ず」にならないように、細かいことは気(木?)にせずに、初期設定とループ処理の2つに分けて読みます。

初期設定は、コメントに注意し、周辺回路の使用方法が開発するアプリと同じがどうかを見極めます。同じなら、丸ごとそのままテンプレートへ流用します。異なる場合は、データシートなどで変更箇所を特定し、実際にサンプルに変更を加え、結果が正しく動作することを確認しておきます。

ループ処理は、無限ループで処理するものと、割込みで処理するものに大別できます。割込み処理は、基本的にそのままテンプレートへ流用します。
無限ループ処理は、何をトリガにアプリを起動しているかが解れば十分です。多くの場合、フラグポーリングやカウンタなどです。この起動トリガで関数化し、テンプレートへ組込みます。

テンプレートの狙い:複数サンプルソフト流用

よほどの上級者やツワモノを除けば、アプリ開発は、サンプルソフトの流用が王道です。敢えてリスクをおかしてサンプルソフト以外の方法でマイコンを動かす必要はないからです。ベンダサンプルは、典型的動作ですので、先のスイッチ処理の例外を除くと、流用可能なものが多いのも理由です。

但し、サンンプソフトは、1個の周辺回路の動作説明が主なので、実際のアプリで必要となる複数の周辺回路を組合せる記述はありません。これが、開発者毎に手法が異なる原因です。弊社テンプレートは、これに対して1つの解を提供します。

弊社マイコンテンプレートは、サンプル処理の流用が簡単で、複数サンプル処理を組込むのも容易です。従って、サンプルを活かした動くアプリの早期開発ができます。また、本テンプレートを用いれば、開発者毎で異なる開発手法を統一でき、可読性や流用性も高まります。次回、後半で詳細を説明します。

アプリケーション開発手順1~3のまとめ

  • 細かい単位の対象動作サンプルソフトを見つけ、初期設定とループ処理の2つに分けて読む
  • サンプルソフトを部品と見なし、複数部品の組合せでアプリケーションを開発
  • サンプルソフト獲得方法は、ベンダサイト、RADツールがある

次回は、手順4の部品化したサンプルソフトのテンプレートへの組込みとデバッグ、複数サンプルが同時に動くしくみを説明します。

 

補足:チューニングとマイコン性能

アプリケーション開発で最も厄介なのは、実はチューニングです。

アプリに最適なマイコンを選定していれば、一部アセンブラ化などのチューニングなしで動くアプリができます。しかし、この選定失敗、もしくは、選定マイコンが古いのにアプリ追加などで、性能を絞り出す場合などの、最後の手段としてチューニングもありえます。
但し、苦労してチューニングしても、トラブルフリーの経験がないので、絶対に避けるべきだと思います。結局、高性能マイコンへの置換えという結果になります。

では、マイコン性能はどの程度が正解でしょうか? マイコンでシステムを制御する場合、通常アプリ以外の処理ソフト、例えば、ハード/ソフトの出荷時のセルフテストや、入力が一定時間ない時のデモンストレーション表示なども必要です(自動販売機などでおなじみですね)。ここでは、これらソフトを「システム運用ソフト」と呼びます。

これらシステム運用ソフトは、通常アプリ動作中には、並列処理をしませんので、消費するのはROM/RAMです。ソフト開発者は、ROM/RAM量を見積もる時に、これら通常動作には現れないシステム運用ソフトも考慮する必要があります。経験では、通常アプリと同程度、つまりトータル2倍のROM/RAMは必要と思います。

また、必要となるマイコン性能は、通常アプリと、上の例で示したようなシステム運用ソフトの両方で考慮すべきです。処理能力に十分な余裕がないと、再現性のない取れにくいバグ発生のリスクも高まります。この処理能力も、2倍程度の余裕が必要だと思います。

ハードウエア設計の「ディレーティング50%」と同様、2倍の余裕がマイコン設計には必要と思います。

LPC824向けLPC82xテンプレート開発着手

次期マイコンテンプレートの3候補マイコン、NXP LPC824、Freescale Kinetis L、ルネサスRL78/I1Dのうち、LPC824とmX-BaseBoardとの接続方法について検討します。

IoT向きマイコンの要件

2015年1月~2月の集中調査の結果、IoT向きのマイコンは、以下の要件を持ちます。
・バッテリ駆動可能な動作電圧(1.8~3.6V)
・12ビットADC
・DMA/DTCと省電力動作モード
・低価格(¥500以下目安)
3マイコンは、いずれも要件を満たしており、2015年3月現在のマイコンと評価ボードの価格は下記です。

マイコン
(パッケージ)
価格(入手先) 評価ボード(価格、入手先)
LPC824 (32HVQFN) ¥259(DigiKey) LPCXpresso824-MAX(¥2800、秋月電子)
Kinetis L04 (48LQFP) ¥220(チップワン) FRDM-KL05Z (¥1747、DigiKey)
RL78/I1D (48LQFP) ¥430(マルツオンライン) RTE5117GC0TGB00000R(価格不明)

 

IoT向き省電力マイコンテンプレート開発着手

ルネサスRL78/I1D評価ボードは、現在、個人入手できませんので、価格不明です。
NXPとFreescaleは、合併の結果現状のARM Cortex-M0+マイコンの供給状況が変わる可能性もあり、リスクが少ないRL78/I1Dから着手したいのですが、上記のように評価ボードが入手不可で、同じS3コアのRL78/G14ともピンコンパチではないため基板流用もできません

そこで、発売日が新しいLPC824から省電力マイコンテンプレート開発に着手します。CPUボードと周辺回路が実装済みのmX-Base Board(後述)の両方が、秋月電子から簡単に入手できることも理由です。

LPCXpresso824-MAXとmX-Base Boardの接続

LPCXpresso824-MAXは、mbedとしても動作するCPUボードです。販売中テンプレートのLPC812やLPC1114では、制御系ボードとするため、mX-Base Boardと接続して動作させましたので、LPC824でもこのmX-Base Boardを使います。

LPCXpresso824-MAXは、BaseBoardとArduinoの両方のコネクタを持っています。しかし、BaseBoardコネクタを使う場合、mX-Base BoardのEthernetコネクタが接触して直接装着ができません。

LPCXpresso824-MAXとmX Base Board接続(BaseBoardコネクタ利用)
LPCXpresso824-MAXとmX Base Board接続(BaseBoardコネクタ利用)

そこで、もう一方のArduinoコネクタを使いmX-Base Boardと下図のように配線します。

LPCXpresso824-MAXとmX Base Board接続(Arduinoコネクタ利用)
LPCXpresso824-MAXとmX Base Board接続(Arduinoコネクタ利用)

これで、BaseBoard実装のLCD、リセットボタン、外部SW、ブザー、ポテンショメータ、EEPROMをLPCXpresso824-MAXから制御できます。

LPC8xxテンプレートV2.1をメジャーアップデートしV3リリース

従来LPC8xxテンプレートV2.1(2015/01/20更新)に、新たにこのLPCXpresso824-MAX向けの省電力テンプレートを追加し、合わせてLPC8xxテンプレートV3とする予定です。

これにより、NXPのLPC800シリーズマイコンへの弊社LPC8xxテンプレート対応は下表となります。

対象マイコン 推薦制御系ボード 対応テンプレート
LPC824 LPCXpresso824-MAX + mX Base Board LPC82xテンプレート(2015/04発売予定)
・シンプルテンプレート
・メニュードリブンテンプレート
・省電力テンプレート
LPC822
LPC812 LPCXpresso812 + mX Base Board LPC81xテンプレート(2015/01/20 V2.1)
・シンプルテンプレート
・メニュードリブンテンプレート
LPC811
LPC810

 

※シンプル/メニュードリブン/省電力テンプレートとは、弊社テンプレートの適用例を示すためのアプリケーションソフトです。
例えば、シンプルテンプレートは、テンプレートにチャタリング対応済みのSW入力とLED出力の2処理を追加した例で、テンプレートの所定位置に、所望処理を追加すれば、だれでも簡単にアプリケーションが完成することを示す目的で作成しております。詳細は、マイコンテンプレートサイトをご覧ください。

次期マイコンテンプレートのターゲット考察

NXPとFreescaleの合併、予想さえしなかったことです。激動するマイコン世界ですが、現在のマイコンテンプレート状況を整理し、次期テンプレートのターゲットとなるマイコンについて考えます。

入手性の良いマイコンとテンプレート販売状況

以前紹介した入手性が良いマイコンが一目で解る、チップワンストップサイトのマイコン/開発ツール検索を今回も利用させていただきます。サイト中央のマイコン/ボードタグをクリックすると、8/16/32bit処理ビットとベンダ毎に分けられたマイコンが表示されます。

一覧表が以下です。緑色がARM仕様のマイコン、青色がベンダ仕様マイコン、赤囲みがテンプレート対応マイコンで、現在4種のテンプレートを1000円(税込)で販売中です。

入手性の良いマイコンとテンプレート提供状況
入手性の良いマイコンとテンプレート提供状況

表中NXPはARM Cortex-M0のみですが、Cortex-M0+のLPC8xxも供給しています。
32bitマイコンの主流は、緑のARMマイコンです。表内のARMコアの特徴をまとめたものが下表です。

ARMコア 名称 概要
Cortex-Mx エンベデッド プロセサ 32bitの高い処理効率を維持し、業界最先端の動作と最小限のスリープ/ダイナミック電力、最小限のダイ面積を目指し設計。以下の4サブ構成。
Cortex-M0:低消費電力マイコン
Cortex-M0+:超低消費電力マイコン
・Cortex-M3:汎用マイコン
・Cortex-M4:デジタル信号制御マイコン
Cortex-Ax アプリケーション プロセサ 高度なオペレーティングシステム:OSが実行可能なメモリ管理ユニットMMU搭載マイコン
ARMx Classic プロセサ ARM11、ARM9、ARM7などコスト効果の高いマイコン

 

32bitマイコンのテンプレート対象は、Cortex-M0/M0+です。
Cortex-M3クラスになると、高価なうえに動作周波数も70MHz以上でControlよりもComputeが得意になります。IoT向けPCのEdisonRaspberry Pi 2(Cortex-A7搭載)と競合する可能性もあります。Cortex-M0/M0+は、16bitマイコン市場の置換えも視野に入れたマイコンですので、今後の普及も期待できます。
16bitマイコンは、ルネサスの超低消費電力マイコンRL78に、RL78/G1xテンプレートを販売中です。

4種テンプレートに付記した動作電圧からみえるのは、そのマイコンの想定アプリケーションです。
FreescaleのKinetis Eは、5V耐性やノイズ耐力を高めたマイコンです。また、NXPのLPC8xxは、バッテリ駆動ができ、小ピンですがスイッチマトリクスによりピン配置の自由度が高く、LPC111xも同じくバッテリ駆動可能で、第3世代でアクティブ消費電流が116uA/MHzまで低下したマイコンです。ルネサスのRL78は、広い動作電圧がセースルポイントのマイコンです。

以上が現状マイコンテンプレートの状況です。「16bitのHigh Performanceマイコンから32bit Entry+alphaのマイコンで、容易に入手できメジャーなもの」へテンプレートを提供し、「対象マイコンの速習と早期アプリ開発」が誰でもできます。テンプレートの詳細は、マイコンテンプレートサイトを参照してください。

IoTアプリケーション向きの超低消費電力マイコンと次期テンプレート

開発アプリケーションに適したマイコンを選ぶこと、これが最も重要です。汎用マイコンでも、想定した応用の範囲内で能力を発揮するように設計されているからです。
次期テンプレートは、よりアプリケーション指向の強いマイコンを選びます。当りハズレはありますが、当たればより多くのテンプレートが売れる可能性があるからです。

プログ記載の2015年1月~2月に集中して最新マイコンドレンドを分析した結果、各ベンダは、巨大マーケットを持つ「IoTアプリと車載アプリ」へのマイコン開発に力点を置きつつあることが解りました。特に車載マイコンでのこの動きの結果、NXPとFreescaleの合併となったとも言えるでしょう。

次期テンプレートもこのドレンド:IoTアプリ向けの超低消費電力マイコンに開発します。例を挙げると、ARM Cortex-M0/M0+コアでは、より低い消費電力、高エネルギー効率と低コストを狙ったFreescaleのKinetis LシリーズやNXPのLPC82x、ルネサスRL78:S3コアでは、RL78/I1Dなどです。

これらには、従来テンプレートに添付したシンプル/メニュードリブンテンプレートに加え、IoTアプリ開発の重要なポイントになる省電力テンプレート(仮称)も加える予定です。

 

IntelシニアフェローStephen Pawlowski氏によると、「これからの10年は、エレクトロニクスのイノベーションの歴史で最もエキサイティングな時代になるだろう。」だそうです。弊社マイコンテンプレートが、このエキサイティングな時代に活躍する技術者/開発者の方へ、少しでもお役立てれば幸いです。

S3コアのRL78/G14とRL78/I1D、置換えは可能か?

マルツオンラインで、ルネサスの最新省電力マイコンRL78/I1Dが入手可能になりました。1個410円~430円と手頃です。そこで、同じS3コアのRL78/G14とRL78/I1D、パッケージ比較をしました。30ピンLSSOPの場合を示します。

RL78/G14とRL78/I1Dパッケージ比較
RL78/G14とRL78/I1Dのパッケージ比較

G1x系とRL78/I1DはCompatibilityなし

RL78/G1xのRL78/G14とRL78/G13は、ピンコンパチなので、同じパッケージなら置換え可能です。

RL78/G1x系のIOポート配置例
RL78/G1x系のIOポート配置例

しかし、残念ながらRL78/I1Dは、G1x系とはRESET、Vss、VddなどのSystemピンの配置が異なるため置換えができません。S3コアのRL78/G14と同じなら、CPU基板の流用ができただけに残念です。

RL78/I1Dで追加された、コンパレータやオペアンプなどのアナログ関連の周辺回路のせいでしょうか? 両者を比べると、Systemピンは近接しているのでピンコンパチの選択肢もあったと思います。どんなことでも親切に返答してくれる、かふぇルネに聞いてみると教えてくれるかもしれません。

やはり、RL78/I1DのCPUボード:RTE5117GC0TGB00000Rが個人購入できるまで待つのが良さそうです。

新しいRL78/I1Dからマイコントレンド抽出

ルネサスの業績が黒字に回復し、「縮小と撤退」から「拡大と攻勢」へ転換したそうです。うれしいです。このルネサスからRL78/I1Dという新しいRL78マイコンが2月に発売されました。方針転換後に厳選した新製品と思われるので、その情報から最新マイコントレンドを考えました。

従来RL78マイコンと新マイコンRL78/I1Dの違い

RL78/I1D説明資料P11より抜粋
RL78/I1D説明資料P11より抜粋

「RL78/I1D」ご紹介資料P11から、従来RL78/G13、G14とRL78/I1Dの差が解ります。RL78/I1Dは、S3コアで、ADC分解能、オペアンプ、RUN動作電流などの機能が強化されています。また、従来RL78では、動作電圧に応じてオペレーションモードが固定であったのが、ソフトで変更できるようになりました。これにより、電源電圧が低下しても機能停止せず、しかもRUN動作電流も激減しましたので、長い期間マイコンが動作可能です。

さらに、非同期タイマも追加され、センサの長時間間欠動作もCPU停止:STOPのまま可能となりました。CPU起動は、「高速wakeup」対応の中速オンチップオシレータを使うと4us程度で可能です。
※RL78/G1xテンプレートは、CPU:HALTで低消費電力対応しているため、0.5us/32MHzで起動します。

ADCの計測データは、DTCで直接RAMへ転送可能です。DTCとは、簡単に言うと、DMAがメモリアクセス専用のCPU代替転送機能なのに対し、より複雑なCPU代替処理にも対応できるものです。

マイコンドレンド:省エネとIoT

2010年発売の汎用マイコンRL78/G13やG14との違いから明らかなように、最新マイコンRL78/I1Dは、オペアンプ内蔵や高速オンチップオシレータ上限が24MHz、48ピンまでの小パッケージサイズなどから、センサアプリに特化したマイコンです。

RL78/G14の高速オンチップオシレータの実質周波数上限は32MHzなので、I1DのS3コア性能は多少劣りますが、低消費電力とより低電圧での動作など、そのトレンドは、「省エネ」追求です。

IoTでは、このRL78/I1Dのような省エネマイコンが数百億個使われと予想され、価格は、使用個数に応じて激減しますので、RL78/I1DもG13やG14と同程度、またはより低価格になるかもしれません。このように、IoTアプリケーション向けの周辺回路を持つ省エネマイコンでのシェア獲得がルネサスの狙いでしょう。汎用マイコンの機能を、IoTに会わせて見直した結果とも考えられます。

RL78/I1D CPUボード入手できず

RL78/I1D CPUボード
RL78/I1D CPUボード

RL78/G1xテンプレートは、このRL78/I1Dへそのまま流用できるハズです。DTCやADCなどの周辺回路制御は、機種毎に異なりますが、テンプレート本体は、マイコンやベンダが異なっても基本的に同一だからです。
※RL78の場合は、ショート・ダイレクト・アドレッシングsreg領域を使ってARMマイコンテンプレートと比べて、少しチューニングしています。

RL78/I1DのCPUボード:RTE5117GC0TGB00000Rでテンプレートを試そうとしましたが、2015年2月現在、個人向け販売サイトには残念ながら見つかりません。入手可能になれば試す予定です。RL78/I1DがIoT汎用マイコンになる可能性が高いからです。

マイコントレンドに合わせたIoTテンプレート

従来テンプレートは、シンプルテンプレート(テンプレート動作理解が目的)と、メニュードリブンテンプレート(所望処理の簡単な取出しが目的)の2本立てでした。

マイコンドレンドが「省エネ」で、DTCやDMAを使った「マイコン内データ転送も、汎用化」しつつあるので、これらに合わせたアプリテンプレート:IoTテンプレート(仮称)も今後検討したいと思います。

マイコンテンプレートのサイト立上げのお知らせ

マイコンテンプレート関連の情報を、1ページにまとめた専用サイトを2つ立上げました。

ブログは、マイコンテンプレートの開発情報や開発経緯、Tipsなどを時系列で記載します。
ブログを最後まで読んでいただく手間を省くため、重要内容を抽出し再編しました。
紆余曲折の検討結果が、最新版テンプレートの状況になり、専用サイトにまとめられたと考えてください。

マイコンテンプレートサイト

マイコンテンプレート専用サイト
マイコンテンプレート専用サイト

記載マイコンテンプレートは、下記です。

  • Cortex-M0/LPC111xテンプレート
  • Cortex-M0+/LPC8xxテンプレート
  • S2/S3コア RL78/G1xテンプレート
  • Cortex-M0+/Kinetis Eテンプレート

サイトの「もくじ」をクリックすると、記載位置へジャンプします。スマホなどの小さい画面でも観やすいように、解像度の高いテンプレート動作中写真も掲載しております。

アプリケーション開発手順サイト

マイコンアプリケーション開発手順サイト
マイコンアプリケーション開発手順サイト

マイコンアプリケーションの開発手順を1ページにまとめました。
マイコンテンプレートを使ってアプリを開発する時の、10手順と、2補足を掲載しています。