MCU開発者のCopilot+ PC

2024年5月28日、日本Microsoft津坂社長のCopilot活用記事が、PC Watchに掲載されました。メール要約や資料分析、優先タスク振分けなどCopilotを使った活用例は、ビジネスパーソンだけでなく、MCU開発者にとっても参考部分が多々あります。

筆者が特に印象に残ったのは「エンジニアでない津坂社長でも、使い続け、議論を繰り返すことでCopilotを使いこなせる(AI筋トレ)」の部分です。

背景技術の広さ深さは見せず、使い易さを追求したツールは、Copilotだけでなく最近のツール全般に当てはまります。そのCopilotを更に進化させるGPT-4oのAI研究者視点と、MCU開発ツール変化について示します。

謎が多いGPT-4oモデル

2024年5月28日、ビジネス+IT にAI研究者、今井 翔太氏が、研究者視点のGPT-4o評価と謎、GPT-5への伏線を執筆しました。筆者が、ごく簡単にまとめたのが下記です。

“数年前ならAGI(Artificial General Intelligence、汎用人工知能)レベルに達したと想定できるGPT-4oは、AI研究者からみると、謎が多いモデルで従来スケーリング則からは不自然。しかし、殆どの人が考えるAGIに相当近づいた。GPT-4延長GPT-4oの次期超高性能モデルGPT-5準備中”

AIを利用する殆どの人、つまり、筆者などMCU開発者は、GPT-4o≒AGIと考えて良いと思います。前章、津坂社長のようにAGI化したCopilotをこき使って(!) 生産性や判断スピートを上げ、その中身や仕組みは知らなくても問題ないからです。

現在Copilotは、GPT-3.5/4でGPT-4oではありません。しかし、CopilotのようなAIツールは、使っているうちにGPT-4o/5などのテクノロジ進化と共にユーザ学習度も深くなり、最後にはユーザ専用アシスタントとなる可能性があります。

このツール自体の進化が、従来に無いAIツールならではの特徴です。

MCU開発ツール変化

MCUのIDE開発ツールは、Eclipse IDEベースが業界標準です。各MCUベンダ固有のAPIコード生成ツールやフラッシュプログラマをEclipse IDEへ機能追加し、MCU開発者へ無償提供されます。

最近、Eclipse IDEベースに代わってMicrosoft製Visual Studio Code(VSC)を使う変化が見られます。

MCUXpresso for Visual Studio Code構成(出典:NXPサイト)
MCUXpresso for Visual Studio Code構成(出典:NXPサイト)

例えば、NXPは、EclipseベースのMCUXpresso IDEの代わりに、VSCベースのMCUXpresso for Visual Studio Codeが使えます。もちろん、無償です。従来EclipseからVSCへ変えるメリットは、筆者には判りません。あえて推測すると、同じMicrosoft製Copilotとの親和性です。

つまり、数年後のAI活用MCU開発時に、EclipseベースよりもVSCの方がCopilotとの協調動作性が良いので、ユーザ能力に合わせた開発ができるかも(?) という訳です。

Summary:MCU開発者のCopilot+ PC

Microsoft発表のCopilot+ PCは、ユーザ検索履歴や能力レベルを、40TOPS以上のエッジAI NPUが学習し、ユーザに即した回答をCopilotが提供します。これは、広く深い知識が求められるMCU開発者にとっても、開発スピートアップやMCU習得の強力な助けになります。

MCU開発者がCopilotを上手く使うには、津坂社長のように使い続け、入出力議論を繰り返すことでエッジAI NPUがユーザを学習し、同時に開発者もCopilotに慣れる「AI筋トレ期間」が必要です。

CopilotなどのAIツール活用は、MCU開発者とエッジAI NPU双方の学習期間が必要
CopilotなどのAIツール活用は、MCU開発者とエッジAI NPU双方の学習期間が必要

Visual Studio Code やCopilotに慣れ、エッジAI NPUを使いこなせるよう準備が必要かもしれません。Microsoft製ツール全盛となるのは、いささか気になりますが…。AIアシスタントCopilot影響大ですね。

Afterword:VSC頻繁更新Dislike

筆者は、VSCをWeb制作に使用中です。これは、過去使っていたツールが更新停止となったからです。拡張機能の多さやユーザカスタマイズが容易なVSCですが、その頻繁な更新はあまり好きになれません。

Eclipse IDEでも、エディタは標準以外の別エディタ、例えば、Notepad++変更も可能です。その他カスタマイズ機能も、現時点ではEclipseとVSCに大差無いと思います。

AI全盛時は、もしかしたらIDEで差が出るかも(?) と思ったのが本稿作成理由です。筆者は、未だ自作PC派です。生成AI加速モジュールをPCへ追加しエッジAI性能を上げるか検討中です。


OfficeのAI Copilot活用例

OfficeツールのAI Copilot活用例と効果
OfficeツールのAI Copilot活用例と効果

MicrosoftのAIアシスタント:Copilotを使うと、Microsoft Officeツールの生産性が、具体的にどう上がるのかを示す記事を見つけたので紹介し、要旨をまとめます。

Summary:OfficeツールのAI Copilot活用例と効果

Officeツール AI Copilot活用例 効果
Word ドラフト時短 ドラフト作成 より多くの時間を思考に使える
PowerPoint ドラフト作成 より多くの時間を思考に使える
Excel データ分析、グラフ化 データ可視化分析作業の短縮
Outlook 受信メール要約作成
返信メールドラフト作成
より効率的にメール送受可能
Word/PowerPoint 品質改善 改善ポイント指摘 客観的評価で作成品質を高める
Outlook 送信メール明瞭チェック より高品質メールの送信
PowerPoint 作成資料の想定質問生成 着想/想像力の幅拡張
全Office文書 貰ったOffice文書の内容分析 文書内容理解を早める

※Officeはサブスク型Microsoft 365を想定。買い切り型Officeでも同様になると推定。
※Copilotは現在GPT-3.5/4。より人間らしいGPT-4o Copilotになると推定。

OfficeツールのCopilot活用要旨が下記です。

  1. コンテンツ作成Word/PowerPointは、Copilotでドラフト作成時短
  2. 表作成Excelは、Copilotでデータ可視化と分析時短
  3. Copilotで作成資料の客観フィードバックをかけ、資料品質向上と発想/想像力の幅拡張
  4. 受信メール要約、送信メールドラフト作成、送信前メールのCopilot分析
  5. 貰ったOffice文書のCopilot分析、早期内容理解

AI Copilot処理時間

前章Copilot活用によりOffice生産性や生成資料品質は、上がります。但し、上表にはAI Copilotの処理時間がありません。AI処理が遅ければ、実務には使えません。

つまり、実務でAIを使うには、応答性の速さ:AIレスポンスが重要ということです。前投稿GPT-4oは、正にこのAIトレンド最先端技術です。ライバルのGoogle+Anthropicも対抗技術を開発するでしょう。

そして、応答速さの次は、コスト競争になります。これが、サブスク型Microsoft 365だけでなく、買い切り型Officeと無償Copilotでも、Microsoft 365と同様のAI効果が期待できると推定した根拠です。但し、Copilot出力確度は、有償版が上になるかもしれませんが…。

AI Copilotレスポンスを満たすエッジPC性能

AI普及には、エッジ側AI処理の比重を増やすことが必須です。クラウド側だけでAI処理すると、データセンタの消費電力が膨大になり、また、AIレスポンスも悪くなるからです(AIとクラウド消費電力は、コチラの投稿2章参)。

そこで、Microsoftが想定するエッジAI Copilotレスポンスを満たすPCの要求スペックが下記です。これらは、次期Win12システム要件になる可能性があります。

Copilotレスポンスを満たすエッジAI PCハードウェアスペック
プロセサ 登録済みCPUで、搭載NPUは40TOPS以上
メモリ 16GBのDDR5またはLPDDR5
ストレージ 256GB以上のSSDまたはUFS(Universal Flash Storage)

今年リリース予定のWin11 24H2が、OSコア変更にも関わらずWin12に改名しなかった背景は、上記ハイスペックPCが、簡単に調達できないためでしょう。

今PCを買うなら、このスペック以上にしないと、Win11 TPM 2.0足切りのように、Win12アップグレート不可になるかもしれません。

AI Copilot時代のWindows PC

AI CopilotとWindows結合がもたらすアプリ生産性向上
AI CopilotとWindows結合がもたらすアプリ生産性向上

Microsoft想定のAI PCハードウェアとWindows、Copilot、Officeの組合せは、Summaryで示したようにPCの使い方を根底から変える可能性があります。

コンテンツ作成は、AI Copilot準備ドラフトから着手するため、ユーザは、オリジナリティ豊かな独自コンテンツ生成に集中できます。さらに、生成コンテンツにCopilotで客観フィードバックをかけ、より高品質コンテンツに仕上げることも容易です。

また、大量メールもAI Copilotで事前に振分け、重要メールのみの対応も可能となるでしょう。

つまり、低順位Office業務は、全てCopilotが代行し、高優先業務のみユーザが行うWindows AI Copilot PCへと発展します。これは、本稿で示したOfficeツール例だけに留まりません。

Microsoftが、AI CopilotとWindowsの結合をにすれば、Office同様他のPC業務も、Mac/Linuxよりも高いPC生産性が期待できます。Microsoft製Copilotと他社Mac/Linuxとの結合度が低ければ、Windowsに比べ確度の低いAI出力となるからです。

※Edgeの前のMicrosoft製ブラウザ:Internet ExplorerとWindowsは密結合であった。が、確か独占禁止の点から、IEとWindowsは完全分離となった。CopilotとWindowsもIE同様、分離可能性はある。Microsoftは、Windows AI Copilot PC商用名を「Copilot+ PC」とし対抗気配。

AI普及2アプローチとエネルギー計画

WindowsとOfficeでシェアを持つMicrosoftは、本稿のようにCopilot活用のAI PCアプローチからAI普及を図ります。一方、PixelなどAndroidスマホのシェアを持つGoogleは、写真加工や画像認識、スマホ通話即時翻訳などAIスマホのアプローチからAI普及を図っています。

AI PCかAIスマホか、いずれにせよAIが、次世代の情報機器/通信/電力/半導体製造産業を牽引することは確実です。

現状のままでは2030年に世界総電力10パーセント程度をデータセンターが占める(出典:NTT STORY)
現状のままでは2030年に世界総電力10パーセント程度をデータセンターが占める(出典:NTT STORY)

日本では経済産業省が、これら産業のエネルギー基本計画を策定しています。AI普及や最近の国際状況から、見直し議論も盛んになってきました。今後の動向に要注目です。

Afterword:長文言い訳

日本のエネルギー基本計画なども記述しましたが、筆者が言いたかったことは、Summary章「AI Copilot活用でOffice生産性は上がる」です。中でもOffice資料のCopilot客観フィードバックは、期待度大です。残念ながら本記事は、未だ全て手作業生成ですが…。

日経XTECHの元記事に、生産性向上の詳しい説明があります。この記事は、クラウドAI CopilotとMicrosoft 365を対象とし、クラウドAI Copilotの仕組み利用心得などの関連記事もあります。

ただ、クラウドAI処理は、電力不足懸念からエッジAI処理分散が必須で、この動きにマッチしたMicrosoftの Copilot+ PC登場ストーリとなり長文化しました。


安く早いGPT-4o

AI対人間インタフェース性能を向上するGPT-4o
AI対人間インタフェース性能を向上するGPT-4o

2024年5月13日、GOMA(Google、OpenAI、Microsoft、Anthropic)の一角、OpenAIが、GPT-4o(オー)を発表しました。オーは、omni、ラテン語のすべてを意味し、テキスト、音声、画像、映像の入力すべてに統合対応します。従来ChatGPTよりも安く、早い生成AI入出力処理が可能です。

Summary:安く早いGPT-4o

GPT-4o特徴、OpenAI発表の要約などが堀江貴文氏のYouTube動画(6分31秒)で判ります。
前半2分40秒までが、「本物の人間、堀江氏」解説、後半は、GPT-4oを使ってOpenAI発表を要約し、それを「AIで生成した堀江氏」が説明しています。

既存ChatGPTや競合他社比、利用料金が50%安く、音声と画像理解が速いのが統合対応GPT-4oの特徴です。例えば、音声応答は人間と同じ会話速度、笑い声や感情表現画像も出力できます。

Mac版アプリも同時発表、Windows版は、今年後半リリース予定です。

対人間インタフェース性能向上

AIを人が上手く使うコツは、AIへの質問力です。上手い質問ができれば、所望の回答が得られます。ただ現在、AI自身が急変化しています。この過渡期のAIに合わせた質問のコツを人が掴むのは大変です。

そこで、人間同士の対面会話と同じようにAI側が対応できれば、より簡単に質問ができます。AI側が人に近づくからです。また、対人間インタフェース性能向上によりAI自身の学習速度も更に上がります。

安く早いGPT-4o の特徴が活かせるのは、このAI対人間インタフェースの部分です。

例えクラウドAI利用時でも、GPT-4oは、人と同じレスポンス速度で会話し、人の画像を認識、笑うなどAI感情表現も出力します。堀江氏動画(2分5秒頃)で語られた、GPT-4oとぬいぐるみを使った子供や老人のAI話し相手のフロントエンドとして十分使えます。

つまり、AI入出力を、より人間らしく効率的にできる能力をGPT-4oは持っています。

筆者としては、PC向けだけでなく、エッジAI MCU/MPU向けアプリも欲しいです。
※AIとAIデータを引出すChatGPTなどの役割は、コチラの投稿1章参照。

シンギュラリティ

AIが人間よりも賢くなるシンギュラリティ、2045年問題
AIが人間よりも賢くなるシンギュラリティ、2045年問題

AIが人間よりも賢くなる時を、シンギュラリティ(日本語は技術的特異点)と言います。AIの世界的権威:Ray Kurzweil氏が、2005年の著書でシンギュラリティを2045年と予測したため、2045年問題とも呼ばれます。

筆者は、GPT-4oにより、AIがシンギュラリティに一歩近づいたと思います。最近AI関連の話題は、食傷ぎみですが、GPT-4o出現は、予測よりも早くシンギュラリティになる可能性を秘めています。

GoogleやAnthropicのGPT-4o対抗ChatGPT、MicrosoftのGPT-4o対応Copilot、OpenAIの次期GPT-5がどれ程の能力を持つか想像もできません。ただGOMA各社が、AI開発を加速中なのは確かです。

また、進化中のAIが、次世代半導体も牽引しています。GOMAだけでなく、半導体製造、電力、通信各社もAIが動向を左右しています。生成AI革命といわれるゆえんです。
※生成AIと電力、通信会社の関係は、コチラの投稿参照。

Afterword:MCUソフトウェア開発史と似ている?

現在のMCUソフトウェアは、ベンダHAL(Hardware Abstraction Layer)APIを利用した開発です。数十年前のMCU毎に異なるハードウェアドライバを自作し、アプリ担当に自作APIを提供していた頃とは別世界です。

レベルは違いますが、AI進化もこのMCU開発史に似ています。数年後には、人工知能活用開発が普通になるかもしれません。今、AI進化過程を実感できる我々は、幸せだとも思います。

MCU開発者が、PC利用や開発方法を根本から変える可能性があるAI状況を知ることは必然です。根本変化、別世界に対応できるよう状況を把握しておきましょう。


Windows 11シェア低下

世界のWindows 10シェアは増加傾向で、2024年4月に70%を超え、逆にWindows 11シェアは、2024年2月に史上最高の28.16%となったが、4月には25.65%へ低下しました。その背景を考えました。

Windows 10(紫)とWindows 11(青)シェア推移(出典:statcounterに加筆)
Windows 10(紫)とWindows 11(青)シェア推移(出典:statcounterに加筆)

Win11伸び悩み根本原因

Win11シェア伸び悩み解説記事は、2つ理由を挙げています。

  1. Win11のAndroidアプリ廃止
  2. スタートメニュー広告表示

ブラウザは、検索履歴からユーザが興味を持つ広告を表示します。Win11スタートメニューは、何を基準に広告するか不明(おそらくエッジAI NPU)ですが、スタートメニューフィールドの広告は、邪魔です。

筆者は、Windows/MacOS/Linuxクロスプラットフォーム動作アプリが増えたこともWin11伸び悩みの一因だと思います。例えば、大手MCU開発ツールは、クロスプラットフォーム動作です。Windowsに固執する必要はありません。

一方、Win10シェアが増えたのは、Win11を離れたユーザが、使い慣れたOSへ戻ったからだと思います。例えば、Win11タスクバーは、上下位置のみ配置できますが、Win10は上下左右に配置可能で、自由度が高いです。

このようにOS操作性は、Win10比、Win11は明らかに劣化しました。Win10とOSコアが同じなのに操作性が劣化したWin11を、積極的に使う理由が無いのです(Win11 TPM 2.0の役目は、Afterword参照)。

但し、Win10サポート終了は、2025年10月14日、残り18か月です。この18か月中に次の新OSへの準備が必要です。

新OS検討項目

Windows 10の次の新OS3候補
Windows 10の次の新OS3候補

Win10サポート終了後の新OS選択肢は、Windows、MacOS、Linuxなどがあります。

検討事項は、現在使用中のアプリが新OSへ移行できるか否か、移行できない場合は、代替アプリが新OSに有るか無いかです。

※次期Win11 24H2は、OSコアが現行Win11から変わります。当然、アプリ移行リスクはありますが、本稿では問題なく移行できると仮定します。

一番気になるアプリは、やはりMicrosoft Officeでしょう。Officeは、MacOSでも動作しますが、Linuxは非動作です。代替アプリは、無償LibreOffice、またはWeb文書作成ツール(Web Office、Google Doc/Sheets)などです。

残念ながらWeb文書作成ツールは、デスクトップアプリ比、機能的に劣る傾向があり簡単な修正や閲覧向きです。また、MacOS/Linuxには、Windowsアプリを仮想的に動作させるアプリ(Wine、VirtualBox)などもありますが、現状Windowsアプリ全てが完全に動作するとも限りません。

新OSは、Microsoft Office最重視で考えると、WindowsまたはMacOS、次点がLinux+代替LibreOfficeとなります。

アプリケーションファースト

ちなみに、2024年5月2日、無償LibreOffice最新版の定期1ヵ月更新があり、LibreOffice 24.2.3となりました。LibreOfficeは、Windows/MacOS/Linuxクロスプラットフォーム動作のアプリです。

従って、文書作成ツールLibreOfficeをMicrosoft Officeと同じように使えれば、先に挙げたMCU開発ツールと同様、OSは何でも選択可能です。

筆者は、MCU開発者ですので、MCU開発ツールと文書作成ツールの2つが最重要アプリです。

そこで、OSにLinux Mintを選択すれば、慣れたWindows操作に近いLinux環境が、調達コスト0で構築できます(関連記事:ドイツ自治体、Microsoft OfficeからLinuxとLibreOfficeへ移行)。

弊社が現在Win11インストール条件を満たさない最古参PCを使ってLinux Mint+LibreOffice+MCU開発ツールをテスト中なのは、Windows OS代替としてのLinux環境に慣れるためです。

Windows/MacOS/Linuxクロスプラットフォームアプリは、今後増えると思います。また、Windows仮想化アプリの性能向上も期待できます。アプリケーションファーストでOSを選択できる日も近いと思います。

Summary:Windows 11シェア低下の3背景

世界のWindowsシェア(2024年4月)
世界のWindowsシェア(2024年4月)

2024年4月現在、70%超のWin10世界シェアに対し、Win11シェアは25.65%と伸びていません。その背景を3つにまとめました。

  1. スタートメニュー広告表示やタスクバー上下位置などWin10比、Win11の操作性劣化
  2. MacOSやLinuxのWindowsアプリ仮想収容に対し、Win11のAndroidアプリ廃止
  3. クロスプラットフォームアプリ増加によるアプリケーションファーストOS選択が浸透中

Afterword:TPM 2.0役目とエッジAI

ネットカフェPCのOSは、日本ではWin11アップグレード要件TPM 2.0装備の最新PCでもWin10を使います。セキュリティ強化Win11 TPMと既存Win10操作性を比較し「セキュリティよりも操作性に軍配が上がった」からです。

もしWin11がWin10と同じ操作性でセキュリティ強化だけなら、ネットカフェPCは、順調にWin11へ移行していたと思います。次期Win11 24H2は、エッジAIを強化しPC生産性や操作性を向上させる可能性があります。

ネットカフェPCが、エッジAI強化Win11 24H2へ移行するか、または、Win10をサポート終了まで現状維持するのかは、観察が必要です。

Microsoft方針が、以下なら見通しも明るいと思いますが…。

  1. Win11操作性をWin10へ戻し、同時にAI強化を行う(Win11 24H2)
  2. Windows操作性を、AIが全て自動設定する(Win12 ?)

要するに、「他OSに無いWindows機能が、強化AIだ」とユーザに認識してもらうことが、今後のWindowsシェア伸長に必須なのです。Microsoft は、WindowsとエッジAI(Copilot)統合を狙うかもしれません。

さて、アプリケーションファーストのOS選択は、ネット検索をお好みのブラウザで行うのと似ています。ネット情報は同じでも、特徴がブラウザ毎に異なるため、効率的な結果取得に差が出るからです。

例えば、2024年4月現在日本ブラウザシェアは、1位Crome 57.6%、2位Safari 21.09%、3位Edge 14.98%、4位Firefox 3.3%、筆者が好きな広告非表示Braveは、圏外などです。

このような国別、地域別の様々なシェアを示してくれるのが、statcounterです。動向予測に便利です。


生成AIデータセンタとIOWN

サーバやネットワーク機器を安全に管理運用する施設がデータセンタです。世界規模の生成AI需要急増に対し、米)大手AI企業の日本国内へのデータセンタ新設が話題です。2024年4月21日その背景が、欧米に比べ日本のプライバシー規制の緩さだとTV放送がありました。

筆者は、地震国日本にAI関連投資が盛んな理由は、地理的に離れたデータセンタ間を、低遅延接続できるIOWNがあるからだと思います。このリアルタイムネットワークAI処理の要、IOWNを説明します。

データセンタ間IOWN接続遅延

光電融合デバイスによるNTT IOWN APN(オールフォトニックス・ネットワーク)は、従来比電力効率100倍、伝送容量125倍、エンドエンド遅延1/200が目標です(関連投稿はコチラ)。

IOWN特徴(出展:NTTサイト)
IOWN特徴(出展:NTTサイト)

2024年4月12日、NTTは、IOWN APNの英国と米国でのデータセンタ間接続実証結果を発表しました。

英国、米国のIOWN APN実証実験(出典:NTTサイト)
英国、米国のIOWN APN実証実験(出典:NTTサイト)
400Gbps通信 データセンタファイバー距離(km) 遅延時間(ms) 遅延揺らぎ(μs)
London、UK 89 0.893 0.035
Ashburn、US 4 0.062 0.045

同一施設データセンタ間遅延規定<2ms

同じ施設、場所の複数データセンタ間の接続遅延は、2ms以内の規定があります。

従って、IOWN APN実証結果の遅延1ms以下、揺らぎ1μ秒以下は、例えデータセンタ設置場所が離れていても、規定2ms以内を満たし、同一施設データセンタとして機能することが判ります。

また、IOWN APN回線は、ダークファイバー新設無しで波長追加により提供できることも特徴です。APN提供までの時間短縮が可能だからです。

※ダークファイバーとは、敷設光ファイバーのうち、未使用で光信号が稼働していない(ダークな)芯線。

つまり、地理的に分散したデータセンタ間をAPNで接続しておけば、地震や過負荷トラブル発生時でも当該データセンタの負荷をAPNで別の場所へ移動できます。そして、あたかも同一施設のデータセンタのように稼働を続けられます。

データセンタ信頼性向上に役立つIOWN APNは、地震国日本ならではのネットワーク技術です(関連記事:NTT光ファイバー分岐・合流に世界初成功)。

NTTは、これら特徴や欧米でのAPN実証実験により、光電融合デバイスネットワークIOWN APNを、生成AIデータセンタや金融分野向けのワールドワイドインフラとして普及を狙っています。

郊外データセンタと市中カメラのAPN接続

大都市圏における郊外型データセンタによるAI分析(出典:NTTサイト)
大都市圏における郊外型データセンタによるAI分析(出典:NTTサイト)

また、NTTは2024年2月20日、武蔵野市データセンタと横須賀市設置カメラ間の100kmをIOWN APNで接続し、郊外データセンタで市中カメラのリアルタイムAI分析実験を行いました。

これは、超高速ネットワークを活かしたリアルタイムクラウドAI処理例です。但し、超高速ネットワーク回線が十分安くなった時の話です。未だ高価なIOWN1.0ですが、IOWN4.0で現状インターネット並み価格になった後の話です。

それまでは、クラウド側よりもエッジ側でAI処理を行うアプローチが、AI処理遅延、電力消費の点から現実的だと思います(関連投稿:エッジAI導入アプローチ)。

日本への欧米AI投資

OpenAI Japan 始動(出典:OpenAI Japan)
OpenAI Japan 始動(出典:OpenAI Japan)

AI関連投資は、データセンタだけではありません。

2024年4月15日、米OpenAIは、アジア初のOpenAI Japan始動を発表しました。日本語最適化GPT-4カスタムモデルの提供を開始するそうです。2024年4月10日、米Microsoftも、日本へAI研究所など今後2年間で29億ドルの投資を発表済みです。

もちろん日本側AI投資も盛んです。例えば、4月19日、KDDI の1000億円、4月23日、ソフトバンクの1500億円投資などです。

いずれの投資も、高信頼ネットワークインフラ技術IOWNが日本にあるからです。

Summary:生成AIデータセンタとIOWN

生成AIやインターネット金融の要であるデータセンタは、災害やセキュリティ事故などのリクスに強いことが必要です(日本データセンタより)。

世界規模の生成AI需要急増に対し、地震国日本で米)AIデータセンタ新設やAI関連投資が盛んな背景は以下です。

  1. 欧米よりも緩い日本のプライバシー規制
  2. データセンタ地理的分散配備を可能とする低遅延NTT IOWN APN接続

Afterword:次回投稿5月10日(金)

来週5月3日(金)は、ゴールデンウイーク中のため休みを頂き、5月10日(金)に次回投稿します。


エッジAI導入アプローチ

市中ビデオカメラへのエッジAI応用例とどの程度TOPS能力が必要かが判る記事、STM32F3マイコンの電動自転車へのAI応用記事から、MCUとMPU/SBCのエッジAI導入アプローチの違いを説明します。

ビデオカメラのエッジAI応用例

AIビジョンプロセサHailo-15によるカメラノイズ除去、鮮明化例(出典:記事)
AIビジョンプロセサHailo-15によるカメラノイズ除去、鮮明化例(出典:記事)

上図は、左側オリジナルビデオ画像を、AI Visionプロセサ:Hailo-15を使って、ノイズ除去と鮮明化、人物認識を行った例です。

この例では、低照度下で撮影した4Kビデオ画像のノイズ除去に約100ギガオペレーション/秒(GOPS)、30フレーム/秒のリアルタイムビデオストリーミングなので3 TOPS処理能力が必要です。

Hailo-15は、AI処理能力に応じて現在3製品をラインナップしており、それぞれのTOPS値が下図です。

Hailo-15ラインナップ’(出典:HAILOサイト)
Hailo-15ラインナップ’(出典:HAILOサイト)

7 TOPSのHailo-15Lでも十分なビデオカメラエッジAI処理が可能です。カメラ外付けのHailo-15は、例えば、SBC(シングルボードコンピュータ)Raspberry Pi 5と組み合わせると面白い装置が開発できると思います。

同様のビデオエッジAI処理をMCUで実現する場合は、コチラの投稿で示したCortex-M85コア搭載RA8D1があります。

電動自転車のエッジAI応用例

2024年4月3日、STマイクロは、電動自転車搭載の汎用MCU STM32F3(Cortex-M4/72MHz、Flash/128KB)へ、無償エッジAI開発ツールSTM32Cube.AIを使って、自転車タイヤの空気圧を推定、空気を入れるタイミングを示すAI機能を実装しました。

STM32F3は、上記AI機能の他にも自転車本体の電動アシスト量制御やモータ制御も行っています。つまり、空気センサなどの追加ハードウェア無しでエッジAI機能が低コストで実装できた訳です。

STM32F3へのエッジAI応用例(出典:STマイクロ)
STM32F3へのエッジAI応用例(出典:STマイクロ)

STマイクロのMCUソフトウェアは、HAL(Hardware Abstraction Layer)APIを使って開発すると、同社の異なるMCUコアでも移植性の高いソフトウェアが作れます。

最新40nmプロセス製造のSTM32F3上位機種が、汎用STM32G4(Cortex-M4/170MHz)です。STM32G4ソフトウェア開発をご検討中の方は、弊社STM32G0x(Cortex-M0+/64MHz)テンプレートをご活用ください。
また、より低価格低消費電力なSTM32C0(Cortex-M0+/48MHz)へもG0xテンプレートが適用可能です。
詳細は、info@happytech.jpへお問い合わせください。

Summary:エッジAI導入の2アプローチ

エッジAI導入の2アプローチ
エッジAI導入の2アプローチ

実際のエッジAI応用例から、MCUとMPU/SBCではエッジAI導入アプローチが異なる事を示しました。

MCUは、STM32F3例が示すように、「追加ハードウェア無し低コストAI実装アプローチ」です。STM32Cube.AIを使い、実装MCUへソフトウェアのみでAI機能追加を行います。

MPU/SBCは、外付けHailo-15H/M/Lを使ってエッジAI処理を行います。「拡張性重視のAI実装アプローチ」です。

ユーザが求めるAI機能は、今後益々増えます。エッジAI処理増加により、より高い電力効率で高性能な処理コアが求められるのは、MCUもMPU/SBCも同じです。

製品開発には、ある程度の期間が必要です。この期間中に増加するエッジAI処理増に耐えられる製品の処理コア選定は、重要検討ポイントになるでしょう。

関連投稿:MCUとMPUの違い

Afterword:ビデオエッジAI処理プロセス

ビデオエッジAI処理プロセス(出典:HAILO記事)
ビデオエッジAI処理プロセス(出典:HAILO記事)

最初の記事に、ビデオエッジAI処理プロセスが良く判る図があります。これを見ると、エッジAI処理がハードウェアの並列処理に向いていることも判ります。

ハードウェアは、製品化後、簡単に追加ができないため、どの程度の余力を製品ハードウェアに持たせるかは、コストとの兼ね合いで「永遠の課題」です。これは、ソフトウェアのみでAI機能を実装するSTM32Cube.AIでも同じです。製品実装済みMCUの余力を上回るAI機能追加はできないからです。

つまり、当面の安心をMCU開発者へ与えるには、最新MCUの製品利用がBetterということです。


LibreOffice最新版、安定版更新

ものもらいのため、今週投稿は、LibreOffice更新情報と関連トピックを簡単にお知らせします。

最新版LibreOffice 24.2.2、安定版LibreOffice 7.6.6へ更新
最新版LibreOffice 24.2.2、安定版LibreOffice 7.6.6へ更新

Summary:LibreOffice最新版、安定版更新

3月28日、LibreOffice最新版の1ヵ月定期更新があり、LibreOffice 24.2.2となりました。
同時に、3ヵ月定期更新の安定版もLibreOffice 7.6.6になりました。

LibreOffice更新方法

Windows/MacOS/Linuxクロスプラットフォーム動作で、Microsoft Officeに対抗できる無償文書作成ツールがLibreOfficeです。

LibreOfficeには、最新機能実装の約1ヵ月定期更新LibreOffice最新版と、最新版へ数回分の更新プログラムを適用した約3ヶ月定期更新LibreOffice安定版、これら2種類があります。

LibreOfficeの更新方法は、簡単です。毎回、新規インストールと同様に新版インストーラを実行すれば、旧版の各種設定が、そのまま引き継がれるからです。

筆者お勧めの設定は、コチラに投稿したセキュリティ対策程度です。後は、お好きな利用フォントなどを設定すれば、デフォルトのままで良いと思います。

ドイツ政府、Microsoft OfficeからLibreOfficeへ移行

ドイツ政府 PC30000台をLibreOfficeへ移行
ドイツ政府 PC30000台をLibreOfficeへ移行

2024年4月4日、ドイツ地方政府が30000台のPCをLinuxへ乗り換え、文書作成ツールをMicrosoft OfficeからLibreOfficeへ移行した、とLibreOffice Blogが報じています。

ドイツ地方政府は、無償オープンソースソフトウェアでソフトウェア環境構築を目指すようです。目的は、経費削減、または、ソフトウェア自主開発化でしょうか? 後者だと、技術者は嬉しいです!

Afterword:LibreOfficeで判る多様性

Microsoft OfficeからLibreOfficeへ変わっても、基本操作は変わりません。ポイントは、慣れの問題のみです。

今春から新しい仕事環境に変わった方も多いでしょう。新たにLibreOfficeを使い始める良いタイミングです。LibreOfficeを使うと、慣れ問題解消と同時に、PC文書作成ツールの良さ/悪さも判ります。

多様性が実感できます。

2024-04-13 追記:Microsoft検証済みアプリではありませんダイアログ対処

Microsoft検証済みアプリではありませんダイアログ対処
Microsoft検証済みアプリではありませんダイアログ対処

アプリインストール時、Microsoft検証済みアプリではありませんダイアログ表示時は、アプリ>アプリの詳細設定のアプリを入手する場所の選択を、「場所を選ばない」へ変更します。
デフォルト「Microsoft Storeのみ(推薦)」では、ストアアプリのみインストール可能です。



Windows 12 AIとNPU

Windows 12は、40TOPS以上のNPUが推薦要件になりそうです。TPM 2.0が、Win11アップグレード要件だったのと同様です。

クラウド電力不足解消のエッジAI半導体が、今年のPC CPUと組込みMCUのトレンドになりそうです。

40 TOPS以上NPUとは?

40TOPS以上のNPUは、かなり高性能PCやゲーミングPCを指す
40TOPS以上のNPUは、かなり高性能PCやゲーミングPCを指す

TOPS(Tera Operations Per Second)とは、1秒間に処理できるAI半導体の演算数です。

NPU(Neural Processing Unit)は、GPU(Graphic Processing Unit)処理の内、AI処理に特化した処理装置のことで、1TOPSなら1秒間に1兆回のAI演算が可能です。※GPU/NPUの違いは関連投稿参照。

例えば、GeForce RTX 3060クラスのGPUは約100TOPS、NPU内蔵最新Intel CPUは34TOPS、Apple M3は18TOPSの性能を持つと言われます。

つまり、40TOPS以上のNPU要件は、現状比、かなりの高性能PCやゲーミングPCを指します。

Windows 12のAI

現状のNPU処理は、Web会議の背景ぼかし、複数言語の同時翻訳、通話ノイズの除去など、主にローカルPCのリモート会議AI演算に使われます。COVID-19流行中のユーザ要望はこれらでした。

しかし、Microsoftが急速普及中のAIアシスタントCopilotは、PCユーザのAI活用を容易にし、AI関連処理はローカルNPUからクラウドデータセンターの利用へと変わりました。

AI活用がこのまま普及すると、世界のクラウド側電力不足は、避けられなくなります。このクラウド側対策が、電力効率100倍光電融合デバイスのNTT)光電融合技術です(関連投稿:IOWN)。

現状のままでは2030年に世界総電力10パーセント程度をデータセンターが占める(出典:NTT STORY)
現状のままでは2030年に世界総電力10パーセント程度をデータセンターが占める(出典:NTT STORY)

クラウドAI処理ではレスポンスも悪くなります。MicrosoftとIntelは、クラウド電力不足やタイムラグ対策に、ローカル(エッジ)AI PC、つまりNPU処理能力向上が、クラウドとエッジのAI処理分散になり重要と考えている、と筆者は思います。

組込みMCUのAI

AI活用や電力効率向上は、組込みMCUへも浸透しつつあります。

エッジAI MCUアプリケーションは、ポンプ異常検出、故障検出、顔認識、人物検出など広範囲に渡ります。

STマイクロは、次世代STM32MCU向けに18nm FD-SOIと相変化メモリを組み合わせた新プロセス技術を発表しました。これにより、従来比、電力効率50%以上、メモリ実装密度2.5倍、AI機能集積度3倍に向上します。量産は、2025年後半見込みです。

18nm FD-SOIと相変化メモリ技術を組み合わせた次世代STM32MCUプロセス(出典:STマイクロ)
18nm FD-SOIと相変化メモリ技術を組み合わせた次世代STM32MCUプロセス(出典:STマイクロ)

ルネサスは、組込み向け次世代AIアクセラレータを開発し、従来比、最大10倍の電力効率で高速AI処理を可能にしました。これにより、様々なエッジAI MCUアプリケーションに柔軟対応が可能です。

DRP-AIによる枝刈りAIモデルの高速化(出典:ルネサス)
DRP-AIによる枝刈りAIモデルの高速化(出典:ルネサス)

スマートフォンのAI

PCやMCUの一歩先を行くエッジAI活用が、現状のスマートフォン向けプロセサです。

顔認証や音声認識、スマホ写真の加工や暗い場所の撮影補正など、全てスマホ単独で、しかも高速AI処理を行っています。これらスマホの低電力高速AI処理に、NPU内蔵スマホプロセサが貢献しています。

PCは、スマホにない大画面を活かしたAI活用、MCUは、スマホ同様の低電力高速AI活用を目指しAI半導体を準備中なのが今年2024年と言えます。

Summary:AI半導体がPC/MCUトレンド

半導体は、供給に年単位の準備期間が必要です。最先端AI半導体であればなおさらです。

急速なAI活用や普及は、クラウド電力不足やユーザ要望変化をもたらし、解消にはハードウェアのエッジAI半導体が不可欠です。

PC/MCU業界は、どちらもAI半導体の安定供給に向け足並みを揃え準備中です。Microsoftが、ソフトウェアWindows 12提供を遅らせ、代わりにWin11 24H2としたのも足並み合わせのためと思います

足並みが揃った後のWindows 12推薦要件は、40 TOPS以上の高性能NPUになるかもしれません。
組込みMCUは、エッジAI活用と電力効率向上の新AI半導体製造プロセスに期待が高まっています。

PC、MCUどちらもAI半導体が2024年トレンドです。

Afterword:AI PC秘書/家庭教師

AI PC秘書と家庭教師イメージ
AI PC秘書と家庭教師イメージ

エッジAI PCのNPU性能が上がれば、秘書や家庭教師としてPCを活用できます。助けが必要な処理や不明な事柄は、AI PC秘書/家庭教師から得られるからです。2010年宇宙の旅のHAL 9000のイメージです。

AI PCがHAL 9000に近づけば、NPUがユーザ個人情報を学習し、ユーザ志向、能力レベル、癖などに基づいたAI回答を提供するでしょう。ブラウザが、ユーザ志向に沿った広告を表示するのと同じです。

個人情報は、セキュリティの点からクラウドよりも本来エッジPCが持つべきです。AI PCを秘書/家庭教師として活用する時は、個人情報を学習/保持する高性能NPUは必然だと思います。

TPMと似た性質をNPUも持つと言えます。40 TOPS以上のNPU必要性は、どの程度高度/高速なAI PC秘書/家庭教師を希望するかに依存します。個人的にはHAL 900は欲しいかな?

2024-04-06 追記:40 TOPS M.2生成AIアクセラレーションモジュール

HAILOからM.2フォームファクタへ追加できるWindows向け40 TOPS AIアクセラレータモジュールが発表されました。


自動運転EV開発終了と技術者

Appleの自動運転EV開発終了の3理由記事(2023年3月22日、ITmedia)は、技術的面白さとビジネスとの共立の難しさを示しています。

日本では3月末は、配置転換の時期です。この記事を技術者目線で読み、個々の技術者にビジネスセンスが必要だという感想を書きます。

Apple自動運転終了理由

Appleが自動運転EV開発を終了
Appleが自動運転EV開発を終了

Appleは、ハードウェア/ソフトウェアの両方を開発・製造でき、ユニークな製品やサービス、価値観をユーザへ提供する企業で、現在GAFAMの1社です。そのAppleが、自動運転EV開発を終了した理由は、

  1. EV商品性と採算性の難しさ
  2. 自動運転技術の難しさと高リスク
  3. 自動運転中の新価値提供の難しさ

の3つを記事は挙げています。

難しさの中身は、記事に判り易く説明されています。本ブログ読者の方は、中身が判り、行間の技術困難度も推測できると思います。※自動運転とEVは別物も判る。

技術者がこれら課題を克服すれば、他社やライバルより優位に立てること、優位に立つために日々切磋琢磨していること、その結果喜びも得られること、つまり、技術者には最先端で面白い課題だと判ります。

配置転換技術者のモチベーション

配置転換技術者のモチベーションアップにビジネスセンス必要
配置転換技術者のモチベーションアップにビジネスセンス必要

その最先端技術者集団のAppleが、ビジネス的には自動運転EV開発の終了判断をしました。これにより、自動運転EVからAI部門へ配置転換された2000人の技術者は、どうモチベーションを保つのでしょうか?

※モチベーションとは、行動を維持する原動力や動機となる目的やきっかけ。

道路やネットワークなど外部環境と協調動作する自動運転EVに対し、AIは、自らネットワークを探査・情報収集し、生成AIで新たな情報を作成します。素人ながら、真逆の感じがします。

技術者の別部署への配置転換や移動は、ありがちです。詳細な移動理由が判ることもあるでしょうが、多くの場合、個人には簡単な移動通知だけです。

移動技術者がモチベーションを維持するには、ビジネスセンスが必要だと思います。つまり、記事記載の様々な「ビジネス採算性やリスク」を、自分で評価・分析できることが必要だと思います。

ビジネスセンスと技術の両方をバランス良く持てば、配置転換理由を深く理解し、新なモチベーションアップに繋がります。

Summary:技術造詣の深さとビジネスセンス

技術者に必要な技術造詣の深さとビジネスセンス
技術者に必要な技術造詣の深さとビジネスセンス

専門技術の造詣が深いこととビジネスセンスの両方を持つことは、技術者に必須です。自分の立ち位置を正確かつ俯瞰的に捉えるためです。

技術者・開発者は、専門分野の視野狭窄に陥る危険性もあります。技術的面白さにより、現状維持バイアスも発生します。

これらの危険には、採算性などのビジネスセンスを養い、俯瞰的なビジネス視野も同時に持つことで危険回避とモチベーション維持になると感じた記事でした。

Afterword:IoT MCU開発者も必読記事

Apple以外でもDysonやGoogleが撤退した自動運転開発史や、スマホを超える自動運転中のエンターテインメントなど、IoT MCU開発者にも役立つ面白い記事です。

自動運転レベル4の実証実験は、日本各地で行われています。が、事故報告も…。リスクを下げるためか、同業他社協業も検討中だとか・・・。激動自動運転とEV、目が離せません!


文書作成ツール現状

次期買い切り型Office 2024を、Microsoftが今年後半に提供予定です。
現状Officeと、その対抗無償文書作成ツール:LibreOfficeの現状をまとめました。

Microsoft買い切り型Officeサポート期間

買い切り型Office メインサポート期間 延長サポート期間
Office 2019(2018年9月24日提供) 2023年10月10日 2025年10月14日
Office 2021(2021年10月5日提供) 2026年10月13日 無し
Office 2024(2024年後半提供予定) 2029年(5年推定) 不明

買い切り型Officeのサービスサポート期間を一覧にしました。買い切り型は、サポート期間中は機能変更やセキュリティ更新プログラムが購入ユーザへ提供されます。Office 2019までは、延長サポートがありましたが、Office 2021からは、延長サポートはありません。

従って、現行の買い切り型Officeユーザは、2025/6年10月までのサポート期間中は安心して運用できます。サポート期間後もそのまま使えますが、セキュリティリスクが高まります。

Microsoftは、このサポート期限がある買い切り型Officeサービスの代替として、1年単位サブスクリプション型Office 365(最大5ユーザ、1TB OneDrive付き)を現行Officeユーザへ勧めてきました。
※1ヵ月試用サブスクリプションあり。

サブスクリプション型Office 365は、常に最新機能や更新プログラムが適用されますが、ネットワーク接続が必須です。このネット接続が不可能なデバイスや医療検査機器を対象とした次期Officeが、提供予定のOffice 2024です。

もちろん、買い切り型OfficeユーザがOffice 2024を購入すれば、従来のOffice 2021と同様、ネット経由更新の最新Officeとして利用できると思います。サポート期間は、発売後5年が従来Officeでしたので、2029年と推定しました。

LibreOffice 24.2.1

LibreOffice

Windows/MacOS/Linuxクロスプラットフォーム動作でMicrosoft Officeに対抗できる無償文書作成ツールが、LibreOfficeです。

LibreOfficeには、最新機能を実装した約1ヵ月定期更新のLibreOffice最新版と、最新版へ数回分の更新プログラムを適用した約3ヶ月定期更新のLibreOffice安定版、これら2種類があります。

LibreOffice最新版は、リース年.月へバージョン表記が変わり、自動回復情報保存になりました。また、2024年2月リリースLibreOffice 24.2へ、3月2日、1ヵ月定期更新プログラムが適用されLibreOffice 24.2.1の提供が始まりました。

LibreOffice 24.2.1の詳しい解説は、LibreOffice日本語チームBlogにあります。ISO標準のODF(Open Document Format)形式文書やMicrosoft Office互換形式など、LibreOffice特徴や狙いが判ります。

弊社文書作成ツール状況

2023年10月のOffice 2019メインサポート終了を機に、弊社所有の4PC中3PCをサブスクリプション型Microsoft 365(旧Office 365)へ変更しました。残り1PCは、買い切り型Office 2021を継続使用中です。

クラウドMicrosoft 365と4PCのローカルOfficeアプリ(Microsoft 365とOffice 2021のWord/Excel)使用感に、差はありません。

但し、Microsoft Visioユーザは、買い切り型Visioの方が便利です。Microsoft 365でもVisioは使えますが、閲覧やテキスト編集向きです。本格的な図形編集は、Microsoft 365に別途高価なクラウドVisioを追加購入する必要があります。

弊社は、Visio図形編集には、コストパフォーマンスの良いLibreOfficeのDrawを使っています。Drawでも買い切り型Visioと同等の編集が可能です。

なお、弊社は、LibreOffice最新版DrawとWriterを数年間使用中ですが、特にトラブル無く運用できています。

Summary:文書作成ツール現状

文書作成ツール現状まとめ
文書作成ツール現状まとめ

PC文書作成ツールの買い切り型Microsoft Officeとサブスクリプション型Microsoft 365、これらの対抗無償ソフトウェアのLibreOfficeの現状をまとめました。

サポート期間、ネットワーク要件、サブスクリプション可否、有償/無償、Microsoft形式/ODF形式文書など様々なユーザ選択に応じた文書作成ツールがあります。

Afterword:文書作成ツールと生成AI

生成AI革命で成長するAIを個人教師/秘書的に使えば、従来(本稿)のようなユーザ自らが、1から書き始める文書作成は、オワコン(=流行が終わった過去のやり方)かもしれません。

しかし、ソフトウェア開発のAI関与に比べれば文書作成は、例えAI全盛になっても数少ない人間らしい営みの1つだと思います。

生成AI Copilotとの作業性から評価すると、Microsoft Officeの方がLibreOfficeよりも有利です。MicrosoftがCopilotを急成長させるのは、文書作成ツールを含む全Microsoftシェア拡大にCopilotが強く貢献するからだと思います。