情報の受け手と情報量

ChatGPT懸念の情報が多い昨今です。一方、ChatGPT期待情報もあります。8対2ぐらいの割合でしょうか?

これらChatGPT騒動を例に、情報の受け手と情報量について筆者の思うところを記載します。

Summary:ポイントは適切な受け手想定と情報量

受け手に伝わって、初めて情報と言えます。送り手は、信頼性を高めるため、付加資料や文献出所などの情報量を加えます。

意味ある情報と受け手が判断するには、送り手の「受け手感度の想定と適切な情報量」が大切です。送受双方の感度が上手く合致し、かつ、適切な情報量(ページ数)の時に、人のあいだに意味ある情報として伝わると思います。

注)本稿では、意識、観点、主観など個人判断の基準となる感性全般を「感度」と記述します。

開発依頼者へMCU情報開示する際は、依頼者感度を想定、適切な量の資料作成が必須
開発依頼者へMCU情報開示する際は、依頼者感度を想定、適切な量の資料作成が必須

この伝わり方は、MCU開発者と開発依頼者間でも同じです。

MCU開発者が、依頼者へ情報提供する際は、依頼者感度を想定し、何を、どの程度伝えるか、適切な量の資料を作成すべきと思います。

受け手への情報量

ChatGPT騒動の記事には、技術的な参考資料や文献出所を記事途中に多く掲載するものもあります。

しかし、受け手が、一度に理解できる情報量や集中できる時間は、有限です。実例や簡潔な説明の方が、忙しい受け手や素人には、判り易いのも事実です。受け手の感度を想定した「情報量(ページ数)は、内容と同じぐらい重要」です。

つまり、過多な情報量は、受け手の内容理解の妨げになることもある訳です。

例えば、上司への報告書。忙しい上司から「報告書は1枚以内で提出」と言われた方も多いと思います。ページ数が多いと、上司は、初めから読まないことを暗に示しています。

最終章の「AIで記事を要約する(β)」ボタンでAIが自動生成する要約は、この人間特性も十分認識したうえで、適切な量の要約を作成します。

情報過多は、受け手の内容理解の妨げとなる
情報過多は、受け手の内容理解の妨げとなる

ChatGPT懸念情報

  • ChatGPTの安易な利用は禁物、2023年5月9日、日経XTECH
  • ChatGPTに懸念の声(英原文)、CIO Dive、2023年5月1日、IT Media(和訳)

ネガティブな情報の方が、ポジティブな情報よりもネット拡散し易く、印象に残り易いのかもしれません。ChatGPTのような革新的技術、AI関連技術に関しては、ネガティブ情報が圧倒的に多い気がします。

記事の書き手=送り手は、読者=受け手に読んでもらうことが目的です。ネガティブ記事タイトルの方が、読者や閲覧数が多い場合は、当然、ネガティブ記事が増えます。

ChatGPT期待情報

  • ChatGPTで人はもっと創造的になる、2023年5月9日、日経ビジネス

最近は、「AIで記事を要約する(β)」ボタンがある記事が増えました(実例、最終章参)。このボタンをクリックすると、記事内容が判り易く、しかも、適切な情報量で要約されます。

また、関連投稿でMCU分野FSPについてBingで質問したところ、正確で適切量のAI回答が得られました。

上記の使い方では、ChatGPTやAIは有益だと思います。ChatGPTを使うことでより創造的な時間が得られるという日経ビジネス記事に、筆者は賛同します。

ChatGPT利用は個人判断

厚生労働省は、2023年3月13日以降、COVID-19対策マスク着用の考え方を個人判断へ変えました。

国家機関がわざわざ個人判断を指示すること自体、欧米人は、奇妙に感じると思います。日本人特有の同調意識、他人と同じ感度を指向するからです。

マスク着用同様、ChatGPT利用も個人判断とすべきと思います。

ChatGPTやAI利用は個人判断とすべき
ChatGPTやAI利用は個人判断とすべき

判断のための情報収集は必要ですが、主体は個人、自分です。先ず、自分、つまり受け手のChatGPTやAIの使い方や感度を決めた上で、巷に溢れるChatGPTの情報を取集しないと、書き手、送り手の意見に左右されるだけになります。

筆者は、IoT MCU開発に使えるか否かという感度でChatGPT情報を収集しその結果、不明確なIoT MCU用語の質問に、ChatGPT利用は使えると判断しました。

Afterword:Bard日本語対応開始

2023年5月11日、Googleは会話型AIサービス、Bardの日本語対応を開始しました。これで、メジャーブラウザ、Microsoft Edge BingとGoogle Chrome Bard共に日本語でのAI回答の利用が容易になりました。

AIが適切な情報量で記事を要約するボタン
AIが適切な情報量で記事を要約するボタン

上記開始記事内に「AIで記事を要約する(β)」ボタンもあります(一回のみボタン押下げ可能)。各自で試してみてください。

本稿Summary内容が、具体的にご理解頂けると思います。

なお、BingとBardのAI回答の違いについては、コチラの記事が参考になります。



新しいMCUハードウェアの学び方

新しくMCU開発を始める方も多い時節です。新人や新担当者が、効率的にMCUを学ぶ方法を示します。今週は、MCUハードウェア編です(MCUソフトウェア編が、前投稿)。

Summary:新しいMCUハードウェアの学び方

  1. ベンダMCU評価ボードのアートワーク、実装部品を学ぶ
  2. 知りたい用語は、ChatGPTから回答を得る
  3. MCUとセンサなどの周辺回路動作電圧差に注意
ベンダMCU評価ボードの教師活用
ベンダMCU評価ボードの教師活用

MCUハードウェア習得のコツは、ベンダ提供MCU評価ボードの教師活用です。

開発に適す評価ボードの回路図やアートワーク、BOM(Bill of Materials:実装部品表)など全ての情報を活用します。

最近のMCUは、数100MHzクラスの高速動作です。安定した高速動作を支えるのは、MCU周りの電源配線アートワーク、実装部品、評価ボード電源回路です。

自社MCUボード開発時は、MCU周りアートワーク、評価ボードと同じ部品、これらを自社MCUボードへ適用するのが基本です。評価ボードのアートワークや実装部品の意味を考えることで、実践的なMCUハードウェアが学べます。

注)新しい点は、ChatGPT利用の知識習得、評価ボード教師活用の2点です。
注)1.2.3.の詳細は、後述します。

MCU評価ボード教師活用

理屈は知っていても、その理屈を実際の製品基板へ「上手く反映させる」のが難しい。これは、ハードウェア開発にありがちです。

例えば、高速動作には、配線を太く短くしノイズ対策すべきだが、部品の大きさや故障交換も考慮すると、この配置にせざるを得ない等々です。

つまり、ハードウェア開発者が、様々な制約条件を優先度で総合設計した結果が、製品に現れます。

この総合設計結果は、ベンダMCU評価ボードでも同じです。ユーザが、MCUを評価するためのボードですから、ユーザがどのようにMCUを使っても正常動作することに重点を置いた設計結果です。

言い換えると、MCUを最高速で動かした次の瞬間に低電力動作、更に割込み発生で瞬時に最高速へ戻るなど、究極のMCU動作にも余裕で耐えられる配線アートワークや電源部品を選定し、評価ボードへ実装済みです。

これらノウハウを詰め込み製品化したベンダMCU評価ボードのハードウェアを、手本や教師(≒ベンチマーク)として利用しない手はありません。

但し、設計ノウハウが文章化されることは、殆どありません。従って、担当者は、評価ボードから設計ノウハウの中身、背景を考え、学ぶことが必要になります。

つまり、製品設計を見抜く洞察力が、ハードウェアスキル向上に必要です。

ハードウェア製品の中身、背景を見抜く洞察力
ハードウェア製品の中身、背景を見抜く洞察力

経験者アドバイスを、MCUソフトウェア編では期待しました。しかし、MCUハードウェアは、先ずは物言わぬ評価ボードを教師:ベンチマークとする学びをお勧めします。理由は、MCUハードウェアや実装部品の世代交代の速さです。

ベンダMCU評価ボードは、最新MCUは勿論、MCU性能を活かす実績ある最新部品を使っています。MCUハードウェアは、ベンチマークから直接学ぶ方が、効率的です。

経験者アドバイスを活用するのは、優先度による総合設計時です。ただ、総合設計ノウハウは、状況に応じて刻々と変わり、かつ、文章化し難い、つまり、直感のようなものであることも忘れないでください。たとえ経験者でも、第3者への直感伝授は、難しい事柄です。

ポイントは、以下です。

  • ベンダMCU評価ボードをベンチマークにすること
  • 効率的に知識を得ること
  • MCUハードウェア世代交代に注意すること

これらポイントの実現手段が、前章Summaryに示したChatGPT利用と評価ボード教師活用です。

以下、Summary 1.2.3の詳細を説明します。

1. MCU評価ボードアートワーク、実装部品の意味を学ぶ

新しいMCUハードウェアの学び方その1
新しいMCUハードウェアの学び方その1

低速デバイス同士は、接続さえ間違わなければ機能します。しかし、数100MHzクラスやRF(無線周波数)ハードウェアのデバイスは、違います。

最近のMCUは、この数100MHzクラスを優に超える動作周波数です。IoT MCUなら無線デバイスも実装します。これら高速デバイスの安定動作や、周囲にノイズをまき散らさない工夫として、デバイス間の配線アートワークと電源供給が重要です。

回路図は、デバイス間の接続(ネットリスト)を作成します。同じ接続でも、実際にデバイスを基板上へ配置、配線するPCBアートワークが、高速デバイス製品成功の決め手です。

ベンダMCU評価ボードは、回路図、アートワーク情報、BOMも提供します。但し、提供だけで肝心の解説などはありません。従って、これらから決め手を自分で抜き取り、学ぶことが必要です。

例えば、アートワークを眺めていると、なぜMCUのこの配線だけ太く短いのか、BOMからは、なぜこの部品だけ高品質なのか、など疑問が沸いてくるハズです。

疑問をそのままにせず、自分なりに意味を考え、答えを持った後に、ChatGPTを利用すれば、より深い洞察ができます。

2. ChatGPTで回答を得る

新しいMCUハードウェアの学び方その2
新しいMCUハードウェアの学び方その2

ハードウェア進化は、早く劇的です。その例が、PC CPUソケットです。CPUソケットは、同一でのハードウェア進化を誰もが望みますが、時にはソケットや周辺部品を全面変更してまで進化に対応します。

新製品MCUや、これを活かす部品の情報は、ネット収集が効率的です。AIは、これら最新情報を常に収集、分析しています。ChatGPTは、質問の最新回答を得るのに適しています。

ChatGPT回答には、間違いの可能性もあります(関連投稿)。それでも、AIによる最新で判り易い文章回答は、期待できます。

ChatGPT利用により、担当者は、いつでも気軽に質問ができます。この気軽さと効率的回答(最新知識)を得るメリットの方が、間違いの可能性よりもまさると思います。

3. MCUと周辺回路の電圧差

新しいMCUハードウェアの学び方その3
新しいMCUハードウェアの学び方その3

MCUは、今後さらに高速化します。製造プロセス微細化と、高性能、低消費電力、低価格MCUをユーザが求めるからです。

一方、MCUへ接続するセンサは、デジタルだけでなく、アナログも重要な技術です。AI搭載など、センサ高度化も話題の昨今ですが、製造プロセスや動作電圧もMCUほど進化し難い側面があります。

高速追求のMCUと、高機能追求のセンサや周辺回路の差は、動作電圧差として現れる可能性があります。

5Vトレラント端子のMCU、MCU-センサ間インタフェースデバイス、複数電圧の電源回路など、MCUとセンサなどの周辺回路接続には、注意が必要です。

Afterword:設計クオリティと洞察力向上

MCUハードウェア開発者は、COVID-19による半導体不足を経験しました。

ハードウェア開発者としては、機能別モジュール化、制御系MCU評価ボードのそのまま流用などの組合せを工夫する対策に加え、シミュレーションやテストプログラム(TP)利用なども対策になります。

どの対策も、ハードウェア設計クオリティ向上が目的です。

ハードウェア設計ノウハウは、直感の部分もあります。直感が正しいか否かを客観判断し、勘を磨くには、シミュレーションやTPが役に立ちます。実際の測定器を使わずに、シミュレーションやTPを使って仮想的に試すと、試行錯誤も容易です。

MCU統合開発環境(IDE)は、これらシミュレーションツールやTP(サンプルコード)の宝庫です。MCUハードウェア開発者もIDEを活用し、直感を磨いてください。

更に、ハードウェア洞察力を磨くには、アートワーク設計もお勧めします。

MCU周り、ADC周りだけでも良いので、実際にPCBアートワークを行うと、回路図では見えない高速デバイス製品化ポイントが判ります。最近のMCU/ADC/無線デバイスデータシートは、これらアートワークについて記載されたものも多いので参考になります。



新しいMCUソフトウェアの学び方

新しくMCU開発を始める方も多い時節です。新担当者が、効率的にMCUを学ぶ方法を示します。今週は、ソフトウェア編、次週がハードウェア編です。

Summary:新しいMCUソフトウェアの学び方

  1. 細かいことは後回し、MCU評価ボードで主要サンプルコードを動かし、全体像を知る
  2. 知りたいMCU用語は、ChatGPTから回答を得る
  3. サンプルコードをIDEで担当者なりに変更し、評価ボード動作変化を見る
chatGPT利用の新しいMCU学び方
chatGPT利用の新しいMCU学び方

MCUソフトウェア習得のコツは、ベンダ公式サンプルコードの活用です。

開発に適したMCU評価ボードを入手後、サンプルコード動作 ⇋ IDEコード修正。この繰返しとChatGPT利用で短期・効率的にMCUソフトウェアが学べます。

注)新しい点は、ChatGPT利用の知識習得、サンプルコードベンチマーク活用の2点です。
注)1.2.3.の詳細は、後述します。

MCUソフトウェア学び障壁を下げるポイント

筆者がMCU開発を始めた頃は、MCUと周辺ハードウェアを設計後、外注さんへ発注。ハードウェアが出来上がるまでに、分厚いMCUマニュアルと格闘しながらソフトウェアに着手。それもドライバから開発し、短期完成には超過残業必須、苦労しました(残業当然の時代、ムダ作業も多かった…)。

現在は、MCUベンダが様々な高品質開発ツールを提供します。また、説明不足のMCU用語は、マニュアル検索よりも、ChatGPTで短時間に回答が得られますので、学びに集中できます。

高品質開発ツールとは、評価ボードと公式サンプルコードのことです。これらをお手本(≒ベンチマーク)として活用しない手はありません。

つまり、サンプルコードで、担当者の開発内容を試しながらMCUソフトウェア学びを進めます。ベンチマークからの差分が明確なので、バグ混入少、最も新担当者を悩ますバグ対処も少なく学びが可能です。

必要なのは、経験者から担当者へのアドバイスです。

本来MCUは、広範囲なアプリケーション開発が可能です。サンプルコード数の多さが、これを示しています。そこで、経験者が、ターゲットとする評価ボードとサンプルコードを担当者へアドバイス、または、担当者が経験者や先輩にこれらを聞いて、効率的なベンチマーク活用MCU習得を行います。

アドバイスにより、担当者は、ムダを省き目的のMCU学びに直結したアプローチができます。

MCUソフトウェア学び障壁を下げる
MCUソフトウェア学び障壁を下げる

MCU習得の障壁が高いのは、なんでもできるMCU応用範囲の広さと、担当者の知識不足です。障壁の高さを下げるポイントが以下です。

  • 開発(習得)アプリケーションのターゲットを絞ること
  • 効率的に知識を得ること
  • 慣れないIDEバグ対処を少なくすること

これらポイント実現手段が、前章Summaryに示したChatGPT利用、ベンチマーク差分開発です。

以下、Summary 1.2.3の詳細を説明します。

1. MCUソフトウェア全体像を知る主要サンプルコード

新しいMCUソフトウェアの学び方その1
新しいMCUソフトウェアの学び方その1

MCUソフトウェア全体像は、初期設定と無限ループ処理です。処理内容は、周辺回路に応じて異なりますが、構造は、どれも同じでシンプルです。

担当者が、この全体像を未把握の場合、サンプルコードを単なるAPI羅列としてしか捉えられません。初期設定と無限ループに機能分離して捉えれば、サンプルコード理解度が向上します。

MCUには、多くのサンプルコードがありますが、全てが業務の開発アプリケーションに関連する訳ではありません。経験者が知恵を絞って、業務アプリに関連する主要サンプルコードを選定すれば、担当者もターゲットが絞れます。

担当者は、主要サンプルコードからMCUソフトウェア全体像がどれも同じことを学べます。

2. 回答を得るChatGPT

新しいMCUソフトウェアの学び方その2
新しいMCUソフトウェアの学び方その2

担当者にとって、詳細な説明が、判り易いとは限りません。

経験者と担当者が対面会話中ならば、相手の理解度は概ね把握できます。また、担当者が不明なことは、経験者へ質問するでしょう。

しかし、文章による説明は、一方通行です。

一方通行の説明量は、多ければ多い程、理解度が上がるとは限りません。かいつまんだ説明の方が、判り易い場合も多いと思います。

ChatGPT回答には、間違いの可能性もあります(関連投稿:前稿)。それでも、AIによる判り易い文章回答が期待できます。

ChatGPT利用で、担当者は、LINEアプリのようにいつでも気軽に質問できます。心理的負担が少なく、効率的に回答(知識)を得るメリットの方が、間違いの可能性よりも優れると思います。

3. IDEに慣れ、開発アプリケーションをイメージ

新しいMCUソフトウェアの学び方その3
新しいMCUソフトウェアの学び方その3

MCU開発では、統合開発環境(IDE)操作に慣れることが必須です。

評価ボードと適正なサンプルコードがあれば、即座にIDEが使えます。しかも、ビルドも成功します。担当者は、サンプルコードへ変更を加え、評価ボードの動作変化も観察できます。

仮にコード変更でビルド失敗しても、元へ戻せば成功します。変更とビルド成功を繰返すことで、IDE操作とバグ対処に慣れ、MCU学びと業務アプリ開発へ一歩近づけます。

その結果、業務関連アプリケーションのイメージも生まれます。現状と開発アプリの差分が明確になり、MCU開発者らしい残件の目標設定もできます。

Afterword:現状把握を困難にするムダ

サンプルコードだけで動作するMCUに対し、万人が100%解るサンプルコードの説明は、困難です。対象読者や記述量に合わせて調整せざるを得ないのが実情です。MCU説明が、読者に解り難い原因です。

新しいChatGPT利用で、書き手のMCU説明不足は、かなり改善できます。

経験が少ない開発者には、ムダは、現状把握や目標設定を困難にします。ムダを少なくするため、経験者や先輩は、担当者の主体性も尊重したアドバイスを心がけてください。

業務アプリケーション完成には、複数サンプルコードを結合し動作させることも必要です。その際には、弊社の各ベンダ対応MCUテンプレートがお役にたちます。ご活用ください。



MCU開発に適すChatGPTの使い方

人間の質問に対し、AIが自然な回答を生成するChatGPT
人間の質問に対し、AIが自然な回答を生成するChatGPT

ChatGPT(Chat Generative Pre-trained Transformer)は、米)OpenAIが2022年11月に公開したAIチャットポットのことで、「生成可能な事前学習済み変換器」という意味です。人間の質問に対し、AIが自然な回答を生成します(Wikipediaより)。

MCU開発に、ChatGPTをどう活かすかについて私見を示します。

要約:MCU開発に適すChatGPTの使い方

  1. ChatGPTはMCU説明不足内容への質問、回答に使える
  2. ChatGPTは常に進化し続けるAIツールだが、MCUプログラミング適用は時期尚早
  3. AIが人類能力を超える予想の2045年シンギュラリティ前後ならMCU開発へ一部使える可能性あり

MCU製品開発の成功には、知識と経験が必要です。知識獲得の効率的ツールとして、現状のChatGPTは使えると思います。但し、AI回答をMCUプログラミングへ適用するには、現在はAIが未成熟です。

AIが十分に成熟し、人類能力を超えるSingularity(シンギュラリティ:技術的特異点、2045年と予想)近辺になれば、MCU開発へも使えるツールになる可能性はあると思います。

但し、AIがシンギュラリティを迎えても、開発MCU製品の顧客要求とMCU結合チューニングは、人間MCU開発者の経験が必須です。

ブラウザ検索との違い

知識獲得方法は、ブラウザ検索が一般的です。ブラウザ検索とChatGPTの違いを端的に説明しているのが、コチラのCNET Japan記事の冒頭部分です。

ブラウザ検索は、キーワードを入力し、関連性が高いサイトをリスト出力します。MCU開発者は、各サイトを閲覧し、その結果、知識を得ます。

一方、ChatGPTは、質問内容を入力し、AIが質問内容を分析後、大量のサイト情報から最も相応しいと「AIが思う回答」を自動生成します。

つまり、MCU開発者が、色々なサイトを閲覧する手間を省いて所望知識が得られる訳です。但し、AI生成回答が正しいか否かは、判りません。

そこで、Microsoft Bingを使って、ルネサスFSP(Flexible Software Package)を質問した時のAI生成回答を示します。注)FSPは、前投稿参照。

Microsoft Bingを使ってFSPを質問したChatGPT回答例
Microsoft Bingを使ってFSPを質問したChatGPT回答例

結構、的を射た回答をしていると思います。また、詳細情報に、関連サイトリンクもありますので、AI回答の正確さを質問者が検証することも可能です。

さらに、AIが想定する追加質問例もあります。現在Bing質問数は、1日に2000の上限がありますが、ブラウザ検索よりも効率的に、MCU説明不足内容を質問でき、回答を得ることができます。

注)ブラウザ検索では、複数サイトから得る情報の多様性があります。この多様性をノイズと考えるか否か、筆者個人は、多様性あり&最終回答を自分で考える方を好みます。

ChatGPTとMicrosoft Bing、Google Bard

ChatGPTもバージョンアップし最新版GPT-4は、大量の文章、大量の高性能コンピューターチップを使う巨大AIモデルです。OpenAI)CEO:サム・アルトマン氏は、AIのさらなる発展に新しい開発手法が必要だと語っています。

最新GPT-4を無料で使えるのが、前章のMicrosoft Bing、待機リスト登録で使えるのがGoogle Bardです。Bardは、現在日本語非対応のようです。

前章CNET Japan記事に、BingとBardのAI回答の違いが分析されています。

MCUコーディングの適用

上手く質問すれば、ChatGPTから、AIコーディング回答が得られます。しかし、それをそのまま実開発へ使えるかについては、いずれのサイトも現在懐疑的です。

筆者も、同じ考えです。

特に、MCUプログラミング(コーディング)は、他のPCソフトウェア開発やクラウドソフトウェア開発に比べ地味で、MCU開発者も少数派です。

ChatGPT活用コーディングは、今後益々盛んになるでしょう。その結果、ネットに、多数派ソフトウェア開発者の成功/失敗事例が多く掲載されます。AIは、これら事例を学習します。

これら多数派の事例をAIが十分学習した後、我々少数派MCUソフトウェア開発へ適用しても遅くはないと思います。その理由が、次章です。

AIコーディング進化時のMCU開発者経験とスキル

AIコーティング進化時のMCU開発者経験とスキル
AIコーディング進化時のMCU開発者経験とスキル

仮にChatGPTが、そのままMCU開発に使えるコーディングを正確に出力したとします。実はこれは、現在のMCUベンダ提供のサンプルコードに相当します。

つまり、ChatGPTの進化を待つまでもなく、現在でも単機能の正確動作コードは得られる訳です。ここが、多数派ソフトウェア環境と、MCUソフトウェアの大きく異なる点です。

MCUソフトウェアは、単体動作サンプルコードを、ベンダが多数提供済みです。

MCUソフトウェア開発者は、これら単体サンプルコードを、顧客要求やMCU性能に見合うように複数組合せ、期間内に上手く動作するよう製品化するのが、主な業務内容です。

例えば、低コストで性能制約も多いMCUを使い、単体コードの優先度設定や割込み処理設定を行い、複数コードを結合動作させるチューニングです。IoT MCUならば、RTOS対応やセキュリティ関連がチューニングに加わり、さらに複雑化します。

チューニングの幅は、顧客要求や適用MCU、製品の展開予定などにより大きく変わります。MCU開発者には、これら変化に即応できる開発経験やスキルが求められます。

例えシンギュラリティになっても、開発MCUの製品化、顧客要求とMCU結合チューニングは、AI任せにはできない「人間MCU開発者の腕の見せ所」になると思います。

つまり、この腕を磨いて人間MCU開発者も進化しましょう、と筆者は言いたい訳です。



IOWN 1.0提供開始

IOWN展開(出展:NTTサイト)
IOWN展開(出展:NTTサイト)

ベストエフォートのインターネットに対し、NTT専用線による品質保証:ギャランティーサービスIOWN(Innovative Optical and Wireless Network:アイオン)1.0が2023年3月16日から開始されました。

個人利用には価格(100Gbps月額料金198万円、初期設備費3万円)が高すぎますが、2030年以降のIOWN4.0では、インターネット並みの料金で利用できるかもしれません。

IOWN対インターネット

インターネットは、多重共用ネットワークです。従って、多重されたトラフィックにより自分のデータ遅延揺らぎは不可避、さらに強固なセキュリティも必須です。

そのセキュリティ対策は、ユーザみずから行う必要があります。対して、専用線は、ネットワーク側が通信品質を保証するなどセキュリティレベルは高く、ユーザのセキュリティ対策は、インターネットに比べると楽になると思います。

問題は、利用価格です。

IOWN専用線では、共用インターネットでは困難な魅力的IOWNサービス(後述)が提供され、かつ、APNと光電融合デバイスにより価格を抑え、かつ、将来の限界を超える特徴、つまり、低遅延、大容量、低消費電力(後述)があります。

ユーザセキュリティ費用、万一のセキュリティリスクも含め、専用線IOWNと共用インターネット、どちらが安全、安心で利用価格が安いのか、費用対効果検討が必要だと思います。

IOWNサービス

IOWNで期待されるサービスの実証記事がコチラです。

ロボットや自動車の遠隔制御、遠隔医療、e-スポーツや遠隔地間を繋ぐ同時演奏会など、大容量で低遅延、揺らぎ無しのIOWNサービスが提供されます。

IOWN特徴=揺らぎ無し低遅延+大容量+低消費電力

NTT技術ジャーナル2023.1によると、IoTによるデータドリブン社会は、膨大なデータ量やデータ処理サーバの膨大な電力消費増大に対して、限界が来るそうです。

この課題にAPN(All Photonic Network)サービスと、光電融合デバイスをボード接続→チップ間→チップ内と融合度を上げ、さらに、このデバイスをサーバへも適用することで、大幅な使用電力削減が可能となります(本稿最初の図参)。

IOWN4.0の目標は、電力効率100倍、伝送容量125倍、エンドエンド遅延1/200です。

IOWN特徴(出展:NTTサイト)
IOWN特徴(出展:NTTサイト)

まとめ

2030年度以降のIOWN4.0とインターネットの利用価格がどの程度になるかは、今のところ不明です。

それでも、IOWN1.0の利用決定会社/組織の記事(2023年3月3日、EE Times)を見ると、既に多くの有力企業が参加しています。

揺らぎ無し低遅延大容量IOWNが、新しいIoTネットワークサービスを生み、メタバースを推進するのは確かだと思います。IoT MCU開発者も注目しておく必要があります。

関連投稿:世界規模の宇宙センシング次世代ネットワークIOWN

世界規模の宇宙センシング技術

次世代ネットワークIOWN(アイオン)で紹介した、低軌道人工衛星と無線免許不要IoTデバイス(LPWA:Low Power Wide Area端末)の宇宙センシング実証実験が2024年度に予定されています。

この宇宙センシング技術は、世界中で低コストIoTデータの衛星センシングを可能にします。

低コストIoTデータ衛星センシングプラットフォーム

衛星センシングプラットフォームとLPWA端末(出展:NTT技術ジャーナル2022.10)
衛星センシングプラットフォームとLPWA端末(出展:NTT技術ジャーナル2022.10)

従来の世界規模データセンシングは、専用衛星や免許が必要な専用無線周波数を使うため高価です。

NTTとJAXA(宇宙航空研究開発機構)が2024年度打ち上げ予定の革新的衛星技術実証4号機は、地上用のLPWA端末の免許不要無線周波数:920MHz帯、送信電力:0.1W程度を介して低軌道衛星と通信します。

この通信により、LPWA端末の小容量データを世界規模で収集できる低コストIoT衛星センシングプラットフォームの実証実験が可能です。

LPWA端末

LPWAは、低消費電力、低ビットレート、広域カバレッジが特徴で、その端末の多くは無線免許が不要です。

この地上用LPWA端末を、通信網が無い山間部や河川、海上など世界中のあらゆる場所へ設置しても、衛星を介したグローバルなIoTデータセンシングが可能になります。

気象データ収集や防災対策など多くの新しいIoTサービスへ発展する可能性は大きいでしょう。

技術実証イメージ(出展:NTT 2023年2月10日)
技術実証イメージ(出展:NTT 2023年2月10日)

地上のLPWA端末と低軌道衛星との通信は、シンプルです。LPWA端末の測定データは、衛星搭載メモリへ一時蓄積され、衛星の基地局上空の飛来タイミングで蓄積データが一括ダウンロードされます。

LPWA端末には、衛星からのコマンドによる再起動処理などが必要になるそうです。

宇宙ビジネス

多くのIoTセンサを組込んだスマートホームICTインフラへも応用できそうです。スマホ衛星通信も可能な時代です。ソニーは、2050年50兆円市場との試算もある地球みまもりプラットフォーム向けエッジAIカメラセンサを開発しました。

地球みまもりプラットフォームコンセプト(出展:ソニーR&Dセンタ)
地球みまもりプラットフォームコンセプト(出展:ソニーR&Dセンタ)

2030年実現を目指すIOWN(Innovative Optical and Wireless Network)により、従来通信網制約や国境の枠を超えた新しいIoTサービスや宇宙ビジネスが期待できそうです。

IoT MCU開発者は、革新的衛星技術実証4号機の打ち上げも注目しましょう。



8/16ビットMCU置換えを狙う32ビットMCU

半導体不足が続いています。対策として、8/16ビットMCU置換えを狙った、汎用低コストの新しい32ビットMCUを2種紹介します。

STマイクロ:STM32C0シリーズ

STマイクロ、2023年1月12日、低価格なSTM32C0シリーズ(Cortex-M0+:48MHz、Flash:16K/32K、RAM:6K/12K)を発表。

STM32C0とSTM32G0の位置づけ(出展:STMサイト)
STM32C0とSTM32G0の位置づけ(出展:STMサイト)

ルネサス:RA2グループ

ルネサス、2021年10月13日、省スペース低消費電力向けにRA2E2グループ(Cortex-M23:48MHz、Flash:64K、RAM:8K)を、RA2シリーズへ追加。

RA2E2評価ボードのMCU基板アートワーク
RA2E2評価ボードのMCU基板アートワーク

8/16ビットMCU置換え最新32ビットMCU特徴

  • 少数ピン/小型パッケージ
  • 小容量Flash/RAM
  • 低消費電力
  • 低価格(8/16ビットMCUと同等)

8/16ビットMCU置換えを狙う32ビットMCU特徴です。置換え32ビットMCUと言えば、古くからNXP:LPC800シリーズが有名なので、本稿は省略しました。

動作周波数が高くても、Sleepなどの超低消費電力動作時間も長く、実働消費電力は驚くほど小さくなります。また、古い8/16ビットMCUよりも入手性に優れます。

置換え32ビットMCUメリット

旧MCU開発は、周辺回路ドライバなども自主開発することが多く、ドライバとアプリケーションの境界も開発者毎にバラバラでした。最新MCU開発は、ドライバはベンダHAL API生成ツールが自動生成します。

その結果、開発者は、アプリケーション開発に集中でき、ソフトウェア開発費も安くなります。

※HAL API:MCUハードウェアに依存しない(Hardware Abstraction Layer)API。シリーズ/グループが異なっても開発アプリケーション流用が容易。

既に実装済みの旧8/16ビットMCU機能を最新32ビットMCUへ置換える時も、この最新MCU開発環境が使えるため、効率的なソフトウェア開発が可能です。更に、置換えだけでなく、新機能追加、IoTやセキュリティなど高機能アップグレートも容易です。

最新汎用32ビットMCUは、半導体不足にも有効です。紹介したSTマイクロ、ルネサスいずれも、上位MCUへの置換えが可能な基板アートワークができるピン配置を採用しています。

つまり、IoT時代に合わせた開発スキルやソフトウェア発展性があり、基板ハードウェア持続性も期待できるなど、8/16ビットMCU置換え汎用32ビットMCU採用には、多くのメリットがあります。

STM32G0テンプレート、RAベアメタルテンプレート

STM32C0シリーズ開発には、STM32G0Xテンプレート、RA2グループ開発には、RAベアメタルテンプレートがお役に立てます。



持続可能MCU開発

半導体不足やサプライチェーン変化など様々な外部要因により、やむをえず開発中のMCUデバイスが変わる場合があります。MCU開発を持続可能にする1案を示します。

MCUと制御対象分離

MCUデバイスが例え変わっても、MCUと制御対象間のインタフェースが同じなら開発の持続は可能です。

もちろん開発ツールや制御APIは、MCUベンダやデバイスで異なります。しかしながら、開発した制御シーケンスや注意点などの取得済み開発ノウハウは、そのまま新しいMCUデバイスへも適用できます。

簡単に言うと、頭(MCU)と手足(制御対象)、目などのセンサ入力を分離し、万一の際に、頭(MCU)交換が可能な分離インタフェースを使ってMCU開発することです。

本稿はMCU互換性に主眼を置きますが、分離インタフェース採用で制御対象やセンサも交換可能です。

つまり、機能単位の高性能化、低価格化も分離インタフェース導入で容易になります。

分離インタフェース多数派

PMODインタフェースとPMODモジュール(出展:RS DesignSpark)
PMODインタフェースとPMODモジュール(出展:RS DesignSpark)

MCUと制御対象を分離するインタフェースも色々あります。例えば、PMODです。

センサやアクチュエータから成る既製PMODモジュールを、Lego™ブロックのように連結し制御対象の機能追加ができます。連結実現のため、I2CやSPI利用が基本です。

別例が、Arduinoです。

多くの主要ベンダMCU評価ボードにArduinoコネクタが採用中です。右下に示すように、デジタル入出力ピン、アナログ入力ピンなど、ピンが物理的に機能分離しています。

ArduinoコネクタコンパチブルMCU評価ボード例
ArduinoコネクタコンパチブルMCU評価ボード例

既製Arduinoモジュールも多く、しかも安価に入手できます。また、機能別ピンのため、手持ちセンサなどを接続し動作を試すのも簡単です。

元々はArduinoやRaspberryなどのMPU(Micro Processor Unit)向け分離インタフェースでしたが、シンプルで使い易いためMCU評価ボードにもArduinoコネクタ適用例が多く、分離インタフェースの多数派となりました。

Tips:MCU端子は、複数機能から選択が可能です。そこで、Arduinoピン機能を優先して選択し、この選択した端子から先に使用すると、MCU交換時の互換性が高まります。

Arduinoプロトタイプシールド

Arduinoモジュールは、別名シールドと呼ばれます。シールドを複数スタック接続し機能追加も可能です。

MCU評価ボードのArduinoコネクタにスタック接続し、付属する小型ブレッドボード上で簡単な回路も追加できるプロトタイプ向けのシールドが、Arduinoプロトタイプシールドです。

Arduinoプロトタイプ シールド
Arduinoプロトタイプ シールド

このシールドには、2個のLEDと1個のSWが実装済みです。MCU評価ボードへ、LEDやSWを簡単に追加でき、手持ち部品などを使ってプロトタイプ開発する場合に最適だと思います。

評価ボードへArduinoプロトタイプシールドを追加しスレッド毎にLED点滅中
評価ボードへArduinoプロトタイプシールドを追加しスレッド毎にLED点滅中

まとめ:持続可能MCU開発

世界平和やサプライチェーン変化などの外部要因により、開発中のターゲットMCUデバイスやベンダが変わる場合がありえます。

万一MCUデバイスが変わっても、MCU開発を持続可能にするため、各ベンダMCU評価ボードに多数採用のArduinoコネクタを使ったMCUと制御対象分離構成を示しました。

Arduinoプロトタイプシールドを、プロトタイプMCU開発に適す使用例として示しました。



技術者と世界平和

2022年最後の投稿、つまり、週番号が追加されたMint 21.1 MATE Week 52の金曜投稿です。

Mint 21.1 MATEはカレンダに週番号が追加
Mint 21.1 MATEはカレンダに週番号が追加

ロシアのウクライナ侵略から始まった2022年は、世界平和と技術者の関連性を強く感じました。Rapidusなどの半導体新会社設立や、クリエイタ的エンジニア米中対立も根底には平和への危機感があると思います。

技術者の役割も、セキュリティやフィッシング詐欺など攻撃対策の比重が増すかもしれません。インターネットでさえ、グローバルオープンからブロック化の兆しが見えます。IoT MCUやMPU/CPU、Windowsなどの技術者開発基盤もまた、セキュリティがトリガになり発展しそうです。

個人的には、ケアレスミスの多い年でした。何らかの追加対策(?!)が必要と感じています。

さて、本年も本ブログ、および、弊社テンプレートをご利用頂きありがとうございました。
また、各位から頂いた様々なアドバイス、この場を借りてお礼申し上げます。ありがとうございました。

皆様、よいお年をお迎えください。



次世代ネットワークIOWN(アイオン)

What's IWON(出展:NTTサイト)
What’s IOWN(出展:NTTサイト)

IOWN(Innovative Optical and Wireless Network)は、2030年実現を目指すNTTの次世代ネットワークです。

IOWN技術

大容量、低遅延の光伝送路。ネットワーク遅延や揺らぎ無し。データドリブン将来社会のデータ量や消費電力増加を解決。キーテクノロジが「光電融合デバイス」、などなど実現技術に興味がある方は、コチラの記事で解ります。

IOWNサービス

IOWNが提供するサービスの一例が、コチラの遠隔医療記事です。IOWNは、ネットワーク本来の目的、離れた場所との距離を感じさせない通信を提供します。

既存ネットワークで遅延や揺らぎが生じるのは、電気信号と光信号の変換回数が多いためです。電気に比べ減衰が少ない光伝送と、光と電気を融合した光電融合デバイス、これらにより電気と光の変換回数を減らし、IOWNのオールフォトニックス・ネットワーク(APN)を実現します。

APNは、低消費電力で大容量、高品質、低遅延で揺らぎの無い理想的な伝送サービスを提供します。

さらに、WirelessのIOWNは、宇宙空間や海中でも接続します。低軌道人工衛星を用いた宇宙RAN(Radio Access Network)や、地上IoT端末と衛星を接続する宇宙センシング、さらに、海中での高速無線通信による水中ドローンなども2030年頃のIOWN 4.0で可能になります。

早くもAMDは、宇宙空間でAI処理ができる宇宙グレードSoCの信頼性評価を完了しました。

宇宙統合コンピューティング・ネットワーク(出展:SKY Perfect JSATサイト)
宇宙統合コンピューティング・ネットワーク(出展:SKY Perfect JSATサイト)

TRONプロジェクトリーダ:坂村健氏も注目

2022年11月25日の記事では、TRONプロジェクトリーダ:坂村健氏が、多くのIoTセンサを組込んだスマートホームなどのICTインフラに、電力効率100倍、伝送容量125倍、レイテンシ200分の1のIOWNが大きなインパクトを与えると語ったことが記載されています。

スマートホームでこれほど高速、大容量の公衆ネットワークが安価に使えると、個人のPCストレージは、もはや全てクラウド上に置くことも可能な気もします。

IWON特徴(出展:NTTサイト)
IOWN特徴(出展:NTTサイト)

IOWNと2030年

2030年まであと8年。リモートワークや移動時、遠距離でも低電力、大容量、低遅延、遅延揺らぎ無しの通信ニーズは、今後益々高まります。

IOWNが、これらニーズを満たし現状ネットワークの様々なボトルネックを解消した新たなサービスの実現、開発インフラになりそうです。IoT MCU開発者もまた、IOWNと2030年に向けた進化が必要です。

関連投稿:2030年のエンジニア