MCU開発者とAI

MCUベンダ各社のエッジAIニュースが、昨年末から2025年の今年にかけて多く見られました。その背景を考えます。

2030年までのAI半導体市場予測

コチラの記事は、2030年までの半導体市場予測と、AIが人間の知能を超える2029年のシンギュラリティ実現を示しています(関連投稿:生成AI未来予測は2027年シンギュラリティ予測)。

生成AI知能レベル、シンギュラリティ、AI自動化
生成AI知能レベル、シンギュラリティ、AI自動化

従来の半導体は、2年毎に2倍になるムーアの法則で成長してきました。しかし、AIにより新たな形で成長し、Auroraというスーパーコンピュータを例に、AI半導体は、16倍に急増すると予測しています。その結果、シンギュラリティが、2029年に到来する可能性を述べています。

また、クルマとサーバ/データセンタのAI半導体が、2025年から2030年の半導体を牽引すると結論しています。これらは、主にクラウド側AI半導体の話です。

最新MCUベンダAIニュース

MCUベンダが担当するエッジ側のAI関連最新ニュース3つが以下です。

  • STマイクロ:エッジAI開発向け従来比600倍性能NPU搭載STM32N6シリーズ発表
  • ルネサス:ホンダとSVD2000TOPS20TOPS/Wを目指すR-Car X5シリーズ開発契約締結
  • NXP:エッジAI機能開発ソフトへeIQ AIソフトウェア追加

どれも、前章クラウド側AI半導体に呼応するMCUベンダのAI取組みです。その背景は、5年後の2030年までに急速発展するクラウド側AIサービスへの追随です。

AI性能2,000 TOPS、20 TOPS/W実現のHonda 0 シリーズ専用SoC開発(出典:ホンダサイト)
AI性能2,000 TOPS、20 TOPS/W実現のHonda 0 シリーズ専用SoC開発(出典:ホンダサイト)

ソフトウェア実装はAI、最上流工程は実装経験の人間

コチラの記事は、クラウドAIと機械学習が進化すると、プログラミングの殆どはAIが担うと結論しています。但し、起点となる「ここをソフトウェア化するという意思」はAIで代替できないため、実装経験のある開発者が必要と付け加えています。

映画ターミネーターのようにシンギュラリティでAIが意思を持つか、本当は分かりません。しかし、ソフトウェア実装をAIが担当すれば、MCU開発者の実務負荷が減ることは明らかです。

SummaryMCU開発者の備え

様々な予測を示しました。しかし、あくまで予測で、地震予知同様、未来は分かりません。

重要なのは、備えです。2025年の今すべきことは、MCUソフトウェア開発などの経験です。

開発経験は、成功でも失敗でもAI全盛時代に活かせる人間固有資産です。ハルシネーション対策に、AIの実装が正しいか、使い物になるかなどを最終的な判断は、経験豊かなMCU開発者が担当するでしょう。

MCUソフトウェアAI自動化は、機械学習データが少ないためPCMPUに比べ遅いです。この遅さを活かしMCU開発実経験を積みましょう(関連投稿:生成AI活用スキルAIMCUへの影響)。

Afterword:エッジAI期待サービス

さて筆者は、エッジAIにセキュリティ確保とルーティンワーク自動化を期待します。Windowsセキュリティ更新やブラウザ更新など、PCセキュリティ保全処理は全てAI任せ、いつでもどこでも安心安全PCを直ぐに使いたいです。

また、重要メール抽出や金曜投稿ネタ候補提案など、気兼ねなくAI任せたいタスクも数多くあります。エッジAI MCUで実現できれば嬉しいですね!


低消費電力トレンド

MCU開発者は、消費電力に気を配りソフトウェア/ハードウェアを開発します。最近は、顧客の低電力指向が強くなり、全業界で電力不足対策がトレンドとなっています。

ドイツ、米国、日本、有力企業の電力不足対策記事を示し、低消費電力トレンドを活かしMCU開発すれば、顧客に好印象を与え他社差別化に寄与することを示します。

ドイツ)Volkswagen国内工場閉鎖示唆

ドイツ)フォルクスワーゲンの電力消費対策
ドイツ)フォルクスワーゲンの電力消費対策

2024年9月5日、ドイツ最大手の自動車企業Volkswagenが、国内工場閉鎖を検討しているニュースが発表されました。その主要因は、国内調達エネルギーコスト、つまり、電力コストの高騰です。

製造業の製品は、コストパフォーマンスで評価されます。同じパフォーマンスならより安い製品が顧客に売れるのは、当然です。

脱原発方針やロシアのウクライナ侵攻、中東情勢のため、ドイツ国内電力コストが従来比急上昇し、もはやドイツ製造では高いコスパ維持ができないのです。

ドイツ工場を閉鎖、代わりに電力コストの安い国外製造がドイツ)Volkswagenの取組みです。

米国)Microsoft向けスリーマイル原発再稼働

米国)Microsoftの電力対策
米国)Microsoftの電力対策

2024年9月21日、米大手電力コンステレーション・エナジーが、スリーマイル島原発1号機の再稼働を発表しました。Microsoft AIデータセンタへ、20年間電力安定供給のためです。

AIデータセンタ向け電力は、今後急増が予想されます。再生エネルギーやシェール天然ガス発電だけではAI電力需要にまね合わないため、米国各地で原発再稼働の検討が始まっています。

AI新電力需要に対し、既存(休止)設備の再利用で対処するのが米国)Microsoftの取組みです。

日本)NTT光電融合新デバイス開発

日本)光電融合デバイスによる電力対策(出典:NTT R&D Forum 2023)
日本)光電融合デバイスによる電力対策(出典:NTT R&D Forum 2023)

2024年9月20日、NTTは、AIデータセンタ消費電力増大の解決策として光回路と電気回路を組み合わせた、新しい光電融合デバイスの現在到達点と今後の展望公演を発表しました。

光電融合デバイスは、次世代ネットワーク:IOWNだけでなく、コンピューティングへも使えるとNTTは考えています。

AI新電力需要に対し、光電融合新技術で対処するのが日本)NTTの取組みです。

Summary:低消費電力トレンドとMCU開発

ドイツ、米国、日本、有力企業の電力不足の取組みを、最新記事からまとめました。

  • ドイツ)Volkswagen:ドイツ工場閉鎖、電力コストの安い国外拠点で代替
  • 米国)Microsoft:既存(休止)原発再稼働でAI新電力需要を補う
  • 日本)NTT:光電融合の新技術でネットワークとコンピューティング両方の電力不足解消を狙う

これら低消費電力トレンドは、MCU開発やその顧客へも影響を与えます。MCU単体の消費電力は僅かでも、IoT時代は数十億個ものMCUが稼働するからです。

開発MCU消費電力の少なさは、顧客に好印象を与え、他社差別化に大きく寄与します。

Afterword:低消費電力MCU開発

MCU IDEには、電力消費シミュレーションツールが付属しています。従来は、確認程度に使っていました。シミュレーションとはいえ、今後は顧客へのMCU低電力動作例を示すのに使えます。

また、新しい製造デバイスは、従来デバイスよりも高性能で低電力動作です。例えば、40nmプロセスのSTM32G0は、STM32F0/F1の半分以下の電力で高速動作します(弊社STM32G0xテンプレートP2参照)。MCU単体とシステム全体ハードコスト検討も必要ですが、評価価値はあります。

40nm汎用STM32G0シリーズとSTM32F0/F1シリーズの動作電力比較
40nm汎用STM32G0シリーズとSTM32F0/F1シリーズの動作電力比較

全ての弊社マイコンテンプレートは、低消費電力対策にSleep処理を組込み済みです。Sleep有無で消費電力がどの程度変わるか、コメント修正のみで実ハード確認ができます。

MCUプロトタイプ開発に最適、顧客への低電力動作アピールにも適すマイコンテンプレート、ご活用ください。


Arm TrustZone【組込み開発 基本のキ】

MCUセキュリティの2回目は、Arm TrustZoneについて解説します。前稿解説のセキュアブートは、MCU起動ソフトウェアの信頼検証を行います。Arm TrustZoneは、MCU実行中ソフトウェアの改ざん防御技術です。

TrustZoneもベンダやMCU毎にその実装が大きく異なりますので、TrustZone基本知識を解り易く説明後、実装例を示します。

※TrustZoneはセキュアブートも包含します。本稿はセキュアブート以外の内容を解説し、Summaryでまとめます。

Arm TrustZone基本

Arm TrustZone基本
Arm TrustZone基本

セキュアブート同様、Arm TrustZone(以下TrustZone)も専用ハードウェアで実行中MCUソフトウェアの改ざん防御やセキュリティ確保を行います。

TrustZoneは、気密性の高いデータ保存や重要周辺回路、処理ソフトウェアを保存する「セキュア領域」と、それ以外の「ノンセキュア領域」にMCUハードウェアを分離します。そして、ノンセキュア領域のソフトウェアは、予め決めた手続きに従わないと、セキュア領域へのアクセスができません。

つまり、ノンセキュアソフトウェアのセキュア領域直接アクセスが禁止です。これにより、セキュア領域の改ざん防御とセキュリティを確保します。

セキュア領域は、暗号鍵や機密データ、割込みハンドラなどの重要ソフトウェアを保存します。
ノンセキュア領域は、通常の周辺回路やアプリケーションソフトウェアを保存します。

TrustZoneセキュリティ違反検出時は、セキュリティ例外処理を実行します。この処理内容は、システム設計や実装により大きく異なります。例えば、MCU動作停止やセーフモードでの最小機能動作、ネットワーク経由での違反内容通知などがあります。

このようにTrustZoneは、様々なセキュリティレベルに柔軟に対応可能です。TrustZone対応Arm Cortex-Mコア一覧が下記です。Cortex-M33など新しい設計のArmv8-M MCUコアは、TrustZone内蔵です。

TrustZone対応Arm Cortex-M_Processor_Comparison_Tableに加筆(出典:ARM)
TrustZone対応Arm Cortex-M_Processor_Comparison_Tableに加筆(出典:ARM)

※Cortex-M7は、MPUで設計も古いためTrustZoneなし。TrustZone MPUは、Cortex-A35など。

TrustZone実装例

前章でTrustZoneの基本を解説しました。しかし、実際のTrustZoneは、もっと複雑です。

例えば、STマイクロ)STM32L5/U5 MCU(Cortex-M33コア)のTrustZoneウェビナー資料が、コチラからダウンロードできます。

I2C/SPIへのハッカー攻撃例(P10)とその防御(P11)、TrustZone分離例(P20)、セキュリティ違反検出方法(P21~23)、TrustZone初期設定フロー(P29)などが示されています。

また、TrustZoneにJTAGポート無効化やMCUパッケージ開封検出(タンパ検出)などの複数セキュリティ機能を重ね、セキュリティレベルを上げていることも判ります(P17)。

複数セキュリティを重ねセキュリティレベルを上げる(出典:STマイクロSTM32L5/U5 MCU TrustZoneウェビナー資料)
複数セキュリティを重ねセキュリティレベルを上げる(出典:STマイクロSTM32L5/U5 MCU TrustZoneウェビナー資料)

この実装例は、Secure User Memory(P15)格納の暗号鍵を使ってセキュアブート後、I2Cデバイス制御とSPI無線通信制御を重要ソフトウェアセキュア領域へ格納、ハッカー攻撃などセキュリティ違反検出時でも、これらセキュアソフトウェア処理は継続、かつ、セキュリティ違反検出内容を外部無線通知するMCUアプリだと推測します。

※ウェビナー資料でファームウェアと記述の箇所は、本稿のソフトウェアと解釈してください。

TrustZone開発の難しさ

TrustZoneを使うMCU開発は、通常開発に加え、

  • 想定攻撃、脅威は何か
  • セキュリティ違反の例外処理をどうするか
  • 例外処理デバッグはどう行うか
  • セキュア領域の重要ソフトウェア、周辺回路は何か
  • セキュア/ノンセキュア分離アプリの同時開発

など、多くの課題があります。また、セキュア/ノンセキュア分離前の通常アプリにバグが無いことも必要です。さらに、セキュリティ対策効果とリスク、開発コストに対し、費用対効果を顧客と相談する必要もあります。

TrustZone MCU開発は、高度なスキルが必要になると思います。

Summary:Arm TrustZone基本知識

組込み開発基本のキとして、MCUハードウェアをセキュア領域とノンセキュア領域に分離し、ノンセキュアソフトウェアのセキュア領域直接アクセスを禁止することで、実行中のセキュア領域ソフトウェア改ざん防御とセキュリティ確保を行うArm TrustZoneの基本を示しました。

TrustZoneセキュリティ違反検出時は、セキュリティ例外処理を実行します。この例外処理内容は、システム設計や実装により大きく異なります。このセキュリティレベル多様性理解には、TrustZone基本知識が重要です。

前稿解説セキュアブートは、MCU起動ソフトウェア信頼性の検証を行います。セキュアブートとTrustZoneの併用で、起動/実行中のソフトウェア改ざん防御とセキュリティ確保ができます。TrustZoneが、セキュアブートを包含する理由がこれです。

Arm TrsutZomeまとめ
Arm TrsutZomeまとめ

Afterword1:自転車ロードレース競技中のハッキング

ワイヤレス技術利用制御系の潜在的脆弱性攻撃例が、コチラにあります。350ドル程度のソフトウェア無線機HackRFやRaspberry Piなどでも攻撃可能だそうです。本稿のTrustZone実装例が対策に使われたのかもしれません。ハッキング検出時でも、簡単に動作停止できない(しない)事例です。

Afterword2:MCUセキュリティまとめ

セキュアブートとTrustZoneから、MCUセキュリティを俯瞰したのが下記です。

  • 攻撃対象ソフトをRoot of Trust(RoT)ハードで守るのがMCUセキュリティ
  • RoTハードでセキュリティ違反検出、例外処理ソフトで違反処理
  • セキュリティ実装はアプリや運用で大きく変わる。開発費用対効果の検討必須
  • Armv8-M以後の新しいMCUコアにRoT TrustZone内蔵

費用対効果には、セキュリティ全般知識も必要です。これは、セキュリティ実装開発とは別次元の難しい課題です。対策は、AI PCを使ったセキュリティコンサルタント育成などでしょうか?

ブログ右上検索窓へ「基本のキ」と入力し検索すると、様々なMCU開発者向け基本知識が得られます。ご活用ください。


MCUセキュアブート【組込み開発 基本のキ】

ランサムウェア攻撃による企業活動停止やWindowsブルースクリーン大規模障害など、重大セキュリティインシデントが急増中です。MCU開発者にとっても、他人事ではありません。

そこで、MCUセキュリティの基礎、MCUセキュアブートとArm TrustZoneを2回に分けて解説します。セキュアブート編が本稿です。

MCUセキュリティが判り難い原因は、ベンダ、MCU毎にセキュリティレベルや実装が大きく異なるからです。そこで、個別セキュリティの前に、基本知識としてMCUセキュアブート(本稿)とArm TrustZone(次稿)を解り易く示し、その後、実装例を示す2段構えの方法で解説します。

MCUセキュリティ背景

MCUソフトウェアは、悪意を持つ第3者による改ざんやウイルス感染などで書き換わる可能性があります。一方、改ざんの可能性が無く安全なのは、MCUハードウェアです。

従来のMCU開発は、サイバー攻撃などのソフトウェア書き換えは、想定外でした。

しかし、PCセキュリティトラブルやランサムウェア被害などが増え、MCUも攻撃対象となりました。特にIoT MCUは、ネットにつながるため防御が必須です。この防御全般がIoT MCUセキュリティ(以下MCUセキュリティ)です。

セキュリティリスクを下げるには、開発コストが上がる。MCU開発者は、費用対効果バランスも考える必要がある。
セキュリティリスクを下げるには、開発コストが上がる。MCU開発者は、費用対効果バランスも考える必要がある。

今後のMCU開発では、MCUセキュリティ対策が望まれます。しかし、ソフトウェアのみでは対処できないため、セキュリティレベルに応じた追加ハードウェアが必要です。また、セキュリティオーバーヘッドのため、通常のセキュリティ無しソフトウェアに比べ処理能力も低下します。

MCUセキュリティ開発は費用対効果、つまり、これら追加効果とセキュリティリスク、セキュリティ開発コストのバランスを、どう解決するかがポイントです。

実装セキュリティがベンダやMCU毎に異なるのは、このポイントにバラツキがあるためです。顧客が、起きるか起きないか判らないMCUセキュリティインシデントに対し、どの程度開発コストを負担するか不明なのと同じです。

MCUセキュアブート基本

セキュアブート解説の前に、通常のMCUブートを簡単に説明します。

通常のMCUブートは、リセット→動作クロック設定→RAMゼロクリア→RAM初期値設定などを経て、Flash格納ユーザアプリケーションを起動します。格納ソフトウェアに、ハッカー攻撃などの改ざんが無いことが大前提です。

関連投稿3章に通常ブート説明。

MCUセキュアブートと通常ブート
MCUセキュアブートと通常ブート

一方セキュアブートでは、最初にFlash格納ソフトウェアに改ざんが無いことを、暗号化技術を使って検証します。このため暗号化アクセラレータや暗号鍵の専用ストレージが必要になります。

検証失敗時は、動作停止、またはリカバリーモードへ移行し、検証成功時のみ通常ブートを行います。つまり、起動ソフトウェアの信頼検証をハードウェアのみで行うのが、MCUセキュアブートです。

通常ブートと比べると、事前に改ざんソフトウェアの実行が防げますが、検証時間が余分に掛かります。このセキュアブートハードウェアをRoot of Trustと呼び、専用ハードウェアとしてMCUに内蔵されます。例えば、Arm Cortex-M33コアMCUなどがこれに相当します。

Root of Trust(RoT)は、最も基本的なセキュリティ領域の保証概念。ここが信頼できることを前提にセキュリティが構築されるため、信頼根と呼ばれる。

高度車載セキュアブート実装例

前章でMCUセキュアブートの基本を解説しました。しかし、実際のセキュアブートは、もっと複雑です。

例えば、ルネサス車載MCU RH850セキュアブートが、コチラです。

高度なセキュリティレベルが求められる車載MCUのセキュアブート例で、豊富な図を使って解説しています。セキュリティ専門用語も多いため、用語や略称集も添付されています。

しかし、前章基本を理解していれば、高度車載MCUセキュアブートでも掲載図だけで概ね把握できると思います。

車載ソフトウェアイメージ検証(出典:ルネサスRH850セキュアブート)
車載ソフトウェアイメージ検証(出典:ルネサスRH850セキュアブート)

Summary:MCUセキュアブート基本知識

MCUセキュリティの実装は、セキュリティ対策効果とリスク、その開発コストにより大きく変わります。Root of Trustを持つCortex-M33コアの汎用MCUでさえ、アプリケーションや顧客要求に応じ実装セキュリティは変わります。

例えばセキュアブートは、MCU起動時処理のため常時運用など再起動が少ない場合は効果も期待薄です。

MCU開発者のセキュリティ実装を困難にする原因の1つが、この多様性です。

そこで、組込み開発基本のキを示す本稿は、MCUセキュリティ基本知識として、起動時ソフトウェア信頼検証をハードウェアのみで行うMCUセキュアブートと、そのセキュアブート実現基盤のRoot of Trustを解説しました。

基本知識があれば、様々なセキュリティ実装開発にも対応できるからです。

次回は、MCU運用中セキュリティを確保するArm TrustZoneを解説します。

Afterword:Windowsブルースクリーン記事

Windowsブルースクリーン記事や解説が、ITmediaにまとまっています。業務の合間などリフレッシュを兼ねて目を通してはいかがでしょうか?


embedded world 2024 MCU要約

embedded world 2024(出典:記事)
embedded world 2024(出典:記事)

欧州最大規模の組み込み技術展示会「embedded world 2024」で見た最新トレンド記事(全14ページ)が、2024年7月30日、EE Times Japanに掲載されました。MCU/MPU関連部分を抜粋要約し、表形式にまとめました。

Summary:embedded world 2024 MCU/MPU関連要約

embedded world 2024概要:ヨーロッパ最大組込み技術イベント展示会。2024年4月9日から11日までドイツ)ニュルンベルク開催。50カ国から1,100社出展、80カ国から32,000人来場。
ハイライト:エッジAI製品とソリューションの低消費電力化、小型化、高性能化に注目。

MCU/MPUベンダ 発表内容
Infineon
(旧Cypress)
AI搭載PSOC Edge E8シリーズ(Cortex-M55+M33+NPU)発表とデモ
音声、オーディオセンシング、MLベースウェイクアップ、ビジョンベースの位置検出、顔やオブジェクト認識など高度HMI機能に対応
Armセキュリティ基準「PSA Level 4」を満たすセキュアブートなどセキュリティ機能搭載MCU
STマイクロ エッジAI機能、モーター制御、モーター異常検出リファレンス設計「EVLSPIN32G4-ACT」展示とデモ
エッジAIにかかわるハード/ソフト全てをワンストップ提供がSTの強み
NXP ワイヤレスMCU Wシリーズ発表(±0.5m精度測距可能)
Cortex-M3ベース専用2.4GHz無線サブシステム搭載(Matter、Zigbee、Bluetooth、Threadプロトコルサポート)
ルネサス 低消費電力、コスト重視アプリ対応RA)RA0シリーズ(Cortex-M23)発表
動作電圧1.6〜5.5V、レベルシフター、レギュレーター不要
アクティブ84.3μA/MHz、スリープ0.82mA、スタンバイ0.2μA、スタンバイ復帰1.6μs(競合比7分の1)
ラズパイ ソニーIMX500搭載AIカメラモジュール2024年夏頃発売予定
ラズパイZero 2 Wと接続し、物体認識や身体セグメンテーションデモ

Afterword:次回8月23日金曜投稿

次回金曜投稿は、8月23日金曜にします。連日35℃を超える猛暑と多湿のため、仕事効率は最悪です。そこで、来週と来来週、夏休みを2週間頂きブログ更新は緊急性が無い限り23日まで休みます<(_ _)>。

しかし、弊社MCUテンプレート販売は、24時間365日無休です。特にHAL利用のRAベアメタルテンプレートは、RA0シリーズ開発にも使えると思います。オーダーお待ちしております。


RA用FSP v5.4.0リリース

2024年6月27日、ルネサスRA用FSP v5.4.0同梱e2 studio 2024-04がリリースされました。セミナ参加のため、久しぶりに最新FSPへ更新したところ、弊社RAベアメタルテンプレートのFSPバージョン出力にバグを発見しましたので修正対策を示します。

Summary:FSPバージョン出力コード修正箇所

修正前:コンパイルエラ発生(RttViewer.cのL41)

APP_PRINT(“\r\n–> Current FSP version is v%d.%d.%d.”, version.major, version.minor, version.patch);

修正後:version_id_bをmajor/minor/patch前に追加

APP_PRINT(“\r\n–> Current FSP version is v%d.%d.%d.”, version.version_id_b.major, version.version_id_b.minor, version.version_id_b.patch);

修正後のJ-Link RTT ViewerによるFSPバージョン出力結果です。

J-Link RTT Viewer V7.96qのFSPバージョン出力
J-Link RTT Viewer V7.96qのFSPバージョン出力

最新RA用開発ソフトウェアツール

無償版RAファミリソフトウェア開発ツールは以下3つで、現時点の最新版が下記です。

  1. e2 studio:統合開発環境、Version 2024-04
  2. FSP:Flexible Software Package、RA用API生成ツール、Version 5.4.0
  3. SEGGER J-Link RTT Viewer:printf出力ツール、Version 7.96q

開発には、FPB-RA6E1/RA4E1などのハードウェアツールも必要です。本稿は、上記3ソフトウェアツール更新に焦点を当てます。

2022年4月30日のRAベアメタルテンプレート開発・発売から2年経過し、3ソフトウェアツールがそれぞれ更新されました。ツール更新に伴い、本稿のようなトラブルが発生する場合があります。その対策を示します。

コンパイルエラ対策

最新ツールへ更新後、以前のエラーフリーソースをコンパイルすると、以下のエラが発生します。

コンパイルエラ発生個所
コンパイルエラ発生個所

メンバ名major/minor/patchが不明なのが原因です。

対策に、version定義のfsp_pack_version_tを調べます。fsp_pack_version_tへカーソルを移動し、F3をクリックすると、fsp_pack_version_t定義箇所fsp_version.hへ自動的に移動します。

FSP Pack version構造体
FSP Pack version構造体

※F3クリックは定義検索に便利。これはEclipse IDE共通機能。

fsp_pack_version_tは、過去有った構造体が無くなっています。そこで、ソースmajor/minor/patchの前に、version_id_bを加えるとコンパイルエラは無くなります(構造体と共用体投稿はコチラ)。

e2 studioとRA用FSP更新

統合開発環境e2 studioとRA用FSPは、別々の更新タイミングです。各更新タイミングで、それぞれを最新版へ更新するのも1方法です。

しかし、これら2つを同梱し、同時に最新版へ更新できるWindowsパッケージが、FSP v5.4.0 with e2 studio 2024-04です(Mac/LinuxパッケージはリリースGitHubにあり)。同梱パッケージは、更新2度手間が省けるだけでなく、個別更新トラブルも避けられます。

同梱パッケージは、個別インストール版よりも数か月遅れてリリースされますが、お勧めの更新方法です(同梱投稿はコチラのまとめ参照)。

SEGGER J-Link RTT Viewer更新

SEGGER J-Linkダウンロードサイト
SEGGER J-Linkダウンロードサイト

RTT Viewerは、既存版が自動的に最新版へ更新されます。しかし、SEGGER社リンクから直接最新版をダウンロードするのも1方法です。古いVersionをお使いの方は、この方法も良いでしょう(RTT Viewerのprintfデバッグ関連投稿はコチラ)。

Afterword:環境依存トラブル対策

今回のような更新トラブルは、組込み開発では良くあります。開発品を顧客へ納入後、数年経ってから機能追加/修正の案件がある場合などです。納入開発環境と、最新版環境の差による「環境依存トラブル」です。

本稿は、簡単なメンバ名追加で対策できました。しかし、例えばAPI内部差によるトラブル等は、容易ではありません。安全側対策に、納入時の旧環境をそのまま使い続ける方法があります。同一MCUで新機能は使わない場合などは、有効な方法です。

一方、新機能の追加/修正やMCU変更案件は、環境依存トラブルも加味したスケジュール対策が望ましいと思います。どの程度加味するかが難しい問題ですが…。

お詫び

弊社RAベアメタルテンプレートV1ご購入者様は、本稿修正をお願い致します。また、この場を借りて、お詫び申し上げます。ご迷惑をおかけし、申し訳ございません。


エッジAI導入アプローチ

市中ビデオカメラへのエッジAI応用例とどの程度TOPS能力が必要かが判る記事、STM32F3マイコンの電動自転車へのAI応用記事から、MCUとMPU/SBCのエッジAI導入アプローチの違いを説明します。

ビデオカメラのエッジAI応用例

AIビジョンプロセサHailo-15によるカメラノイズ除去、鮮明化例(出典:記事)
AIビジョンプロセサHailo-15によるカメラノイズ除去、鮮明化例(出典:記事)

上図は、左側オリジナルビデオ画像を、AI Visionプロセサ:Hailo-15を使って、ノイズ除去と鮮明化、人物認識を行った例です。

この例では、低照度下で撮影した4Kビデオ画像のノイズ除去に約100ギガオペレーション/秒(GOPS)、30フレーム/秒のリアルタイムビデオストリーミングなので3 TOPS処理能力が必要です。

Hailo-15は、AI処理能力に応じて現在3製品をラインナップしており、それぞれのTOPS値が下図です。

Hailo-15ラインナップ’(出典:HAILOサイト)
Hailo-15ラインナップ’(出典:HAILOサイト)

7 TOPSのHailo-15Lでも十分なビデオカメラエッジAI処理が可能です。カメラ外付けのHailo-15は、例えば、SBC(シングルボードコンピュータ)Raspberry Pi 5と組み合わせると面白い装置が開発できると思います。

同様のビデオエッジAI処理をMCUで実現する場合は、コチラの投稿で示したCortex-M85コア搭載RA8D1があります。

電動自転車のエッジAI応用例

2024年4月3日、STマイクロは、電動自転車搭載の汎用MCU STM32F3(Cortex-M4/72MHz、Flash/128KB)へ、無償エッジAI開発ツールSTM32Cube.AIを使って、自転車タイヤの空気圧を推定、空気を入れるタイミングを示すAI機能を実装しました。

STM32F3は、上記AI機能の他にも自転車本体の電動アシスト量制御やモータ制御も行っています。つまり、空気センサなどの追加ハードウェア無しでエッジAI機能が低コストで実装できた訳です。

STM32F3へのエッジAI応用例(出典:STマイクロ)
STM32F3へのエッジAI応用例(出典:STマイクロ)

STマイクロのMCUソフトウェアは、HAL(Hardware Abstraction Layer)APIを使って開発すると、同社の異なるMCUコアでも移植性の高いソフトウェアが作れます。

最新40nmプロセス製造のSTM32F3上位機種が、汎用STM32G4(Cortex-M4/170MHz)です。STM32G4ソフトウェア開発をご検討中の方は、弊社STM32G0x(Cortex-M0+/64MHz)テンプレートをご活用ください。
また、より低価格低消費電力なSTM32C0(Cortex-M0+/48MHz)へもG0xテンプレートが適用可能です。
詳細は、info@happytech.jpへお問い合わせください。

Summary:エッジAI導入の2アプローチ

エッジAI導入の2アプローチ
エッジAI導入の2アプローチ

実際のエッジAI応用例から、MCUとMPU/SBCではエッジAI導入アプローチが異なる事を示しました。

MCUは、STM32F3例が示すように、「追加ハードウェア無し低コストAI実装アプローチ」です。STM32Cube.AIを使い、実装MCUへソフトウェアのみでAI機能追加を行います。

MPU/SBCは、外付けHailo-15H/M/Lを使ってエッジAI処理を行います。「拡張性重視のAI実装アプローチ」です。

ユーザが求めるAI機能は、今後益々増えます。エッジAI処理増加により、より高い電力効率で高性能な処理コアが求められるのは、MCUもMPU/SBCも同じです。

製品開発には、ある程度の期間が必要です。この期間中に増加するエッジAI処理増に耐えられる製品の処理コア選定は、重要検討ポイントになるでしょう。

関連投稿:MCUとMPUの違い

Afterword:ビデオエッジAI処理プロセス

ビデオエッジAI処理プロセス(出典:HAILO記事)
ビデオエッジAI処理プロセス(出典:HAILO記事)

最初の記事に、ビデオエッジAI処理プロセスが良く判る図があります。これを見ると、エッジAI処理がハードウェアの並列処理に向いていることも判ります。

ハードウェアは、製品化後、簡単に追加ができないため、どの程度の余力を製品ハードウェアに持たせるかは、コストとの兼ね合いで「永遠の課題」です。これは、ソフトウェアのみでAI機能を実装するSTM32Cube.AIでも同じです。製品実装済みMCUの余力を上回るAI機能追加はできないからです。

つまり、当面の安心をMCU開発者へ与えるには、最新MCUの製品利用がBetterということです。


Cortex-M85搭載RA8シリーズ説明

前投稿MCUとMPUの違いで紹介したルネサスRAファミリ最新MCUのRA8シリーズを説明します。
RA8は、従来Cortex-M7クラスの高性能MPUが必要なAI処理を、低コスト・低消費電力なAI MCUで実現します。

Cortex-M85コア

Cortex-M85特性比較(出典:ARM)
Cortex-M85特性比較(出典:ARM)

ARM Cortex-M系コアの比較表がコチラにあります。本ブログ関連を抽出したのが上表で、右側へ行くほど新しいコアになります。

Cortex-M85が、MPUのCortex-M7を超えるコア性能を持つことが判ります。

RA8シリーズ

RA8シリーズMCUポートフォリオとパーツ番号
RA8シリーズMCUポートフォリオとパーツ番号

Cortex-M85コア搭載のルネサスRAファミリMCUが、RA8シリーズです。今日現在、RA8シリーズは、RA8D1RA8M1RA8T1の3種類が発売中で、それぞれに評価ボードも提供中です。

RA8シリーズMCUポートフォリオとパーツ番号を示します。RA8xyのxが想定アプリケーション、yが改版数を示します。アプリケーションには、顔検出やモータ故障検出などのAI機能も含まれます。

AI顔検出が解りやすいので、以下、ディスプレイアプリケーションのRA8D1 MCU評価ボードを使ってAI MCU実例を示します。

評価ボード:EK-RA8D1

EK-RA8D1
EK-RA8D1

RA8D1(Cortex-M85/480MHz、ROM/2MB、RAM/1MB)評価ボードEK-RA8D1です。4.3インチカラー液晶と3MピクセルCMOSカメラも付属しています。RA8 Series Evaluation Kits Demo Overviewで解説動画を見ることができます。

クイックスタートガイドユーザーズマニュアルがダウンロードできます。

サンプルコード:EK-RA8D1 Example Project Bundle

EK-RA8D1のサンプルコードは、EK-RA8D1 Example Project Bundle(要ログイン)です。この中の_quickstartプロジェクトが、評価ボード実装済みサンプルコードです。

評価ボードと液晶、カメラ装着後、初めて電源投入すると_quickstart が動作します。この_quickstartサンプルコードが、Summaryで示すAI顔認証やオブジェクト検出を行います。

_quickstartのソースコード一覧です。FreeRTOSで開発されています。従って、ソースコードの移植性は高いと思います(関連投稿:FSP利用FreeRTOSアプリの作り方)。

_quickstart_ek_ra8d1_epのソースコード一覧
_quickstart_ek_ra8d1_epのソースコード一覧

Summary:Cortex-M85搭載RA8シリーズ説明

高性能MPUのAI処理を、低コスト・低消費電力MCUで実行するDSPやAI/ML性能強化Cortex-M85コアを説明し、同コア搭載RA8シリーズ最新MCUのRA8D1(Cortex-M85/480MHz、ROM/2MB、RAM/1MB)評価ボードEK-RA8D1と付属_quickstartサンプルコードを説明しました。

AI MCUアプリケーション例として、評価ボードへ液晶パネルとカメラを接続すれば、AIによるカメラ内顔検出、オブジェクト検出ができます。

AI MCUのカメラ内の顔検出とオブジェクト検出(出典:クイックスタートガイド )
AI MCUのカメラ内の顔検出とオブジェクト検出(出典:クイックスタートガイド )

Afterword:AI MCUアプリケーション開発方法

MCU開発能力に加え、幅広いAI知識もAI MCUアプリケーション開発に必要です。

AI MCUアプリケーションを開発する時は、本稿評価ボードとサンプルコードによる顔検出やオブジェクト検出AIサンプルコードをベースに、目的とする顧客AIアプリへ修正・変更を加えながらAIを習得することも効率的・効果的な方法だと思います。


評価ボード活用MCU製品開発

MCUの正常動作には、安定したクロック供給が最重要です。これは、ソフト/ハード、どちらの開発者も知っておくべき基本です。デジタルデバイスの動作保証は、安定クロックがあってこそだからです。

ルネサスRX、RAファミリで説明しますが、全ベンダの評価ボードでも同様です。ぜひ本稿を参考にしてください。

メイン/サブクロック回路基板設計要点

2024年2月発行のRX、RAファミリ向けアプリケーションノートを使って、製品開発にベンダ評価ボード活用メリット/デメリットを説明します。

メインクロック回路、サブクロック回路のデザインガイド Rev.1.00 (PDF) (日本語)
Design Guide for Main Clock Circuit and Sub-Clock Circuit Rev.1.00 (PDF) (英語)

※アクセス時、ログインが必要な場合があります。

メインクロックとサブクロックの基板例(出典:図26)
メインクロックとサブクロックの基板例(出典:図26)

RX、RAファミリのMCUを対象に、メイン/サブクロック発振回路基板パターンやルネサス推薦発振子メーカなど、特にMCUクロック関連回路の基板設計要点をまとめたのが、上記アプリケーションノートです。

MCUの動作を決めるのがメインクロック、サブクロックはRTC(時計機能)に使います。全てのデジタルデバイスは、正確なパルス幅の安定したクロックが供給されて初めて正常に動作します。MCUは、なおさらです。

クロックが不安定な場合は、原因不明のMCUトラブルが発生します。外来ノイズにも脆弱です。このような異常状態では、デバッグなどできません。

例えが悪いですが、人間で言えば「心不全」のようなものです。メインクロックの働きを具体的に知りたい方は、コチラを参照(正常クロック供給下の解説)。

従って、クロック回路基板設計要点を守った上でのMCU製品開発が最重要です。

基板設計理想解と現実解

前章の基板設計ガイドは、クロック関連部品だけの理想的な基板、つまり、「理想解」です。

しかし、実際の基板設計は、大きさやコスト、クロック以外の他部品の配置など様々な事柄を考慮する必要があります。そして、それらの総合判断結果が「現実解」であり、実際の製品基板です。

現実解は、ベンダMCU評価ボードでも同じです。

RAファミリRA6E1評価ボードのMCU回り基板を示します。理想解と違っても部品配置、クロック配線の太さ・短さ、そのシールドなど参考にすべき基板回路を持つ現実解です。

RAファミリRA6E1のMCU周り基板現実解
RAファミリRA6E1のMCU周り基板現実解

各ベンダMCU評価ボード目的

前章のMCU評価ボード現実解は、ルネサスRX、RAファミリに限った話ではありません。

つまり、クロック要点を満たし外来ノイズにも強く、かつ、Arduinoシールドコネクタなどで拡張機能も実装済みのデバイスが、各ベンダのMCU評価ボードです。これらは、MCUベンダ自身の開発ボードですので、極めて高い製品クオリティを持っています。

ベンダMCU評価ボードとは、MCUを評価するためのボードです。しかし、同時に、MCUが正常に動作するベンダ推薦発信器や基板パターンの製品ハードウェア手本も示していると言えます。

プロトタイプ時、各ベンダ評価ボードをそのまま制御系に流用するのは、原因不明MCUトラブル(心不全)を避ける手段として有効であることが判ると思います。

評価ボード活用得失

プロトタイプにMCU評価ボードを流用するメリット/デメリットをまとめます。構成は、下記とします。

プロトタイプ構成=評価ボード+ユーザ機能ボード+ユーザソフトウェア
ボード間接続=Arduinoコネクタ

メリット

  • 高信頼制御ハードウェアが、評価ボードにより簡単に得られる
  • 制御能力過不足時、Arduinoコネクタを持つ別評価ボード交換可能
  • ユーザ機能デバッグに集中できる

デメリット

  • 製品の大きさ、コストを上げる要因になる

簡単に言うと、高信頼で載せ替え可能な制御系と引き換えに、大きさやコスト面の犠牲が生じる構成です。
しかし、筆者は、早期プロトタイプ開発に最適な方法だと思います。

製品改善アプローチ

最終製品時の大きさ、コストを改善するには、評価ボードとユーザ機能ボードを一体基板化するのがBetterです。この時も、プロトタイプに使った評価ボードMCU周りの発振子配置や配線は、手本としてそのまま製品基板へ流用可能です。

また、一体化最終製品のトラブル発生時、ユーザ機能ハードウェア起因か、または、ユーザソフトウェア起因かの切り分けも、評価ボード流用プロトタイプは容易にします。なぜなら、評価ボードは、信頼性が高いベンダ開発品だからです。

つまり、最終製品とプロトタイプの差分が原因と考えられ、一体化基板ハード、または、ユーザソフトの2つに1つとなります。同一ユーザソフトでのトラブルなら、ハード起因が疑われます。

評価ボード活用プロトタイプは、早期製品化だけでなく、様々な用途やメリットを生みます。

Summary:評価ボード活用MCU製品開発

ベンダ評価ボード活用MCU製品開発
ベンダ評価ボード活用MCU製品開発

ルネサスRX/RAファミリのメイン/サブクロック回路デザインガイドから、MCU製品開発にベンダ評価ボードをそのまま流用する早期プロトタイプ開発方法を示し、得失を明らかにしました。

評価ボード活用プロトタイプは、大きさ、コストを改善する基板パターンの手本となるだけでなく、最終MCU製品トラブル原因が、ハードウェア起因かソフトウェア起因かを切り分ける手段にも使えるなど、メリットが大きいことを示しました。

Afterword:プロトタイプソフトウェア開発に弊社テンプレート

評価ボードがハードウェア手本なら、ベンダ開発サンプルコードは、ソフトウェアの手本です。

弊社テンプレートは、各ベンダの代表的MCU評価ボードに対応済みです。テンプレートは、ベンダサンプルコードを流用・活用し、プロトタイプ向けソフトウェアの早期開発が可能です。

弊社テンプレートと評価ボードを使って早期プロトタイプ開発を行い、MCU製品開発に役立ててください。


RTOSアプリケーションIoT MCU能力推定

RTOSアプリケーションのIoT MCUにはどの程度のハードウェア能力が必要か?
この答を IEEE標準RTOS のμT-Kernelプログラミングコンテスト対象評価ボードから考察しました。

RTOSコンテスト評価ボード
RTOSコンテスト評価ボード

RTOSコンテスト対象評価ボード

MCUベンダ大手4社:インフィニティ、STマイクロ、NXP、ルネサス協賛のRTOSプログラミングコンテストが開催中です。RTOSは、IoT MCU世界標準のμT-Kernel 3.0利用がコンテスト条件です(関連投稿:前投稿)。

但し4社評価ボードは、μT-Kernel以外にもFreeRTOSやAzure RTOSでも動作可能です。そこで、これら評価ボードスペックを分析すると、RTOSアプリケーションのIoT MCUに、どの程度のMCUハードウェア能力が必要か、その目安が判ると思います。

コンテスト対象評価ボードは、ベンダ4社評価ボードと英BBC開発micro:bit、合わせて5種です。

インフィニティ:KIT_XMC72_EVK
STマイクロ:Nucleo_H723ZG
NXP:MCX N94x評価ボード(1月4日現在Coming Soon)
ルネサス:EK-RA8M1
BBC:micro:bit

評価ボードMCUコアとROM/RAM量

各評価ボードは、どれもARM Cortex-M系コアを用いています。

インフィニティとSTマイクロは、ハイパフォーマンスMCU Cortex-M7、NXPは、Trust Zone搭載MCU Cortex-M33、ルネサスは、AI/ML性能向上のArm Helium搭載MCU Cortex-M85、BBC開発micro:bitは、ベーシックなMCU Cortex-M4です。

評価ボードのCortex-Mコアと最高動作速度、ROM/RAM量が下表です。

ベンダ Cortex-Mコア/速度 ROM(KB) RAM(KB)
インフィニティ M7/350MHz 8192 1024
STマイクロ M7/550MHz 1024 564
NXP M33/150MHz 1024 1024
ルネサス M85/480MHz 2049 1024
BBC M4/64MHz 512 128

BBC開発micro:bitは、他に比べスペックが劣っています。
これは、μT-Kernel 3.0学習教材用でコスト最優先のためと思います。

ベンダ4社評価ボードは、RTOSコンテスト参加ハードウェアなので、どれも汎用RTOSアプリケーション開発ができるハズです。コンテストエントリー時に、応募者が第3希望まで評価ボードを選べます。

IDEはRTOSもベアメタルも同じ

ベンダ4社は、ベアメタル開発用の統合開発環境:IDEを利用し、FreeRTOSやAzure RTOS開発環境を提供中です。

例えば、STマイクロは、ベアメタル開発で使うSTM32CubeIDEに、ミドルウェアのAzure RTOS開発ツールを追加し、Azure RTOS開発環境を、ユーザ自身で構築します(関連投稿:STM32 Azure RTOS開発ツール拡充

現代的ユーザMCU開発の例(出展:The ST blog)
現代的ユーザMCU開発の例(出展:The ST blog)

コンテストは、μT-Kernel 3.0 RTOS開発です。筆者は、μT-Kernel 3.0をベンダ4社評価ボード上で動作させる作業、いわゆるポーティング処理は、把握していません。

しかし、本稿主題は、RTOS IoT MCUに必要なハードウェア能力の推定です。従って、評価ボードへのμT-Kernel 3.0ポーティングは、無視します。

一方、micro:bitは、μT-Kernel 3.0で動作するEclipse IDEが提供されます。従って、どなたでも直ぐにmicro:bit上でμT-Kernelを動かすことができます。この点も、教育用に適しています。

RTOS IoT MCUハードウェア能力推定

最初の表に戻り、RTOS IoT MCUに必要なハードウェア能力を推定します。

ベンダ Cortex-Mコア/速度 ROM(KB) RAM(KB)
インフィニティ M7/350MHz 8192 1024
STマイクロ M7/550MHz 1024 564
NXP M33/150MHz 1024 1024
ルネサス M85/480MHz 2049 1024
BBC M4/64MHz 512 128

先ず、MCUコア能力は、micro:bitスペックから最低でもCortex-M4以上、RTOSアプリケーションを実用的に開発するには、Flash ROMは1024KB以上が必要そうです。教育用micro:bitの512KBは、排除しました。

また、RTOSは、動作タスク数に比例し使用スタック量が急増します。これは、RTOSが実行タスクを別タスクへ切替える毎に、実行タスク変数やレジスタ等の状態をスタックにプッシュするためです。タスク再実行の際には、RTOSがスタックからポップし、実行前タスク状態へ戻します。

RTOSスタック動作(出展:ウィキペディア)
RTOSスタック動作(出展:ウィキペディア)

仮に、このRTOSポップ/プッシュに対してスタック量が不足した場合は、再現し難いバグになります。このバグを避けるには、必要十分な量のスタック領域が、RAM上に必要となります。スタック量を見積もるツールは、各社のIDEに付属しています。

表から、RTOSアプリケーション開発には、RAMは、最低でも512KB、安全側評価なら1024KB程度が必要そうです。

Summary:RTOS IoT MCUハードウェア能力

RTOSアプリケーションが動作するIoT MCUに必要なハードウェア能力を、μT-Kernelプログラミングコンテスト対象評価ボードから考察した目安が下記です。

MCUコア:ARM Cortex-M4以上、Flash ROM 1024KB以上、RAM 512KB以上

RTOSアプリケーション開発時には、MCUデバイスコストと発展性の検討が必要です。

機能拡張や横展開が期待できるRTOSアプリケーションなら、IDE付属スタック見積ツールを活用し、RAMに余裕があるデバイスが、効率的で安全な開発ができそうです。

Afterword:2024年もよろしくお願いします

日本時間の毎週金曜日、MCU話題を中心に、その開発環境のWindowsや比較対象にMPU/SBCなども混ぜながら、IoT MCU開発お役立ち情報を投稿します。

「開発スピードと成果」この2つを強く求められるのが、MCUに限らず開発者の宿命です。

激変MCU環境で背反するこの2つを両立する手段の1つが、MCUテンプレートだと筆者は考えています。開発初期立上げをスムースにし、全体像の視点を持ちつつ個々の機能追加もできるからです。
RTOS MCU開発も同様だと思います。

但し、全て自作するベアメタル開発と異なり、RTOSと協調動作するのがRTOS MCU開発です。RTOSを活かすMCUタスク作成や本稿のMCUハードウェア能力を、弊社RTOSテンプレートへ反映したいと考えております。

本年もどうぞよろしくお願いいたします。

FreeRTOS version 11.0.0は、マルチコアMCU動作が可能になりました。