STM32デモソフトから見える問題点

STM32Fxシンプルテンプレート

前回記事で予告しました、弊社マイコンテンプレートを使い、STM32評価ボードのデモソフトへUART-USB通信機能を追加しました(下記仕様参照)。

デモソフトのSW押下げの代わりに、評価ボードとパソコン間のUART-USB通信コマンドでLED点滅速度を変えます。これをマイコンテンプレートのSTM32F0マイコンへのシンプルな応用例という意味で、STM32Fxシンプルテンプレートとします(年内に既存マイコンテンプレートと同様、Baseboardテンプレートと合わせSTM32Fxマイコンテンプレートとして1000円で販売予定)。

STM32Fxシンプルテンプレート仕様
・動作確認評価ボード:STM32F072RB(Cortex-M0)
・LED出力:評価ボード実装 緑LED LD2点滅速度をUART-USBコマンドで変更
・SW入力:評価ボード実装 青ユーザSW(ソフトチャタリング対策済み)PushをUART-USBで表示
・UART-USB通信:TeraTermなどのターミナルソフトへメッセージ入出力(19200bps 8-Non-1)
・低電力動作:Sleep処理
・使用ライブラリ:HAL

STM32Fx Simple-Template Overview
STM32Fx Simple-Template Overview

STM32評価ボードデモソフトから見えるサンプルソフトの問題点

STM32評価ボードのデモソフトは、マイコンサンプルソフトの問題点を示しています。この問題点は、マイコンサンプルソフト全般に言えます。

サンプルソフトの問題点とは、1つの機能を、初期設定と無限ループを使って説明する点です。この方法は、初心者が単独機能を理解する際には、動作が解り易く、優れています。

しかし、実際のアプリケーションでは、複数の機能が並列的に動作するのが普通です。実アプリケーションの[複数並列(的)動作]と、サンプルソフトの[無限ループ単独動作]とのギャップが大きいことが、マイコン初心者にとっての大きな障壁です。

結論から言うと、サンプルソフトの解り易さに貢献している無限ループの時間消費(浪費)が問題です。

デモソフトの具体例

具体的にSTM32評価ボードのデモソフトで説明します。無限ループ内のLED点滅処理が下図です。

Sample Software Infinite Loop Trouble
Sample Software Infinite Loop Trouble

LED点滅速度は、SW割込みのCallback関数で変えます。このサンプルソフトは、LED出力とSW入力が並列動作しています(サンプルソフトとしては、SW割込みを使う点で珍しい例)。

LED点滅処理を繰り返すのが、無限ループの目的です。1ループのLED処理は、500/100/50ms毎に1回トグルを実行し、その他の時間は、HAL_Delayで時間消費(浪費)です。殆どのサンプルソフトは、この構成です。

つまり、

典型的サンプルソフト ➡[単独処理+時間浪費]の繰り返し

これにより1つの機能を説明する構成です。この方法は、説明の受け側にとっては、解り易いものです。単独処理の中身は、ポーリングが多いのも特徴です。ポーリング結果で、別処理へジャンプするなどします。

別処理の無限ループへの追加

STM32評価ボードのデモソフトは、割込みでSW入力の別処理を追加しています。しかし、無限ループへ、割込み以外で別処理を追加するのは困難です。なぜなら、[単独処理+時間浪費]へ別処理を追加するには、時間浪費の時間を変えるしか手がないからです。

時間浪費の時間を変えたとします。すると、[単独処理+追加処理+変更した時間浪費]となり、既に存在したLED点滅処理の点滅間隔が変わる可能性が生じます。

つまり、処理追加により既存処理へも影響が及ぶのです。厳密には、割込みでも既存処理へ影響が及びますが、その影響は極わずかです。

処理追加で既存処理に影響が及ぶので、追加前の既存処理単独でのデバッグが無駄になります。デバッグの積み重ねができないのです。

それならば、いつも割込みで処理を追加すれば良いかというと、そうでもありません。

割込み処理は、ポーリングに比べデバッグが難しくなります。また、割込み処理のサンプルソフトは、ポーリングに比べ少数です。

サンプルソフトは、単独動作の説明に重点を置いたポーリング動作のものが多数で、実アプリケーション開発へ、そのままでは使いにくい構成、構造になっていることがお判りになったと思います。

弊社マイコンテンプレートの対策

デモソフトのLED点滅処理に着目したのが、弊社マイコンテンプレートです。500ms、100ms、50ms毎に1回処理し、その他の時間は、別処理、低電力処理(Sleep処理)を時分割で処理します。

つまり、

弊社マイコンテンプレート ➡ ①[単独処理]終わり
____________ ➡ ②[別処理]終わり
____________ ➡ ③[低電力処理]終わり
____________  ①~③の繰り返し

簡単に言うと、時分割の無限ループランチャーです(起動される①側からみると、単独で無限ループ内にあるのと同じ、②、③も同様)。複数処理を起動する仕組みをテンプレート自体が持っているとも言えます。

RTOS: Real Time Operating systemを使うと複数処理起動が簡単です。しかし、RTOS理解のオーバーヘッドが必要です。弊社マイコンテンプレートは、簡易的に処理を並列に起動します。

起動される側の処理は繰り返し起動されますので、ポーリング動作のサンプルソフトの多くがそのまま流用できます。数多くあるポーリングサンプルソフトを活用、流用してアプリケーションの早期開発ができるのが、弊社マイコンテンプレートの特徴です。

また、STM32Fxシンプルテンプレート仕様から解るように、実アプリケーションに最低限必要な、低電力処理、LED出力、SW入力、UART-USB通信の各処理は既にシンプルテンプレートに実装済みです。

このシンプルテンプレートへ実用アプリで必要となる処理を追加しさえすれば、直ぐに最終段階アプリとなる構成になっています。プロトタイピング開発に適し、実アプリケーションとサンプルソフトとのギャップを小さくします。

もちろん処理を追加や削除しても、既存処理への影響が小さいので、デバッグの積み重ねもできます。

STM32CubeMX生成ファイルのユーザ処理追記箇所

STM32CubeMXが生成するプロジェクトと自動生成ファイルのユーザ処理追記箇所を解説します。STM32マイコンのソフト開発は、この出力ファイルへ、ユーザ処理コードを追記して完成しますので、どのファイルのどこに追記すれば良いかを知ることが重要です。

前回記事でSTM32CubeMXの使用ライブラリにHAL: Hardware Abstraction Layerを選びました。UM1718の5章に、HAL単独、LL単独とHAL/LL混合の各ライブラリ使用時のSTM32CubeMX生成ファイル詳細説明があります。本ブログ記事は、このHAL単独版に相当します。

STM32CubeMXの設定条件

STM32CubeMXは、設定により出力プロジェクトの生成ファイルが様々に異なりますので、STM32マイコンテンプレート開発で使う下記条件でコード生成します。

前提条件

評価ボード:STM32F072RB(ARM Cortex-M0)
3ウイザード:Pinout、Clock Configurationは評価ボードデフォルト設定、ConfigurationはEXTI line 4 to 15 interruptsに☑設定
使用ライブラリ:HAL

STM32CubeMX Code Generation
STM32CubeMX Code Generation

出力プロジェクトとユーザ処理追記が必要なファイル

STM32CubeMXの出力プロジェクトのうち、ユーザ処理を追記する必要があるファイルは、Inc(ヘッダーファイル)とSrc(ソースファイル)にあります。これらInc/Srcフォルダ内のファイル概要とユーザコード追記箇所の有無一覧が下記です。

USER CODE Add in for STM32CubeMX Project
フォルダ>ファイル 概要 ユーザ処理追記箇所 STM32CubeMX再生成時
Src main.c main処理(動作クロックとHAL初期設定生成コード含む) あり
ユーザ処理以外上書き
stm32f0xx_it.c 割込み処理(EXIT1 4_15) あり(自動割付済み)
stm32f0xx_hal_msp.c HAL MSP処理とエラー処理 あり(可能性は低い)
system_stm32f0xx.c システムクロック設定 なし
Inc main.h IOピンのラベル定義 あり(Pinoutウイザード設定分のみ) 完全上書き
stm32f0xx_it.h 割込み定義 なし
stm32f0xx_hal_conf.h HAL構成定義 なし

Incフォルダのmain.hユーザ追記部分は、Pinoutウイザードでピン名を追加した分のみです。つまり、ウイザード出力があるだけで実質ユーザ追記は不要です。STM32CubeMXで再度コード生成した場合は、ヘッダーファイルは全て上書きされます。

従って、再生成してもユーザ追記コードが残るのは「あり」で示した、main.c、stm32f0xx_it.c、stm43f0xx_hal_msp.cのSrcフォルダ内の3ファイルです。

このうちstm43f0xx_hal_msp.cは、HALライブラリのMSP: MCU Support Package処理(≒ハード抽象化)やエラー処理ファイルですので、通常はユーザが追記する可能性は低いと思います。

結局、ユーザ処理の追記が必要なファイルは、Srcフォルダのmain.cとstm32f0xx_it.c(割込み処理)の2ファイルです。

ユーザ追記コード(割込み処理)

先ず、割込み処理を説明します。

HALライブラリを使うと、割込みの前処理(割込み要因フラグ確認、フラグリセット、ユーザ処理関数callback)は、全てSTM32CubeMXが自動生成する割込みハンドラが行います。但し、この割込みハンドラ名には、HAL_という接頭語が付いていて、コアの割込みハンドラ名と異なるため、コア割込みハンドラと生成割込みハンドラの対応付けが必要です。

このハンドラ名称の対応付けを行うのが、stm32f0xx_it.cです。評価ボードのデモソフト(STM32マイコン統合開発環境参照の5)動作検証参照)の例で示すと、stm32f0xx_it.cの下記部分です。但し、この割付は、ConfigurationウイザードでEXTI line 4 to 15 interruptsに☑設定した結果、自動割付済みです。つまり、ここもウイザード出力結果が反映されていて、実質ユーザ追記が不要です。

stm32f0xx_it.cのユーザ追記箇所
stm32f0xx_it.c

ハンドラがコールするユーザ処理関数は、Callback以外がハンドラ名と同じHAL_GPIO_EXIT_Callback()という関数名というSTM独自の決まりがあります。このCallback関数は、main.c内にあり下記部分です。

main.c
main.cのユーザ追記箇所

まとめると、割込み処理は

EXTI4_15_IRQHandler()は、    コアの割込みハンドラ(startup_stm32f072xb.sに記述)
HAL_GPIO_EXTI_IRQHandler()は、  STM32CubeMX自動生成の割込みハンドラでHAL_GPIO_EXTI_Callback()をコールバック
HAL_GPIO_EXTI_Callback()は、   ユーザが追記する割込み処理でmain.cに処理内容を追記

という3段構成なので、最終的にユーザが追記する割込み処理の箇所は、Callback()の中身つまりmain.cのみです。

ユーザ追記コード(割込み処理以外)

当然main.cは、割込み処理以外にも、様々なユーザ処理を追記します。STM32CubeMXが自動生成する「ナマ(生)のmain.c」を以下に示します。

main.c souce
main.c souce(折り畳み済み)

ユーザ追記箇所を解り易くするために、ソースを折りたたんでいます。先に示した割込み処理HAL_GPIO_EXTI_Callback()の追記箇所は、ソース構造から、USER CODE BEGIN 4の個所であることが判ります。

/* USER CODE BEGIN xyz */から/* USER CODE END xyz */のコメント間にユーザ処理を追記すれば、STM32CubeMXで再生成しても追記部分は、そのまま残ります。

USER CODE xyzのコメントを読んで、追記が必要なユーザ処理を追加していきます。但し、GPIOやシステム動作クロックの初期設定は、STM32CubeMXが自動生成済みですので、更なる追記は、本当にユーザ処理の部分のみということが判ります。デモの場合なら、LED2の点滅速度変更処理LED2_Blink()のみです。

以上をまとめると、STM32CubeMXが自動生成するプロジェクトとファイルへは、

  • 3ウイザードさえ間違わずに設定すれば、main.cのみの最小限ユーザ追記でアプリ完成
  • たとえウイザード設定に間違えても修正し再生成すれば、USER CODE xyzへ追記したユーザコードは保持され安心

STM32CubeMX自動生成の活かし方

プログラムサイズが大きい場合には、全てのユーザ追加ソースを1つのmain.cファイルに記述するのは現実的ではありません。しかし、単機能のサンプルソフト程度であれば、STM32CubeMXが自動生成するmain.cへユーザ処理を追記してもさほど可読性は悪くなりません。

STM32CubeMXは、STM32マイコンソフトを効率的に開発するツールです。なるべく小さく単機能ソフトをSTM32CubeMXで開発し、単体でバグが取れた後に、各機能を結合して目的のソフトへ仕上げるのが、STM32CubeMX自動生成出力を活かす方法です。

この活かす方法を使って次回は、評価ボードUART入出力をUSB経由でパソコンと繋げるUART-USB(VirtualUART)機能と、評価ボードデモの2つを結合し、パソコンコマンドでボードのLED点滅速度を変えるソフト開発の話をする予定です。これは実は、STM32マイコンのシンプルテンプレートに相当します。ご期待ください。

※固定ページ(本ブログの上部タブリンク)を、CurieからSTM32Fxマイコン開発へ全面変更いたしました。

STM32マイコン統合開発環境:SW4STM32の構築

STM32マイコンの統合開発環境: IDEは、EWARM、MDK-ARM、TrueSTUDIO、SW4STM32の4種類から選びます。

EWARM:IAR社Embedded Workbench for ARM。汎用IDE。無償版32KBコードサイズまで。
MDK-ARM:Keil社Microcontroller Development Kit for ARM。汎用IDE。無償版32KBコードサイズまで。
TrueSTUDIO:Atollic社Eclipse ベースSTM32専用IDE。無償版コードサイズ制限なし。
SW4STM32:仏)AC6社マルチOS EclipseベースSTM32専用IDE。無償版コードサイズ制限なし。本ブログはWindows版で説明。

STM資料は、これら4種IDEを併記していますので、英文量が増えます。4IDE同時に使う人はいませんので、自分が使うIDEの説明箇所のみを拾い読めば十分です。4IDE併記は、全てのSTM資料に共通ですので覚えておくと良いと思います。

また、コード生成ツールSTM32CubeMXも、4IDE対応で作られておりIDE名称を知らないとフォルダ名に戸惑うことになります(後で示すFigure3や4参照)。

今回は、これら資料の特徴を知ったうえで、SW4STM32へコード生成ツールSTM32CubeMXをプラグインしたSTM32マイコンテンプレート統合開発環境の構築と、評価ボードを使った構築環境の検証までを示します。

SW4STM32統合開発環境構築手順

前回記事に示したように、STM32テンプレート開発環境は、IDEにSW4STM32、評価ボードにNUCLEO STM32F072RBを使います。

1) SW4STM32インストールとUpdate
2) STM32CubeMXプラグインとUpdate
3) STM32CubeMXへ評価ボードMCUコアのライブラリダウンロード
4) ライブラリ(サンプルソフトとドライバ)のファイル構成確認
5) 評価ボードデモソフト説明と構築環境の動作検証

1)~5)がこの開発環境の構築手順です。上手く構築できたかどうかを、評価ボードデモソフトに変更を加え検証します。手順の内容を示します。

1)SW4STM32インストールとUpdate

最新版SW4STM32は、OpenSTM32 Communityページ中頃のdownload areaからダウンロードします(要ログイン)。旧版ではUpdateで最新版へ更新できる場合とできない場合がありますので、最新版のダウンロードをお勧めします。最新版へ更新できない時は、その旨の親切なメッセージが、Update実行後に出力されます。

SW4STM32のインストールは、ダウンロードインストーラの実行だけですので、特に問題ないと思います。忘れてはいけないのは、最新版(今日現在v2.0)でもインスト後、Updateが必要な事です。トラブル回避の為にも、SW4STM32のHelp>Check for UpdatesでIDE更新を実行後、次の手順へ進むようにしてください。

2)STM32CubeMXプラグインとUpdate

STM32開発で使うコード生成ツールSTM32CubeMXのプラグインインストール方法は、UM1718の3.3を参照してください。これも記載手順で行えば、問題なくできます。インストール後、3.4.3と3.5~3.5.1を参照し、STM32CubeMXのUpdateを行います。

3)STM32CubeMXへ評価ボードMCUコアのライブラリダウンロード

評価ボードMCUコアは、ARM Cortex-M0です。これをSTMは、STM32F0シリーズと呼びます。MainstreamのFx: x=0/1/2/3/4/7シリーズがCortex-M0/M3/M4/M7、ultra-Low-powerのLx: x=0/1/4シリーズがCortex-M0+/M3/M4コアを使います。F3≠M3なので注意してください。

UM1718の3.5.2のライブラリ選択で、STM32CubeF0の1.8.0版を選択し、Install Nowでサンプルソフトとドライバ等がIDEへインストールされます。最新版(STM32CubeF0の場合1.8.0)インストールで旧版分も含むので最新版のみでOKです。

今日現在は、1.8.0のパッチパッケージは無いので、以上の手順で、SW4STM32とSTM32CubeMXプラグイン設定が完了し、統合開発環境:IDEの構築は完成です。後は、UM1718の6~10に使用例がありますので、これらを習得すればSTM32開発ができます。

4)ライブラリ(サンプルソフト)の構成確認

3でインストールしたサンプルソフトやドライバは、デフォルトではドキュメントフォルダではなく、下記STM32Cubeフォルダになります。

C:\Users\ユーザ名\STM32Cube\Repository

ドキュメントフォルダ等へ変更したい方は、STM32CubeMXのUpdater Settingsで場所を変更してください。

STM32CubeMX Update Setting
STM32CubeMX Update Setting

このRepository内に、ダウンロードしたSTM32F0シリーズのZipファイルとこれを展開したファイルが同居しています。STM32CubeF0_V1.1.0の展開ファイル例が下記です。

STM32CubeF0 Firmware Structure
STM32CubeF0 Firmware Structure
STM32CubeF0 Example Overview
STM32CubeF0 Example Overview

Figure 4は、Figure 3のProjects/STM32F072RB-Nucleo下の構成を示します。Figure 3のドライバ(=Drivers)やFigure 4のサンプルソフト(=Examples)を活用すれば、アプリケーションの早期開発ができます。弊社STMテンプレートもこれらを使います。

注意点として、評価ボードNUCLEO STM32F072RB 以外のボードや、SW4STM32以外のIDE、つまりEWARMやMDK-ARMやTrueSTUDIOのUtilities等も含まれていることです。これらは、NUCLEO STM32F072RB(STM32F072RB-NucleoとFigure3表記)とSW4STM32を使う限りは不要です。
※STM資料もそうでしたが、STMソフトもまた4つのIDEや動作する全評価ボードに1ソフトで対応するように作られているので、上記のように使わないものが含まれています。

サンプルソフトの使い方は、UM1779の4.1にSW4STM32の記載があります。

5)評価ボードデモソフト説明と構築環境の動作検証

評価ボード購入直後、電源を入れると収納ケース裏GETTING STARTED記載の緑LED LD2が点滅し、その点滅間隔がB1ボタンを押す度に50/100/500msと変わるデモソフトが起動します。このデモソフトソースが、Figure 4のDemonstrations内にあります。そこで、このデモソフトを構築した環境へImportし、点滅間隔を変えることで環境が正しく構築されたかを検証します。

UM1787: STM32CubeF0 Nucleo demonstration firmwareにデモソフトの詳細が示されています。評価ボードに下図Arduinoシールドを装着すると、ジョイスティックやLCD表示も可能です。

Adafruit 1.8” TFT shield
Adafruit 1.8” TFT shield

デモソフト緑LED LD2の点滅箇所を抜粋したソースを示します。

LED Blink Routine
LED Blink Routine

簡単に説明すると、シールド未実装の場合はLED2_Blink()が実行され、BSP_PB_Init()で設定された割込みでHAL_GPIO_EXTI_Callback()が実行されBlinkSpeedをインクリメント、HAL_Delay()で点滅間隔が変わる、となります。

そこで、main.cのL574のHAL_Delay(500)をHAL_Delay(1000)などへ変更し、ビルド→デバッグでLD2の点滅間隔が変われば、構築した開発環境が正しく構築できたことを、評価ボードを使って検証できます。perspectiveをデバッグに切換えた画面を示します。

Debug Perspective View
Debug Perspective View

デバッガ接続に万一トラブルが発生した場合には、Run>Debug Configurations…で、STM32F072B0-Nuclei.elfを見つけてください。他の設定は、デフォルトで問題ありません。

Debug Configurations
Debug Configurations

デバッグ中は、評価ボードST-Link部実装の2色LED(赤緑)がキラキラして眩しいです。

SW4STM32の使い勝手は、画面切り替えにperspectiveクリックが必要など、NXPのMCUXpressoと比較すると、やや劣る操作性です。素のEclipse IDEに近いのだと思います。

さいごに

STMマイコンは、他社比ROM/RAM容量が大きいわりに低価格です。CMSISやHALを使うと、これぐらいの大きさが必要になるのだと思います。CMSISやRTOSが普及し始めると、Cortex M系コア性能に依存しないソフト開発ができるので、既に第5位ですが更に脚光を浴び始めるベンダかもしれません。

mbedでも使える評価ボードの入手性も良いので、今のうちに個人レベルで習得すると、慌てずに済むお勧めMCUです。