組込み開発 基本のキ:暗号技術の仕組み

組込み開発 基本のキ:暗号技術の仕組み
組込み開発 基本のキ:暗号技術の仕組み

デイビッド・ウォン著、⾼橋 聡 訳、⽇経クロステックの4記事:暗号技術の要旨をまとめました。

組込み開発と暗号技術

暗号技術は、数学が基礎です。暗号を使えば、秘密が守られることを科学的に立証する必要があるからです。しかし、暗号を使う立場の組込み開発者は、数式よりも、暗号の仕組み理解の方が重要です。

仕組み中心の暗号技術解説記事が、下記⽇経クロステック4記事です。組込み開発 基本のキ、暗号仕組み理解に丁度良いと思います。各記事の要旨を抜粋します。

内容 発行日
秘密鍵の仕組み 2022年7月7日
ケルクホフスの原理 2022年7月8日
公開鍵暗号の仕組み 2022年7月12日
RSAデジタル署名 2022年7月13日

秘密鍵の仕組み

誰にでも読める平文を、暗号文へ変換する時に使う鍵が、秘密鍵。暗号文を元の平文へ復号する時も「同じ秘密鍵」を使う。

この送受双方の同じ秘密鍵利用が、対称秘密鍵暗号方式。送受参加者が多いと、鍵が漏洩するなど実用性低下の欠点もあるが、古代より使われてきた。

ケルクホフス原理

暗号/複合時に用いるアルゴリズムは、一般に公開しても良い。例えば、ウェブページ閲覧時のAES(Advanced Encryption Standard:⾼度暗号化標準)など。

公開アルゴリズムのセキュリティを保証する手段が、秘密鍵。

公開鍵暗号の仕組み

送受それぞれ「別の秘密鍵」と、「公開できる鍵」の2種類を使うと、送信側の秘密鍵が受信側で計算可能。これが、「非対称」の公開鍵暗号方式で、対称秘密鍵暗号方式の欠点を解消。

記事の公開図形と秘密鍵の計算例が解りやすい。

但し非対称公開鍵暗号方式は、第3者による公開鍵すり替えが可能なので、信頼性の問題は解決されない。

RSAデジタル署名

信頼性問題を解決するのが、デジタル署名。公開鍵を使って、送信者の署名が本物か偽物が検証可能。RSA以外にもデジタル署名方式あり。

このデジタル署名と非対称公開鍵暗号方式の両方を使うのが、現代の暗号化アルゴリズム全体像。

まとめ:仕組み理解でセキュリティ進化へ順応

暗号技術の仕組み理解でセキュリティ進化へ順応
暗号技術の仕組み理解でセキュリティ進化へ順応

インターネットに接続するIoT MCUには、通信セキュリティ対策は不可欠です。MCU開発側からすれば、当該セキュリティライブラリを、開発ソフトウェア/ハードウェアへ組込めば完了と思いがちです。

しかしながら、セキュリティ対策には、終わりがありません。新攻撃に対し、新たな暗号方式が登場します。MCU開発者が、複雑・高度化する暗号技術へ対応し、セキュリティ進化に追随するには、その仕組み理解は欠かせません。

本稿は、現代暗号化アルゴリズム、非対称公開鍵暗号方式とデジタル署名を説明しました。古代からの暗号技術は、インターネット出現により高度で複雑化しました。要旨の抜粋で判り難い箇所は、元記事も参照してください。

組込み開発 基本のキ:暗号技術の仕組みを理解し、IoT MCUセキュリティ進化へ順応しましょう。

組込み開発 基本のキ 過去投稿

組込み開発 基本のキ:組込み処理
組込み開発 基本のキ:RTOS vs. ベアメタル

日本開発者の視野

昨年2021年のMCUサプライヤトップ5が、2022年6月21日のTech+記事に示されました。

2021年MCUサプライヤシェア(出展:記事)
2021年MCUサプライヤシェア(出展:記事)

NXP、STマイクロ、Infineon(旧Cypress)など弊社ブログもカバーする欧州3サプライヤが強く、米国マイクロチップ2位、日本ルネサス3位、これら上位5社で82.1%のMCUシェアを独占します。

記事によると、トップ5独占率は、増加中だそうです。

半導体は国家

今年2022年2月に始まったロジアのウクライナ侵略が、半導体ビジネスにどう影響するかのMassa POP Izumida氏の考察が、コチラの記事にあります。

記事を引用すると、“限られた企業のみが先端半導体製品や製造装置を作れ、半導体が戦略物資、国家の運命を左右する”、つまり「半導体は国家なり」です。納得できますね。

日本開発者は多様性

激変する半導体ビジネスで日本人開発者が生き残るには、得意の協調性だけでなく、多様性が必要だと思います。変化しつつある状況を把握し、「個人レベル」で少し先を見据えた行動指針を持つことです。

半導体は国家の著者:Izumida氏が、ARM、RISC-Vのプロセサ潮流を考察しています。MCUの少し先を考えるのにも役立つと思います。もちろん、1指針だけでなく、第2第3の予備指針を持つことも良いでしょう。※本ブログ2021年最後の傾向と対策:日本低下でも、Izumida氏の記事が読めます。

ポイントは、多様性実現へ開発視野を広くしておくことです。

MCU開発中は、視野狭窄に陥りがちです。対策は、開発中に狭まった視野を、意識して自ら時々広げる習慣を持つことです。激変半導体業界でMCU開発者自身のサスティナビリティ(持続可能性)検討は、納期を守ることと同じぐらい重要な事だと思います。

2022ウクライナ侵略影響

ロシアでは、Windows 10とWindows 11ダウンロードが遮断されました。

欧米のウクライナ侵略への報復は、テクノロジーへも及び始めました。Windows以外にも様々な欧米製ツールが、製品開発には必要です。例え半導体を製造できても、その半導体を使う新製品が開発できなければ、本末転倒です。

テクノロジー遮断は、開発者のやる気や元気を無くすのに効果的です。

今回の侵略影響を注視している中国や欧米各国自身も、テクノロジー鎖国化・保守化傾向へバイアスが掛かる気がします。また、より強い開発者育成にも積極的になるでしょう。逆に、1998年以来、約24年ぶりの円安影響を受ける日本企業は、開発者育成などの人的先行投資は、後回し傾向がより強まると思います。

侵略は、極東アジアG7参加国日本が、ビジネスや金融など多くの点で「西側欧米各国とは異質の国であること」を、際立たせる結果を生んでいます。

まとめ

日本国内は、災害級の酷暑です。熱中症対策エアコン、節電対策、コロナ対策マスク、これら3対応が上手くできるでしょうか?

政府やマスコミは、「優先度を付けて」と言います。“優先度”は、各個人で異なります。しかし、日本人は、本来個人主体で決めるべき優先度を、他人と比べ決める傾向が強い民族です。先ず、他人ありきです。日本国内では、これでも良いでしょう。

しかしながら日本開発者は、世界の中で生きていきます。

異質の日本、視野を世界へと広くし、自分で自分を育成していくしか生き残り方法はない状況だと分析します。いかがでしょうか?

日本開発者の英語対策(7月3日追記)

2022年6月29日、経済産業省所管の日本IT国家戦略を技術面・人材面から支援する独立行政法人:情報処理推進機構IPAが、セキュリティエンジニア向け英語教材2点を発行しました。MCU開発者にも役立つ資料ですので紹介します。

英語Reading

セキュリティエンジニアのためのEnglish Reading、これは、英文読解力や英文情報収集力を高めるTips集で、「楽に」「上手く」英文を読む方法が記載されています。

セキュティ英単語集、こちらは、ポイントとなる頻出330英単語の、和訳を示しています。

どちらも形容詞の “セキュリティ” が付いていますが、普通のエンジニア向け資料です(というか、セキュリティ関連のAcronyms:略語集ではありません)。

両資料に目を通しておくと、「あらゆる英文」から効率的、効果的に情報収集が出来そうです!

英語Listening

2022年6月29日、日本ニューズウィークに中学英語をしっかりモノにすれば必ず話せるが掲載されました。英会話の大前提、「大事なことは最初」、「説明や細かいことは後」、が判ります。

英会話の冒頭部分に集中してListeningすれば、おおよその内容が把握できそうです!

日本開発者の英語

日本開発者の英語ハードル
日本開発者の英語ハードル

英語Readingやウェビナー英語Listeningは、日本人開発者最初のハードルです。しかし、ハードルは倒したとしても、早く走れればOKです。上記の資料、記事は、ハードルの倒し方、上手く早く走るテクニックを解りやすく示しています。

日本人開発者の視野を世界へ広くするには、英語ReadingとListeningは必須です。

クラウド環境進歩で、AI自動翻訳なども期待できますが、ピュアな世界情報に触れるには、原文(英語)から直接内容を理解する方が、脳にとっても良いハズです。

残りの英語Writingは、PCやクラウドの自動翻訳をどんどん使っても良さそうです!

あとがき

最初のEnglish Reading資料にあるように、英語情報は、12億人のため、日本語情報の1.2憶人の10倍です。デマや誤報などの内容妥当性にも注意が必要とあります。納得できます。

人口減少の日本と英語圏との知的情報差は、今後さらに広がります😭。

第2言語、技術者スキルとしての英語、必要性は高まるばかりです。少し長めですが貴重な “日本語表記” の資料、是非目を通してください。

RAファミリのRTOS

RAファミリは、FreeRTOSとAzure RTOS、両方に対応しています。このうち、FSP v3.6.0でサンプルコードを提供しているのがFreeRTOSです(プロジェクト名:freertos_評価ボード名_ep)。

本稿は、このFreeRTOSサンプルコードを簡単に解説します。

キューとセマフォ利用サンプルコード

freertos_fpb_ra6ep1_epのユーザ追加部分とFSP生成ソースコード
freertos_fpb_ra6ep1_epのユーザ追加部分とFSP生成ソースコード

最新版FSP v3.6.0のRA6E1評価ボードサンプルFPB-RA6E1 Example Project BundleのRTOSサンプルコードが、上図freertos_fpb_ra6e1_epです(freertos_fpb_ra4e1_epも同じ)。

ユーザ追加RTOSタスク:キュー送信タスク、受信タスクと、定期割込みでセマフォ生成し、生成セマフォ取得でRTT Viewerへメッセージ出力するタスクの、合計3タスクを追加(タスクプライオリティ同一)。

ユーザ追加RTOSオブジェクト:キューとセマフォの2オブジェクトを追加。

FSP生成ソースコード:追加タスク毎にFSPが entry.c 生成(中身は、下図右側)。

ベアメタル処理とFreeRTOSタスク処理並列多重
ベアメタル処理とFreeRTOSタスク処理並列多重

基本的には、FreeRTOS公式Hardware independent FreeRTOS exampleや、弊社NXP版FreeRTOSアプリケーションテンプレートと同様の処理。

詳細は、FreeRTOSアプリケーションのQueueデータ送受信FreeRTOSサンプルプロジェクトfreertos_generic詳細などの関連投稿をご覧ください。

RAファミリRTOS現状まとめ

FSPを使ったRAファミリFreeRTOS/Azure RTOSの現状をまとめると、下記です。

・FreeRTOS習得スタートは、キューとバイナリセマフォオブジェクト理解(弊社FreeRTOSアプリケーションテンプレートも同様)。
・ベアメタル開発では使わないObjects窓へ、バイナリセマフォ/ミューティックス/キューなどFreeRTOSの8オブジェクト追加。Azure RTOSは4オブジェクト追加。

FreeRTOSとAzure RTOSの追加可能Objects
FreeRTOSとAzure RTOSの追加可能Objects

・Azure RTOS関連資料は、Microsoft公式のコチラ
・FSP v3.6.0提供FreeRTOSサンプルコード数は、1個。Azure RTOSサンプルコードは未提供。

あとがき

RAベアメタルテンプレートを先週発売した直後に今回RTOSの投稿をしたのは、ベアメタル/RTOSに関係なく「RAファミリ開発の鍵はFSP」を示したかったからです。

FSPは、RAファミリのMCU資源(MCUコア/内蔵周辺回路など)を対象に、HAL APIを生成するツールです。開発者は、FSPが生成したHAL APIを使ってRAファミリのアプリケーションを開発します。

FSP対象は、ベアメタルの場合は、MCUコアやIOポートなど実際の回路、RTOSの場合は、タスクやスレッド、RTOSが提供するセマフォやキューなどの様々なオブジェクト(≒仮想回路)が、ベアメタル対象に加わるだけと考えると判り易いと思います。

FSPは、ベアメタル開発用をベースにRTOS開発へも対応し、プライオリティなどRTOS独特の設定も、ベアメタルと同様のGUIで設定します。

つまり、ベアメタルとRTOS両方対応FSPを上手く使いこなせるかが、RAファミリソフトウェア開発の鍵です。効率的にFSPを習得する最初のツールが、RAベアメタルテンプレートと言えます😄。

RAベアメタルテンプレートでFSP習得
RAベアメタルテンプレートでFSP習得

次の段階、つまりRTOS開発へ対応したRAテンプレートも思案中です。ただ、RAベアメタルテンプレートご購入者様からの様々なフィードバックやFSPのRTOSサンプルコード数が増えた後、暫くしてから実現するつもりです。

先ずは、RAベアメタルテンプレートでRAファミリ開発の鍵、FSPを習得してください。ご購入、お待ちしております。

RAベアメタルテンプレート発売

FPB-RA6E1で動作中のSimpleTemplateとRTT Viewer
FPB-RA6E1で動作中のSimpleTemplateとRTT Viewer
FPB-RA4E1で動作中のBaseboardTemplateとRTT Viewer
FPB-RA4E1で動作中のBaseboardTemplateとRTT Viewer

ルネサスCortex-M33コア搭載RAファミリ向けRAベアメタルテンプレート(税込1000円)を本日より発売します。概要、仕様、テンプレート提供プロジェクト構成は、コチラから無料ダウンロードできますので、ご検討ください。

RAファミリのポジション

RAファミリ位置づけ(出展:記事に加筆)
RAファミリ位置づけ(出展:記事に加筆)

ルネサスのARM Cortex-M系MCUは、競合他社比、発売が出遅れました。RXやSynergyなどの独自32ビットMCUファミリも供給中のルネサスRA位置づけが上図です。詳細は、コチラの関連投稿3章に説明済みです。

まとめると、RAファミリは、外付けE2エミュレータなどが不要の低価格評価ボードと容量制限なし無償コンパイラ利用など、他のルネサス32ビットファミリには無い個人レベルでも開発可能なARM Cortex-M33/M23/M4コア採用IoTセキュリティ強化MCUです。

RAファミリ開発の鍵:FSP

Flexible Software Package構成
Flexible Software Package構成

RAファミリ開発の鍵は、FSP:Flexible Software Packageです。一言で言うと、HAL APIコード生成ツール。MCU動作速度、内蔵周辺回路などのパラメタをGUIにより設定後、RAファミリ間で共通のHAL APIを一括生成します。
※HAL:Hardware Abstraction Layer

FSP活用で、RAファミリ間での移植性に優れたソフトウェア開発ができます。しかしながら、多くのパラメタをGUI上で設定するため、煩雑で特に初心者にとっては取っ付きづらい面もあります。

また、競合他社より後発のIoT向けMCUですので、FreeRTOSやAzure RTOS、TrustZoneなどのIoTセキュリティにも対応しています。RAファミリの拡張性、将来性を提供するツールがFSPです。

つまり、FSP習得が、RAファミリを使いこなす鍵です(コチラの関連投稿で詳細が判ります)。

RA6/4E1グループ選択理由

RAファミリカタログ(出典:ルネサス)
RAファミリカタログ(出典:ルネサス)

様々なラインナップを供給するRAファミリの中で、汎用性と超低価格な評価ボードも供給済みなのが、RA6E1グループ(Cortex-M33/200MHz)とRA4E1(Cortex-M33/100MHz)グループです。

※RA6E1評価ボード:FPB-RA6E1、RA4E1評価ボード:FPB-RA4E1

RA6/4E1グループとFSPで開発したソフトウェアは、RAファミリ間で共通に使える汎用性を持ちます。また、評価ボードで動作するFSPサンプルコードもありますので、FSP習得にも適しています。

RA6とRA4の分岐点は、最大動作周波数です。

240MHz動作のRA6は、大容量Flashを搭載し、高性能で多機能MCUマーケットを狙い、更に高性能なRA8シリーズへの発展性があります。100MHz動作のRA4は、高性能低消費電力MCUマーケット狙いで、Cortex-M23搭載5Vトレラント性も持つRA2シリーズへ高い親和性を持ちます。

従って、RAファミリ開発を始めるMCUとして、RA6/4E1グループいずれも適していると言えるでしょう。

※RA6最大動作周波数は、カタログでは240MHzとありますが、RAベアメタルテンプレートで用いた評価ボードFPB-RA6E1は、最大200MHz動作です。他RA6シリーズも、同様に現在200MHzです。
※RA8シリーズは、未発売です。

実務直結RAベアメタルテンプレートでFSP習得

近い将来、RTOSやTrustZoneなど、多くのIoT MCU技術を学ぶ必要があります。それでも、MCUの基本技術は、ベアメタルです(コチラの関連投稿参照)。

弊社RAベアメタルテンプレートVersion 1は、RAファミリ中核汎用RA6/4E1グループの超低価格評価ボードを使い、基本のベアメタル開発で、効率的にFSPを習得することが目的です。

FSP習得には、評価ボードサンプルコードが適しますが、サンプルコードは、複数処理が当然の実務応用が簡単ではありません。弊社テンプレートは、複数サンプルコードの活用・流用が簡単で、実務にも使えます。

弊社テンプレートと詳細な説明資料、安価で簡単、拡張性にも優れた推薦開発環境を使えば、誰でも簡単にMCUベアメタル開発の高い障壁を乗越えられ、かつ、FSP習得も可能です。

RAベアメタルテンプレート購入方法は、コチラを参照してください。ご購入、お待ちしております。

ツイッター買収

ツイッター買収
ツイッター買収

2022年4月26日、CNN Japanは、米電気自動車大手テスラのイーロン・マスク最高経営責任者(CEO)が、約440億ドル(約5兆6000億円)でツイッター社買収の見通しを報じました。買収には、株主と規制当局の承認が必要になるそうですが、年内買収完了見込みです。

ツイッターはデジタル広場

マスク氏は、「⾃由な⾔論は機能する⺠主主義の要であり、ツイッターは⼈類の未来にとって重要な問題が議論されるデジタル広場だ」と指摘し、「ツイッターには大きな可能性がある。それを解放するために同社やユーザのコミュニティーと協⼒することを楽しみにしている」と表明しています(4月27日、CNN Japan)。

WordPressブログDescription流用

ツイッター投稿中
ツイッター投稿中

弊社も2021年8月からツイッター投稿を始めました。アカウント自体は、2013年から所有しておりましたが、休眠状態でした。

投稿復活の理由は、ツイッターの最大140文字投稿が、ブログ要約表示に適すと思ったからです。

WordPressブログでも要約:Description(120文字前後)作成が、必要です。このDescriptionは、サイト検索時に表示されます。従って、かなり気を配ってDescriptionを作成します。

この気配り結果を、WordPressだけでなく、ツイッターにも流用すれば、ブログ閲覧数上昇になるかも?と考えた訳です。マスク氏表明とは、雲泥の差です…😅。

ツイッター投稿を始めて8ヶ月程経過しましたが、ツイート効果は、見られません😭。

という訳で、暫くは買収の様子見です。しかしながら、ツイッターが有料にでも変われば、ツイッターアカウントは削除するかもしれません。その際でも、弊社WordPressブログ投稿は、引続きよろしくお願いいたします。

RAベアメタルテンプレート完成、次の金曜詳細投稿

FPB-RA4E1で動作中のRAベアメタルテンプレート
FPB-RA4E1で動作中のRAベアメタルテンプレート

昨年末より開発してきましたルネサスCortex-M33コア採用RAファミリのベアメタルテンプレートが、完成しました。最新開発環境のFSP v3.6.0、e2 studio 2022-04を用いました。FPB-RA6E1とFPB-RA4E1両評価ボードで動作確認済みです。詳細は、次の金曜に投稿いたします。

好奇心とMCU開発

好奇心とMCU開発
好奇心とMCU開発

何を楽しい、面白いと感じるかは、人それぞれです。しかしながらMCU開発者の方々は、ソフトウェアやハードウエアを、自分で研究開発することに面白さや好奇心を持つ点は共通だと思います。

MCU開発は、地味です。普通の人からは、動作して当然と見られがち、しかし、その開発には努力や苦労も必要です。MCU開発者は、それら努力を他者へ説明はしません。
専門家へのキャリアアップには、避けては通れないからです。

特に日本のMCU開発者は、他者がどのように自分を見るかを気にし、しかも、同調意識も強いので、面白さを感じる感性を忘れ、自信喪失などに陥るかもしれません。

そんな時は、スマホを生んだSteve Jobs氏の、“Stay hungry, stay foolish” を思い出してください。

“Stay hungry, stay foolish”

様々な日本語訳、その意味解説があります。筆者は、Jobsは、他者の視線や動向より自分の好奇心を忘れるな、と言っているように思います。

2007年発表スマートフォン:iPhoneは、“Stay hungry, stay foolish”のJobsだから生み出せた製品です。

COVID-19、ウクライナ危機

終息が見えないCOVID-19やウクライナ危機による新しい世界秩序は、半導体製造/流通、MCU/PCセキュリティなどMCU開発者が関係する事柄にも多大な影響を与えそうです。今後数年間は、環境激変の予感がします。

既成概念やトレンド、これまでの市場予測なども大きく変わる可能性もあります。アンテナ感度を、個人レベルでも上げて対処しましょう。

MCU開発は楽しい?

行動の源は好奇心です。“Stay hungry, stay foolish”、 自分の好奇心は自ら満たし、MCU開発を楽しみましょう。

本稿の目的は、新年度:4月からMCU開発を新に始める方々へのアドバイスと、好奇心に逆らえず、Windows 11要件を満たさないPCをアップグレードした顛末を次週投稿予定という、前振りです😅。

FSP v3.6.0更新

昨年12月、RAファミリ開発ツールFSP v3.5.0更新から3ヶ月後の3月5日、新FSP v3.6.0付きe2 studio 2022-01最新版がリリースされました。3月25日、各種評価ボードサンプルコードもFSP v3.6.0対応版となり、RAファミリ開発環境が新しくなりました。

※FSP v3.6.0付きe2 studio 2022-01は、コチラからダウンロードできます。
※各種RA評価ボードサンプルコード FSP v3.6.0版は、コチラからダウンロードできます。

新RAファミリ開発環境

弊社RAファミリ向けテンプレートは、FSP v3.5.0で開発し、3月末発売を予定しておりました。ところが、本家ルネサスRAファミリ開発環境の主役FSPがv3.6.0へ更新され、評価ボードサンプルコードもこれに対応しました。

従って、弊社テンプレートも、これら新環境への対応を確認した上で発売する方が、テンプレートご購入者様の更新手間などを避けるため、好ましいと判断しました。

新開発環境で再構築した弊社RAファミリテンプレートV1(ベアメタル版)発売は、4月末に変更致します。

3ヶ月開発

RAファミリ開発環境の主役:FSP、脇役:e2 studio、各種評価ボードサンプルコードの関係は、コチラに投稿済みです。また、RAファミリテンプレート(ベアメタル版)構想は、コチラの4章、昨年12月の頃です。

RAファミリロードマップ(出展:ルネサスセミナー)
RAファミリロードマップ(出展:ルネサスセミナー)

一方、ルネサスFSP更新は、2~3ヶ月間隔で行われます。新発売のRAファミリデバイスが追加されるためでしょう。今回のように、開発製品リリース直前でFSP更新や開発環境が新しくなることは、多々あり得ます。

ルネサスRA6シリーズウェビナーで紹介された、RAファミリロードマップが上図です。今年以降も、圧倒的な製品展開スピードで新デバイスがどんどん追加されます。

殆どの場合、開発製品は、新環境へもそのまま適用できるハズです。が、その確認には、時間と手間が掛かります。

今回発売変更の教訓は、資料作成なども含めた開発開始から終了は、3ヶ月程度で1開発を完了させるスピード開発が必要だと言うことです。

このスピード開発には、開発中のRAファミリテンプレートが役立ちます。0から開発するのに比べ、既に動作確認済みのテンプレートへ実装機能を追加すれば、プロトタイプが出来上がるからです。

このRAファミリテンプレートは、App0を基に開発しています。App0投稿は、コチラを参照ください。

第2のRAサンプルコード

ルネサスRAファミリ開発に評価ボード毎のサンプルコードが重要であることは、過去何回か投稿済みです。今回は、これとは別の、「Stacks毎」に提供される第2のサンプルコード利用方法を説明します。

RAプロジェクトソースコード開発手順

FSPパースペクティブへ追加するLPM Stack
FSPパースペクティブへ追加するLPM Stack

ごく簡単にRAプロジェクトのソースコード開発手順を説明すると、

1) 利用「Stack」をFSPパースペクティブへ追加
2) Generate Project Contentクリック
3) 生成されたDeveloper AssistanceのStack API群から、利用APIをソースコード上へコピー&ペースト

という3手順の繰返しです。Stackとは、MCU周辺回路のことです。

評価ボードサンプルコードは、あらかじめ1)~3)をエキスパートが行い、サンプルで利用するStackとStack APIは、エキスパートが選択済みの実動作プロジェクトです。

一方、開発者自らが、1)~3)手順でソースコード開発する時は、どのStackを追加するか、利用するAPIは何か、を検討する必要があります。この検討に必要な情報は、全てFSPパースペクティブへ配置したStackのℹ️から得られます。

ℹ️をクリックすると、Stack PropertiesのAPI infoタブ相当の英文解説が読めます。内容は、Function、Overview、Exampleなどです。API info表示内容と同じですが、より詳しい説明が得られます。

「Stack毎」に提供される第2のRAサンプルコードとは、このExampleのことです。

Low Power Modes (r_lpm)の例

RAファミリの4低電力動作モード(出展:RA6E1ユーザーズマニュアル)
RAファミリの4低電力動作モード(出展:RA6E1ユーザーズマニュアル)

MCUアプリケーションに、低電力動作は必須です。RAファミリには、スリープ/ソフトウェアスタンバイ/スヌーズ/ディープソフトウェアスタンバイの4低電力動作モードがあります。例えば、RA6E1グループユーザーズマニュアルハードウェア編の10章を参照ください。

電力消費の最も大きいMCUを停止するのが、スリープモードです。スリープからの復帰時間も短く、簡単で効果的な低電力動作が可能です。

RAファミリで低電力動作を行うには、FSPパースペクティブへ、最初の図に示したLow Power Modes (r_lpm)スタックを追加します。

Stackのℹ️とサンプルコード

追加Stack ℹ️クリックで表示されるのが、LPMの詳細説明です。LPMスタック追加で増える5個全てのLPM APIが解ります。また、スリープモードプロパティがデフォルト設定済みなのも解ります。

このスリープモードのExampleが、下記LPM Sleep Exampleです。

LPM Sleep Example
LPM Sleep Example

利用APIは、R_LPM_Open()とR_LPM_LowPowerModeEnter()の2個のみです。assert(FSP_SUCCESS == err)は、次章で説明します。

注意点は、この「Stacks毎」に提供されるサンプルコードは、一般的なサンプルコード構成、つまり、初期設定と無限ループ内処理の記述形式ではないことです(一般的サンプルコード構成については、コチラの関連投稿参照)。

ここで示されているのは、LPMスリープモード時に利用するAPIとその利用順序です。

つまり、最初にR_LPM_Open()でスタックAPI利用可否を判断し、次に、R_LPM_LowPowerModeEnter()でスリープ動作OKの判断をしているだけです。

LPM以外のStack Examplesでも同様です。繰返しになりますが、Stack Exampleは、利用APIとその利用順序を示します。

従って、自分のソースコードへ取込むには、Developer Assistance内に生成された5個のLPM APIから、R_LPM_Open()を初期設定へ、次に、R_LPM_ LowPowerModeEnter()を無限ループ内の適当な個所へ、コピー&ペーストすれば、LPMスリープモードのソースコードが完成です。

assert(FSP_SUCCESS == err)

assert()は、()内が真の時は、何もしません。偽の時は、発生場所や関数名、ファイル名などをコンソール出力し、プログラムを停止します。API利用後の結果判断に活用しています。

「Stacks毎」に提供されるサンプルコードでは、多くのStack API利用箇所で使われています。

lpm_fpb_ra6e1_wpと比較

lpm_fpb_ra6e1_wpのFSPパースペクティブとhal_entry.cのMain loop部分
lpm_fpb_ra6e1_wpのFSPパースペクティブとhal_entry.cのMain loop部分

評価ボード毎のサンプルコードにも、低電力動作サンプルがありますので、前章Stack Exampleと比較します。

RA6E1の場合は、lpm_fpb_ra6e1_epです。このFSPパースペクティブとhal_entryのMain loopの一部抜粋が上図です。多くのLPM関連スタックが追加済みで、Main loopの低電力動作を解読するのも大変です。

これは、評価ボードサンプルコードが、初めに示した4低電力動作モードの状態遷移を示すプロジェクトだからです。スリープ動作のみを実装する時は、前章LPM StackのExampleを参照した方が簡単に理解できます。

勿論、評価ボードサンプルコードとStack Example、両方を参考にしてソースコードを開発する方が良いことは言うまでもありません。

Stack Exampleが、評価ボードサンプルコード理解を助ける第2のサンプルコードとして役立つことを示したかった訳です。

追加Stacks一覧

本稿は、LPM Stackを例に第2のサンプルコードを説明しました。

FSPパースペクティブへ追加可能なStackは、Stackタブを選択後、右上のNew Stack>をクリックすると一覧表示されます。

まとめ

RAファミリのソースコード開発は、FSPパースペクティブへStackを追加後、一括生成されるDeveloper Assistance内の多くのStack API群の中から、利用APIを適切な順序でソースコードへコピー&ペーストすることで進めます。

利用Stackに複数動作モードがあるなど評価ボードサンプルコードが複雑な場合や、開発者自らが利用Stack APIを検討する場合は、第2のサンプルコードとして、追加Stackのℹ️クリックで得られるExampleに示されるStack APIとその利用順序を参考に、ソースコード開発をする方法を示しました。

RAアプリケーション開発の骨格

ルネサスRAファミリ評価ボードの動作テストプログラムと、周辺回路サンプルコードから判るRAファミリアプリケーション開発Tipsを示し、このTipsで開発したアプリケーション:App0を公開します。

評価ボードは、RA6E1を用いましたが、他のRAファミリ評価ボードでも同じです。

RAアプリケーションApp0のRTT Viewer出力
RAアプリケーションApp0のRTT Viewer出力

hal_entry.cとuser_main.c分離

RAファミリは、評価ボード毎にサンプルコードが提供されます。例えば、RA6E1の場合は、FPB-RA6E1 Example Project Bundleがそれで、この中にADCやタイマなどの周辺回路サンプルコードがあります。また、評価ボードテストプログラム:TP(quickstart_fpb_ra6e1_ep)も含まれており、他の周辺回路サンプルコード:EP(Exampleプログラム)とは少し違うファイル構造になっています。

違う原因は、EPが、コード判り易さのため、メイン処理をhal_entry.cに集中して記述するのに対し、TPは、様々な評価ボードへも対応するため、いわば汎用アプリケーション構造となっているからです。

簡単に言うと、FSPが生成するメイン処理:hal_entry.cと、ユーザ追記のメイン処理:user_main.cをファイル分離し、ユーザ開発部分の可搬性を上げた構造を持つのがTPです。

開発したMCUアプリケーションに可搬性があると効率的で生産性もあがります。TP同様、RAアプリケーションも、hal_entry.cとuser_main.cを分離した構造で開発する方法をお勧めします。

※FSP(Flexible Software Package)やサンプルコードの詳細は、コチラの関連投稿を参照ください。

SEGGER RTT Viewer利用

TPとEPには、もう1つ違いがあります。それは、EPには、PC入出力マクロが実装済みの点です。

例えば、gpt_fpb_ra6e1_ep(最初のgptが汎用PWMタイマ、fpb_ra6e1が評価ボード、epがExample Programを示す)ならば、タイマ利用例をPCへ出力し、その設定値をPCから入力できます。

対PC通信にはUSB経由Virtual COMポートを利用する評価ボードが多いのに対し、ルネサスRAファミリは、評価ボード実装デバッガのSEGGER RTT Viewerをこの役目に使います。USARTなどのMCU資産を消費しないメリットがあります。

PCでRTT Viewerを使うには、コチラからJ-Link Software and Documentation Packをダウンロードし、PCへインストール後、J-Link RTT Viewer起動で評価ボードとPC通信ができます(最初の図)。

但し、RA6/4などCortex-M33コアファミリ開発の場合は、ビルド後生成されるmapファイルからRTT Control Block Addressを探し、Viewer起動ダイアログへ入力する必要があります。

プログラム変更やFSP版数が変わると、このBlock Addressも変わるので、生成mapファイルAddress値の再入力が必要です。

RAアプリケーション開発時にも、このPC通信マクロが使えるとprintf/scanfの代用になり便利です。FSP生成プロジェクトでPC通信マクロを利用するには、生成プロジェクトのsrcフォルダへ、SEGGER_RTTとcommon_utili.hの両方を手動で追加します。

追加元のSEGGER_RTTとcommon_utili.hは、どのEPのものでも構いません。

App0特徴

以上から、RAアプリケーション開発時は、FSPが生成するオリジナルファイルに

①HAL生成メインhal_entry.cとユーザ追記メインuser_main.cを分離したファイル構造
②srcへSEGGER_RTTとcommon_utility.hの手動追加

を行うと、ユーザ開発ソースコードのRAファミリ間での可搬性が高く、PC通信も容易なアプリケーションの骨格(Skelton)が完成します。

この方法で開発したアプリケーション:App0を示します。タイトルをPCへ出力するだけのアプリケーション骨格です。この骨格に、開発ソースコードを肉付けしていけば、肉付けソースコードのRAファミリ間可搬性が高く、デバッグ効率も高いアプリケーション開発ができます。

RAファミリアプリケーション開発骨格:App0
RAファミリアプリケーション開発骨格:App0

開発したApp0プロジェクト圧縮ファイルは、コチラよりダウンロード可能です。ご自由にご利用ください。

e2 studioへのインポート方法は、インポート>既存プロジェクトをワークスペースへ>アーカイブ・ファイルの選択で、App0.zip指定です。

App0開発手順

以下にApp0プロジェクトの作成手順を示します。

1)FSPで新規Bare Metal – Minimalプロジェクト生成
2)App0 FSPパースペクティブでGenerate Project Contentクリック
3)他の周辺回路サンプルコードのsrc>SEGGER_RTTとcommon_utility.hをコピーし、App0プロジェクト>srcフォルダへペースト
4)src>hal_entry.cのL3へextern void UserMain(void)追記、L19へUserMain()追記
5)src上で新規>ソース・ファイルをクリックし、UserMain.c追加
6)src上で新規>ヘッダー・ファイルをクリックし、UserDefine.h追加
7)UserMain.cとUserDefine.hへ、前章ソースコード追記
8)ビルドし、Debug>App0.mapファイルから_SEGGER_RTTを検索、そのアドレスを、RTT Viewer起動ダイアログのRTT Control Blockへ入力後OKクリック
9)評価ボードへApp0をダウンロード、実行
10)PCのRTT Viewerで図1のタイトル出力確認

4、5、6の追加ファイル名は、UserMain.c、UserDefine.hなど先頭大文字のPascal形式を用いています。これは、プロジェクト・エクスプローラーでオリジナルのFSP生成ファイルとユーザ追加ファイルの識別が容易になるからです。

また、筆者は、Cソース・ファイル毎にヘッダー・ファイルを追加するより、ソース・ファイル内にプロトタイプ宣言を追記し、個別ヘッダー・ファイルを追加しない方が好みです。4のhal_entry.cへUserMainプロトタイプ宣言を追記したのも、このためです。

UserMain()は、初期設定と無限ループに分け、初期設定にRttInit()とUserInit()を追加しています。RttInit()でタイトルをPCへ出力し、UserIint()は、内容が何もありません。骨格ですので、利用する周辺回路に応じて、ここへ初期設定コードを追記することを想定しています。

App0のプロジェクト構成とRTT Viewerへのmapアドレス設定の様子
App0のプロジェクト構成とRTT Viewerへのmapアドレス設定の様子

まとめ

RAファミリ評価ボードテストプログラムと周辺回路サンプルコードから、hal_entry.cとuser_main.cの分離ファイル構造と、RTT Viewer利用の対PC通信マクロ実装済みのアプリケーションスケルトン(骨格):App0を示しました。

この骨格へ、開発ソースコードを追加していけば、ユーザ追加部分のRAファミリ間可搬性が高く、デバッグ効率も高い、RAファミリアプリケーションが開発できます。

もちろん、3月末を目標に開発中のRAファミリテンプレートも、このApp0へ評価ボード実装LED点滅やチャタリング対策済みSW機能などを追加します。RAファミリテンプレート構想はコチラの4章、RAテンプレートの仕組みはコチラの関連投稿を、参照ください。

最近の組込みCコード書き方

RAファミリFSP生成のBare Metal Blinkyサンプルコードの書き方が、筆者のCコード書き方と違っていて驚いた点を示します(FSP:Flexible Software Packageとは何かは、コチラの関連投稿を参照)。

変数宣言位置

FSP生成Bare Metal Blinkyサンプルコードの変数宣言
FSP生成Bare Metal Blinkyサンプルコードの変数宣言

筆者のC変数宣言は、関数の冒頭、実行文の前に全ての変数宣言を行います。しかし、Bare Metal Blinkyサンプルコードは、変数が必要になった直前で変数宣言をしています。こちらの方が、コードが読み易いですね。

これは、使うC言語規格が異なるからです。筆者は、古いC90(1990年版)、FSPは、C99(1999年版)以降の規格、書き方を採用しています(参考文献:C言語の仕様)。

C言語規格も改良や改版が進み最新規格は、C11(2011年版)です。更に、C17やC2xなどへ進化中だそうです。下位(旧版)互換性は、コンパイラが賢いので保たれています。エッジAIが導入されると、古い書き方は止めなさいとアドバイスが出たりするかもしれません😅。

IoT MCU開発では、従来比、他者が開発したコードやライブラリを読み、理解・利用する機会も格段に増えます。

独立行政法人情報処理推進機構から、組込みソフトウェア開発向けコーディング作法ガイド[C言語版]ESCR Ver. 3.0(2018年)のPDF版がダウンロード可能です。

ガイド想定利用者は、プログラマやレビュー者(P3参照)とありますので、本ブログ読者は目を通しておくのも良いと思います。

新しい規格に縛られる必要は、コンパイラのおかげでありません。しかし、FSP生成サンプルコードに習い、今後はC99以降の書き方を採用します。

いわゆるLチカサンプルコードであっても、なおざりにできない例です。そこで、基になったFSP生成のBare Metal BlinkyとMinimalスケルトン(骨格)の差をまとめます。

Bare Metal Blinky生成方法

各種周辺回路サンプルコードは、FSPとは別に評価ボード毎に提供されます。しかし、Bare Metal Blinkyだけは、FSPで生成可能です(FSPと評価ボード毎の周辺回路サンプルコードは、コチラの関連投稿を参照)。

その狙いは、筆者のような古いC記述者へ新しい記述法を知らせる、または、Blinkyと周辺回路無しのMinimalなスケルトンとの差分を知らせる、などが考えられます。

FSP生成Bare Metal Blinkyは、通常の新規プロジェクト作成方法と同じ、ファイル>新規>Renesas C/C++ Project>Renesas RAクリックが最初の手順です。ダイアログに従って手順を勧めると、最後にBare Metal – BlinkyかMinimalかの選択が可能です。

Bare Metal Blinky生成方法
Bare Metal Blinky生成方法

Blinky選択とFinishクリックで、g_ioport I/O Portスタックだけが配置済みの[Blinky]FSP Configurationパースペクティブが開きます。

[Blinky] FSP Configurationのスタック
[Blinky] FSP Configurationのスタック
念のため、Generate Project Contentをクリック後、src>hal_entry.cを開くと、1章で示したC99以降の書き方で記述したBlinkyサンプルコードが生成されます。

Bare Metal BlinkyとMinimalの差分

Bare Metal Blinky(左)とMinimal(右)の差分
Bare Metal Blinky(左)とMinimal(右)の差分

BlinkyとMinimalスケルトンの差は、hal_entry()のTODO: add your own code hereの下にBlinkyコードが有るか無いかだけです。FSP Configurationも全く同じです。

つまり、IOPORT未使用のアプリケーションは無いので、例えMinimalと言えデフォルトでg_ioport I/O Portスタックは配置済みで、そのスタック利用例がBlinkyという訳です。

FSP生成Bare Metal Blinkyに習い、筆者も今後はC99以降の新しい書き方でCソースコード記述をしていきます。