MCU開発に適すChatGPTの使い方

人間の質問に対し、AIが自然な回答を生成するChatGPT
人間の質問に対し、AIが自然な回答を生成するChatGPT

ChatGPT(Chat Generative Pre-trained Transformer)は、米)OpenAIが2022年11月に公開したAIチャットポットのことで、「生成可能な事前学習済み変換器」という意味です。人間の質問に対し、AIが自然な回答を生成します(Wikipediaより)。

MCU開発に、ChatGPTをどう活かすかについて私見を示します。

要約:MCU開発に適すChatGPTの使い方

  1. ChatGPTはMCU説明不足内容への質問、回答に使える
  2. ChatGPTは常に進化し続けるAIツールだが、MCUプログラミング適用は時期尚早
  3. AIが人類能力を超える予想の2045年シンギュラリティ前後ならMCU開発へ一部使える可能性あり

MCU製品開発の成功には、知識と経験が必要です。知識獲得の効率的ツールとして、現状のChatGPTは使えると思います。但し、AI回答をMCUプログラミングへ適用するには、現在はAIが未成熟です。

AIが十分に成熟し、人類能力を超えるSingularity(シンギュラリティ:技術的特異点、2045年と予想)近辺になれば、MCU開発へも使えるツールになる可能性はあると思います。

但し、AIがシンギュラリティを迎えても、開発MCU製品の顧客要求とMCU結合チューニングは、人間MCU開発者の経験が必須です。

ブラウザ検索との違い

知識獲得方法は、ブラウザ検索が一般的です。ブラウザ検索とChatGPTの違いを端的に説明しているのが、コチラのCNET Japan記事の冒頭部分です。

ブラウザ検索は、キーワードを入力し、関連性が高いサイトをリスト出力します。MCU開発者は、各サイトを閲覧し、その結果、知識を得ます。

一方、ChatGPTは、質問内容を入力し、AIが質問内容を分析後、大量のサイト情報から最も相応しいと「AIが思う回答」を自動生成します。

つまり、MCU開発者が、色々なサイトを閲覧する手間を省いて所望知識が得られる訳です。但し、AI生成回答が正しいか否かは、判りません。

そこで、Microsoft Bingを使って、ルネサスFSP(Flexible Software Package)を質問した時のAI生成回答を示します。注)FSPは、前投稿参照。

Microsoft Bingを使ってFSPを質問したChatGPT回答例
Microsoft Bingを使ってFSPを質問したChatGPT回答例

結構、的を射た回答をしていると思います。また、詳細情報に、関連サイトリンクもありますので、AI回答の正確さを質問者が検証することも可能です。

さらに、AIが想定する追加質問例もあります。現在Bing質問数は、1日に2000の上限がありますが、ブラウザ検索よりも効率的に、MCU説明不足内容を質問でき、回答を得ることができます。

注)ブラウザ検索では、複数サイトから得る情報の多様性があります。この多様性をノイズと考えるか否か、筆者個人は、多様性あり&最終回答を自分で考える方を好みます。

ChatGPTとMicrosoft Bing、Google Bard

ChatGPTもバージョンアップし最新版GPT-4は、大量の文章、大量の高性能コンピューターチップを使う巨大AIモデルです。OpenAI)CEO:サム・アルトマン氏は、AIのさらなる発展に新しい開発手法が必要だと語っています。

最新GPT-4を無料で使えるのが、前章のMicrosoft Bing、待機リスト登録で使えるのがGoogle Bardです。Bardは、現在日本語非対応のようです。

前章CNET Japan記事に、BingとBardのAI回答の違いが分析されています。

MCUコーディングの適用

上手く質問すれば、ChatGPTから、AIコーディング回答が得られます。しかし、それをそのまま実開発へ使えるかについては、いずれのサイトも現在懐疑的です。

筆者も、同じ考えです。

特に、MCUプログラミング(コーディング)は、他のPCソフトウェア開発やクラウドソフトウェア開発に比べ地味で、MCU開発者も少数派です。

ChatGPT活用コーディングは、今後益々盛んになるでしょう。その結果、ネットに、多数派ソフトウェア開発者の成功/失敗事例が多く掲載されます。AIは、これら事例を学習します。

これら多数派の事例をAIが十分学習した後、我々少数派MCUソフトウェア開発へ適用しても遅くはないと思います。その理由が、次章です。

AIコーディング進化時のMCU開発者経験とスキル

AIコーティング進化時のMCU開発者経験とスキル
AIコーディング進化時のMCU開発者経験とスキル

仮にChatGPTが、そのままMCU開発に使えるコーディングを正確に出力したとします。実はこれは、現在のMCUベンダ提供のサンプルコードに相当します。

つまり、ChatGPTの進化を待つまでもなく、現在でも単機能の正確動作コードは得られる訳です。ここが、多数派ソフトウェア環境と、MCUソフトウェアの大きく異なる点です。

MCUソフトウェアは、単体動作サンプルコードを、ベンダが多数提供済みです。

MCUソフトウェア開発者は、これら単体サンプルコードを、顧客要求やMCU性能に見合うように複数組合せ、期間内に上手く動作するよう製品化するのが、主な業務内容です。

例えば、低コストで性能制約も多いMCUを使い、単体コードの優先度設定や割込み処理設定を行い、複数コードを結合動作させるチューニングです。IoT MCUならば、RTOS対応やセキュリティ関連がチューニングに加わり、さらに複雑化します。

チューニングの幅は、顧客要求や適用MCU、製品の展開予定などにより大きく変わります。MCU開発者には、これら変化に即応できる開発経験やスキルが求められます。

例えシンギュラリティになっても、開発MCUの製品化、顧客要求とMCU結合チューニングは、AI任せにはできない「人間MCU開発者の腕の見せ所」になると思います。

つまり、この腕を磨いて人間MCU開発者も進化しましょう、と筆者は言いたい訳です。



IOWN 1.0提供開始

IOWN展開(出展:NTTサイト)
IOWN展開(出展:NTTサイト)

ベストエフォートのインターネットに対し、NTT専用線による品質保証:ギャランティーサービスIOWN(Innovative Optical and Wireless Network:アイオン)1.0が2023年3月16日から開始されました。

個人利用には価格(100Gbps月額料金198万円、初期設備費3万円)が高すぎますが、2030年以降のIOWN4.0では、インターネット並みの料金で利用できるかもしれません。

IOWN対インターネット

インターネットは、多重共用ネットワークです。従って、多重されたトラフィックにより自分のデータ遅延揺らぎは不可避、さらに強固なセキュリティも必須です。

そのセキュリティ対策は、ユーザみずから行う必要があります。対して、専用線は、ネットワーク側が通信品質を保証するなどセキュリティレベルは高く、ユーザのセキュリティ対策は、インターネットに比べると楽になると思います。

問題は、利用価格です。

IOWN専用線では、共用インターネットでは困難な魅力的IOWNサービス(後述)が提供され、かつ、APNと光電融合デバイスにより価格を抑え、かつ、将来の限界を超える特徴、つまり、低遅延、大容量、低消費電力(後述)があります。

ユーザセキュリティ費用、万一のセキュリティリスクも含め、専用線IOWNと共用インターネット、どちらが安全、安心で利用価格が安いのか、費用対効果検討が必要だと思います。

IOWNサービス

IOWNで期待されるサービスの実証記事がコチラです。

ロボットや自動車の遠隔制御、遠隔医療、e-スポーツや遠隔地間を繋ぐ同時演奏会など、大容量で低遅延、揺らぎ無しのIOWNサービスが提供されます。

IOWN特徴=揺らぎ無し低遅延+大容量+低消費電力

NTT技術ジャーナル2023.1によると、IoTによるデータドリブン社会は、膨大なデータ量やデータ処理サーバの膨大な電力消費増大に対して、限界が来るそうです。

この課題にAPN(All Photonic Network)サービスと、光電融合デバイスをボード接続→チップ間→チップ内と融合度を上げ、さらに、このデバイスをサーバへも適用することで、大幅な使用電力削減が可能となります(本稿最初の図参)。

IOWN4.0の目標は、電力効率100倍、伝送容量125倍、エンドエンド遅延1/200です。

IOWN特徴(出展:NTTサイト)
IOWN特徴(出展:NTTサイト)

まとめ

2030年度以降のIOWN4.0とインターネットの利用価格がどの程度になるかは、今のところ不明です。

それでも、IOWN1.0の利用決定会社/組織の記事(2023年3月3日、EE Times)を見ると、既に多くの有力企業が参加しています。

揺らぎ無し低遅延大容量IOWNが、新しいIoTネットワークサービスを生み、メタバースを推進するのは確かだと思います。IoT MCU開発者も注目しておく必要があります。

関連投稿:世界規模の宇宙センシング次世代ネットワークIOWN

世界規模の宇宙センシング技術

次世代ネットワークIOWN(アイオン)で紹介した、低軌道人工衛星と無線免許不要IoTデバイス(LPWA:Low Power Wide Area端末)の宇宙センシング実証実験が2024年度に予定されています。

この宇宙センシング技術は、世界中で低コストIoTデータの衛星センシングを可能にします。

低コストIoTデータ衛星センシングプラットフォーム

衛星センシングプラットフォームとLPWA端末(出展:NTT技術ジャーナル2022.10)
衛星センシングプラットフォームとLPWA端末(出展:NTT技術ジャーナル2022.10)

従来の世界規模データセンシングは、専用衛星や免許が必要な専用無線周波数を使うため高価です。

NTTとJAXA(宇宙航空研究開発機構)が2024年度打ち上げ予定の革新的衛星技術実証4号機は、地上用のLPWA端末の免許不要無線周波数:920MHz帯、送信電力:0.1W程度を介して低軌道衛星と通信します。

この通信により、LPWA端末の小容量データを世界規模で収集できる低コストIoT衛星センシングプラットフォームの実証実験が可能です。

LPWA端末

LPWAは、低消費電力、低ビットレート、広域カバレッジが特徴で、その端末の多くは無線免許が不要です。

この地上用LPWA端末を、通信網が無い山間部や河川、海上など世界中のあらゆる場所へ設置しても、衛星を介したグローバルなIoTデータセンシングが可能になります。

気象データ収集や防災対策など多くの新しいIoTサービスへ発展する可能性は大きいでしょう。

技術実証イメージ(出展:NTT 2023年2月10日)
技術実証イメージ(出展:NTT 2023年2月10日)

地上のLPWA端末と低軌道衛星との通信は、シンプルです。LPWA端末の測定データは、衛星搭載メモリへ一時蓄積され、衛星の基地局上空の飛来タイミングで蓄積データが一括ダウンロードされます。

LPWA端末には、衛星からのコマンドによる再起動処理などが必要になるそうです。

宇宙ビジネス

多くのIoTセンサを組込んだスマートホームICTインフラへも応用できそうです。スマホ衛星通信も可能な時代です。ソニーは、2050年50兆円市場との試算もある地球みまもりプラットフォーム向けエッジAIカメラセンサを開発しました。

地球みまもりプラットフォームコンセプト(出展:ソニーR&Dセンタ)
地球みまもりプラットフォームコンセプト(出展:ソニーR&Dセンタ)

2030年実現を目指すIOWN(Innovative Optical and Wireless Network)により、従来通信網制約や国境の枠を超えた新しいIoTサービスや宇宙ビジネスが期待できそうです。

IoT MCU開発者は、革新的衛星技術実証4号機の打ち上げも注目しましょう。



持続可能MCU開発

半導体不足やサプライチェーン変化など様々な外部要因により、やむをえず開発中のMCUデバイスが変わる場合があります。MCU開発を持続可能にする1案を示します。

MCUと制御対象分離

MCUデバイスが例え変わっても、MCUと制御対象間のインタフェースが同じなら開発の持続は可能です。

もちろん開発ツールや制御APIは、MCUベンダやデバイスで異なります。しかしながら、開発した制御シーケンスや注意点などの取得済み開発ノウハウは、そのまま新しいMCUデバイスへも適用できます。

簡単に言うと、頭(MCU)と手足(制御対象)、目などのセンサ入力を分離し、万一の際に、頭(MCU)交換が可能な分離インタフェースを使ってMCU開発することです。

本稿はMCU互換性に主眼を置きますが、分離インタフェース採用で制御対象やセンサも交換可能です。

つまり、機能単位の高性能化、低価格化も分離インタフェース導入で容易になります。

分離インタフェース多数派

PMODインタフェースとPMODモジュール(出展:RS DesignSpark)
PMODインタフェースとPMODモジュール(出展:RS DesignSpark)

MCUと制御対象を分離するインタフェースも色々あります。例えば、PMODです。

センサやアクチュエータから成る既製PMODモジュールを、Lego™ブロックのように連結し制御対象の機能追加ができます。連結実現のため、I2CやSPI利用が基本です。

別例が、Arduinoです。

多くの主要ベンダMCU評価ボードにArduinoコネクタが採用中です。右下に示すように、デジタル入出力ピン、アナログ入力ピンなど、ピンが物理的に機能分離しています。

ArduinoコネクタコンパチブルMCU評価ボード例
ArduinoコネクタコンパチブルMCU評価ボード例

既製Arduinoモジュールも多く、しかも安価に入手できます。また、機能別ピンのため、手持ちセンサなどを接続し動作を試すのも簡単です。

元々はArduinoやRaspberryなどのMPU(Micro Processor Unit)向け分離インタフェースでしたが、シンプルで使い易いためMCU評価ボードにもArduinoコネクタ適用例が多く、分離インタフェースの多数派となりました。

Tips:MCU端子は、複数機能から選択が可能です。そこで、Arduinoピン機能を優先して選択し、この選択した端子から先に使用すると、MCU交換時の互換性が高まります。

Arduinoプロトタイプシールド

Arduinoモジュールは、別名シールドと呼ばれます。シールドを複数スタック接続し機能追加も可能です。

MCU評価ボードのArduinoコネクタにスタック接続し、付属する小型ブレッドボード上で簡単な回路も追加できるプロトタイプ向けのシールドが、Arduinoプロトタイプシールドです。

Arduinoプロトタイプ シールド
Arduinoプロトタイプ シールド

このシールドには、2個のLEDと1個のSWが実装済みです。MCU評価ボードへ、LEDやSWを簡単に追加でき、手持ち部品などを使ってプロトタイプ開発する場合に最適だと思います。

評価ボードへArduinoプロトタイプシールドを追加しスレッド毎にLED点滅中
評価ボードへArduinoプロトタイプシールドを追加しスレッド毎にLED点滅中

まとめ:持続可能MCU開発

世界平和やサプライチェーン変化などの外部要因により、開発中のターゲットMCUデバイスやベンダが変わる場合がありえます。

万一MCUデバイスが変わっても、MCU開発を持続可能にするため、各ベンダMCU評価ボードに多数採用のArduinoコネクタを使ったMCUと制御対象分離構成を示しました。

Arduinoプロトタイプシールドを、プロトタイプMCU開発に適す使用例として示しました。



技術者と世界平和

2022年最後の投稿、つまり、週番号が追加されたMint 21.1 MATE Week 52の金曜投稿です。

Mint 21.1 MATEはカレンダに週番号が追加
Mint 21.1 MATEはカレンダに週番号が追加

ロシアのウクライナ侵略から始まった2022年は、世界平和と技術者の関連性を強く感じました。Rapidusなどの半導体新会社設立や、クリエイタ的エンジニア米中対立も根底には平和への危機感があると思います。

技術者の役割も、セキュリティやフィッシング詐欺など攻撃対策の比重が増すかもしれません。インターネットでさえ、グローバルオープンからブロック化の兆しが見えます。IoT MCUやMPU/CPU、Windowsなどの技術者開発基盤もまた、セキュリティがトリガになり発展しそうです。

個人的には、ケアレスミスの多い年でした。何らかの追加対策(?!)が必要と感じています。

さて、本年も本ブログ、および、弊社テンプレートをご利用頂きありがとうございました。
また、各位から頂いた様々なアドバイス、この場を借りてお礼申し上げます。ありがとうございました。

皆様、よいお年をお迎えください。



次世代ネットワークIOWN(アイオン)

What's IWON(出展:NTTサイト)
What’s IOWN(出展:NTTサイト)

IOWN(Innovative Optical and Wireless Network)は、2030年実現を目指すNTTの次世代ネットワークです。

IOWN技術

大容量、低遅延の光伝送路。ネットワーク遅延や揺らぎ無し。データドリブン将来社会のデータ量や消費電力増加を解決。キーテクノロジが「光電融合デバイス」、などなど実現技術に興味がある方は、コチラの記事で解ります。

IOWNサービス

IOWNが提供するサービスの一例が、コチラの遠隔医療記事です。IOWNは、ネットワーク本来の目的、離れた場所との距離を感じさせない通信を提供します。

既存ネットワークで遅延や揺らぎが生じるのは、電気信号と光信号の変換回数が多いためです。電気に比べ減衰が少ない光伝送と、光と電気を融合した光電融合デバイス、これらにより電気と光の変換回数を減らし、IOWNのオールフォトニックス・ネットワーク(APN)を実現します。

APNは、低消費電力で大容量、高品質、低遅延で揺らぎの無い理想的な伝送サービスを提供します。

さらに、WirelessのIOWNは、宇宙空間や海中でも接続します。低軌道人工衛星を用いた宇宙RAN(Radio Access Network)や、地上IoT端末と衛星を接続する宇宙センシング、さらに、海中での高速無線通信による水中ドローンなども2030年頃のIOWN 4.0で可能になります。

早くもAMDは、宇宙空間でAI処理ができる宇宙グレードSoCの信頼性評価を完了しました。

宇宙統合コンピューティング・ネットワーク(出展:SKY Perfect JSATサイト)
宇宙統合コンピューティング・ネットワーク(出展:SKY Perfect JSATサイト)

TRONプロジェクトリーダ:坂村健氏も注目

2022年11月25日の記事では、TRONプロジェクトリーダ:坂村健氏が、多くのIoTセンサを組込んだスマートホームなどのICTインフラに、電力効率100倍、伝送容量125倍、レイテンシ200分の1のIOWNが大きなインパクトを与えると語ったことが記載されています。

スマートホームでこれほど高速、大容量の公衆ネットワークが安価に使えると、個人のPCストレージは、もはや全てクラウド上に置くことも可能な気もします。

IWON特徴(出展:NTTサイト)
IOWN特徴(出展:NTTサイト)

IOWNと2030年

2030年まであと8年。リモートワークや移動時、遠距離でも低電力、大容量、低遅延、遅延揺らぎ無しの通信ニーズは、今後益々高まります。

IOWNが、これらニーズを満たし現状ネットワークの様々なボトルネックを解消した新たなサービスの実現、開発インフラになりそうです。IoT MCU開発者もまた、IOWNと2030年に向けた進化が必要です。

関連投稿:2030年のエンジニア



組込み開発 基本のキ:暗号技術の仕組み

組込み開発 基本のキ:暗号技術の仕組み
組込み開発 基本のキ:暗号技術の仕組み

デイビッド・ウォン著、⾼橋 聡 訳、⽇経クロステックの4記事:暗号技術の要旨をまとめました。

組込み開発と暗号技術

暗号技術は、数学が基礎です。暗号を使えば、秘密が守られることを科学的に立証する必要があるからです。しかし、暗号を使う立場の組込み開発者は、数式よりも、暗号の仕組み理解の方が重要です。

仕組み中心の暗号技術解説記事が、下記⽇経クロステック4記事です。組込み開発 基本のキ、暗号仕組み理解に丁度良いと思います。各記事の要旨を抜粋します。

内容 発行日
秘密鍵の仕組み 2022年7月7日
ケルクホフスの原理 2022年7月8日
公開鍵暗号の仕組み 2022年7月12日
RSAデジタル署名 2022年7月13日

秘密鍵の仕組み

誰にでも読める平文を、暗号文へ変換する時に使う鍵が、秘密鍵。暗号文を元の平文へ復号する時も「同じ秘密鍵」を使う。

この送受双方の同じ秘密鍵利用が、対称秘密鍵暗号方式。送受参加者が多いと、鍵が漏洩するなど実用性低下の欠点もあるが、古代より使われてきた。

ケルクホフス原理

暗号/複合時に用いるアルゴリズムは、一般に公開しても良い。例えば、ウェブページ閲覧時のAES(Advanced Encryption Standard:⾼度暗号化標準)など。

公開アルゴリズムのセキュリティを保証する手段が、秘密鍵。

公開鍵暗号の仕組み

送受それぞれ「別の秘密鍵」と、「公開できる鍵」の2種類を使うと、送信側の秘密鍵が受信側で計算可能。これが、「非対称」の公開鍵暗号方式で、対称秘密鍵暗号方式の欠点を解消。

記事の公開図形と秘密鍵の計算例が解りやすい。

但し非対称公開鍵暗号方式は、第3者による公開鍵すり替えが可能なので、信頼性の問題は解決されない。

RSAデジタル署名

信頼性問題を解決するのが、デジタル署名。公開鍵を使って、送信者の署名が本物か偽物が検証可能。RSA以外にもデジタル署名方式あり。

このデジタル署名と非対称公開鍵暗号方式の両方を使うのが、現代の暗号化アルゴリズム全体像。

まとめ:仕組み理解でセキュリティ進化へ順応

暗号技術の仕組み理解でセキュリティ進化へ順応
暗号技術の仕組み理解でセキュリティ進化へ順応

インターネットに接続するIoT MCUには、通信セキュリティ対策は不可欠です。MCU開発側からすれば、当該セキュリティライブラリを、開発ソフトウェア/ハードウェアへ組込めば完了と思いがちです。

しかしながら、セキュリティ対策には、終わりがありません。新攻撃に対し、新たな暗号方式が登場します。MCU開発者が、複雑・高度化する暗号技術へ対応し、セキュリティ進化に追随するには、その仕組み理解は欠かせません。

本稿は、現代暗号化アルゴリズム、非対称公開鍵暗号方式とデジタル署名を説明しました。古代からの暗号技術は、インターネット出現により高度で複雑化しました。要旨の抜粋で判り難い箇所は、元記事も参照してください。

組込み開発 基本のキ:暗号技術の仕組みを理解し、IoT MCUセキュリティ進化へ順応しましょう。

組込み開発 基本のキ 過去投稿

組込み開発 基本のキ:組込み処理
組込み開発 基本のキ:RTOS vs. ベアメタル

日本開発者の視野

昨年2021年のMCUサプライヤトップ5が、2022年6月21日のTech+記事に示されました。

2021年MCUサプライヤシェア(出展:記事)
2021年MCUサプライヤシェア(出展:記事)

NXP、STマイクロ、Infineon(旧Cypress)など弊社ブログもカバーする欧州3サプライヤが強く、米国マイクロチップ2位、日本ルネサス3位、これら上位5社で82.1%のMCUシェアを独占します。

記事によると、トップ5独占率は、増加中だそうです。

半導体は国家

今年2022年2月に始まったロジアのウクライナ侵略が、半導体ビジネスにどう影響するかのMassa POP Izumida氏の考察が、コチラの記事にあります。

記事を引用すると、“限られた企業のみが先端半導体製品や製造装置を作れ、半導体が戦略物資、国家の運命を左右する”、つまり「半導体は国家なり」です。納得できますね。

日本開発者は多様性

激変する半導体ビジネスで日本人開発者が生き残るには、得意の協調性だけでなく、多様性が必要だと思います。変化しつつある状況を把握し、「個人レベル」で少し先を見据えた行動指針を持つことです。

半導体は国家の著者:Izumida氏が、ARM、RISC-Vのプロセサ潮流を考察しています。MCUの少し先を考えるのにも役立つと思います。もちろん、1指針だけでなく、第2第3の予備指針を持つことも良いでしょう。※本ブログ2021年最後の傾向と対策:日本低下でも、Izumida氏の記事が読めます。

ポイントは、多様性実現へ開発視野を広くしておくことです。

MCU開発中は、視野狭窄に陥りがちです。対策は、開発中に狭まった視野を、意識して自ら時々広げる習慣を持つことです。激変半導体業界でMCU開発者自身のサスティナビリティ(持続可能性)検討は、納期を守ることと同じぐらい重要な事だと思います。

2022ウクライナ侵略影響

ロシアでは、Windows 10とWindows 11ダウンロードが遮断されました。

欧米のウクライナ侵略への報復は、テクノロジーへも及び始めました。Windows以外にも様々な欧米製ツールが、製品開発には必要です。例え半導体を製造できても、その半導体を使う新製品が開発できなければ、本末転倒です。

テクノロジー遮断は、開発者のやる気や元気を無くすのに効果的です。

今回の侵略影響を注視している中国や欧米各国自身も、テクノロジー鎖国化・保守化傾向へバイアスが掛かる気がします。また、より強い開発者育成にも積極的になるでしょう。逆に、1998年以来、約24年ぶりの円安影響を受ける日本企業は、開発者育成などの人的先行投資は、後回し傾向がより強まると思います。

侵略は、極東アジアG7参加国日本が、ビジネスや金融など多くの点で「西側欧米各国とは異質の国であること」を、際立たせる結果を生んでいます。

まとめ

日本国内は、災害級の酷暑です。熱中症対策エアコン、節電対策、コロナ対策マスク、これら3対応が上手くできるでしょうか?

政府やマスコミは、「優先度を付けて」と言います。“優先度”は、各個人で異なります。しかし、日本人は、本来個人主体で決めるべき優先度を、他人と比べ決める傾向が強い民族です。先ず、他人ありきです。日本国内では、これでも良いでしょう。

しかしながら日本開発者は、世界の中で生きていきます。

異質の日本、視野を世界へと広くし、自分で自分を育成していくしか生き残り方法はない状況だと分析します。いかがでしょうか?

日本開発者の英語対策(7月3日追記)

2022年6月29日、経済産業省所管の日本IT国家戦略を技術面・人材面から支援する独立行政法人:情報処理推進機構IPAが、セキュリティエンジニア向け英語教材2点を発行しました。MCU開発者にも役立つ資料ですので紹介します。

英語Reading

セキュリティエンジニアのためのEnglish Reading、これは、英文読解力や英文情報収集力を高めるTips集で、「楽に」「上手く」英文を読む方法が記載されています。

セキュティ英単語集、こちらは、ポイントとなる頻出330英単語の、和訳を示しています。

どちらも形容詞の “セキュリティ” が付いていますが、普通のエンジニア向け資料です(というか、セキュリティ関連のAcronyms:略語集ではありません)。

両資料に目を通しておくと、「あらゆる英文」から効率的、効果的に情報収集が出来そうです!

英語Listening

2022年6月29日、日本ニューズウィークに中学英語をしっかりモノにすれば必ず話せるが掲載されました。英会話の大前提、「大事なことは最初」、「説明や細かいことは後」、が判ります。

英会話の冒頭部分に集中してListeningすれば、おおよその内容が把握できそうです!

日本開発者の英語

日本開発者の英語ハードル
日本開発者の英語ハードル

英語Readingやウェビナー英語Listeningは、日本人開発者最初のハードルです。しかし、ハードルは倒したとしても、早く走れればOKです。上記の資料、記事は、ハードルの倒し方、上手く早く走るテクニックを解りやすく示しています。

日本人開発者の視野を世界へ広くするには、英語ReadingとListeningは必須です。

クラウド環境進歩で、AI自動翻訳なども期待できますが、ピュアな世界情報に触れるには、原文(英語)から直接内容を理解する方が、脳にとっても良いハズです。

残りの英語Writingは、PCやクラウドの自動翻訳をどんどん使っても良さそうです!

あとがき

最初のEnglish Reading資料にあるように、英語情報は、12億人のため、日本語情報の1.2憶人の10倍です。デマや誤報などの内容妥当性にも注意が必要とあります。納得できます。

人口減少の日本と英語圏との知的情報差は、今後さらに広がります😭。

第2言語、技術者スキルとしての英語、必要性は高まるばかりです。少し長めですが貴重な “日本語表記” の資料、是非目を通してください。

好奇心とMCU開発

好奇心とMCU開発
好奇心とMCU開発

何を楽しい、面白いと感じるかは、人それぞれです。しかしながらMCU開発者の方々は、ソフトウェアやハードウエアを、自分で研究開発することに面白さや好奇心を持つ点は共通だと思います。

MCU開発は、地味です。普通の人からは、動作して当然と見られがち、しかし、その開発には努力や苦労も必要です。MCU開発者は、それら努力を他者へ説明はしません。
専門家へのキャリアアップには、避けては通れないからです。

特に日本のMCU開発者は、他者がどのように自分を見るかを気にし、しかも、同調意識も強いので、面白さを感じる感性を忘れ、自信喪失などに陥るかもしれません。

そんな時は、スマホを生んだSteve Jobs氏の、“Stay hungry, stay foolish” を思い出してください。

“Stay hungry, stay foolish”

様々な日本語訳、その意味解説があります。筆者は、Jobsは、他者の視線や動向より自分の好奇心を忘れるな、と言っているように思います。

2007年発表スマートフォン:iPhoneは、“Stay hungry, stay foolish”のJobsだから生み出せた製品です。

COVID-19、ウクライナ危機

終息が見えないCOVID-19やウクライナ危機による新しい世界秩序は、半導体製造/流通、MCU/PCセキュリティなどMCU開発者が関係する事柄にも多大な影響を与えそうです。今後数年間は、環境激変の予感がします。

既成概念やトレンド、これまでの市場予測なども大きく変わる可能性もあります。アンテナ感度を、個人レベルでも上げて対処しましょう。

MCU開発は楽しい?

行動の源は好奇心です。“Stay hungry, stay foolish”、 自分の好奇心は自ら満たし、MCU開発を楽しみましょう。

本稿の目的は、新年度:4月からMCU開発を新に始める方々へのアドバイスと、好奇心に逆らえず、Windows 11要件を満たさないPCをアップグレードした顛末を次週投稿予定という、前振りです😅。

クラウドベースMCU開発(個人編)

クラウドベースMCU開発お役立ちリンク
クラウドベースMCU開発お役立ちリンク

ARMが、2021年10月19日、IoT関連製品の開発期間を平均5年から最大2年間短縮できるクラウドベース開発環境「Arm Total Solution for IoT」発表という記事(EE Times Japan)は、以下の点で興味深いです。

・IoT製品化に平均5年もかかるのか?

・ハードウェア完成を待ちソフトウェア開発着手するのか?

但し、クラウドがMCU開発に効果的で、GitHubなどのクラウドリンクが今後増えることは、疑う余地がありません。そこで、すきま時間に個人レベルで役立つクラウドMCUリンクを3点示します。

すきま時間お役立ちクラウドMCU開発リンク

クリエイティブなMCUハードウェア/ソフトウェア開発中は、集中時間と空間が必要です。COVID-19の影響で、開発場所や通勤環境に変化はあるものの、ちょっとした待ち時間や出先での2~3分程度のすきま時間は相変わらず存在します。

個人レベルのIoT MCU開発支援が目的の弊社は、このような短いすきま時間にスマホやタブレットを使って、MCU情報を収集、閲覧するのに便利なリンクを紹介します。

すきま時間にMCU関連情報を閲覧することにより、集中時間に凝り固まった開発視点を新たな視点に変える、最新情報を収集するなどが目的です。

STマイクロMCU技術ノート

STマイクロMCU技術ノートの一部(PDF内容は濃く全てのMCU開発で役立つTips満載)
STマイクロMCU技術ノートの一部(PDF内容は濃く全てのMCU開発で役立つTips満載)

STマイクロのSTM32/STM8シリーズ別に検索できる日本語MCU開発Tips満載リンクです。ログインが必須ですが、わずか数ページで説明されたダウンロードPDF内容は濃く、STユーザに限らず全てのMCU開発者に役立つTipsが得られます。

EDN Japan Q&Aで学ぶマイコン講座

EDN Japan Q&Aで学ぶマイコン講座の一部
EDN Japan Q&Aで学ぶマイコン講座の一部

EDN JapanのMCU情報リンクです。Q&Aで学ぶマイコン講座は、最初の1ページでMCU初心者、中級者からの質問に対する回答要点が示されています。2ページ以降で回答詳細を説明するスタイルですので、短時間での内容把握に適しています。

Digi-Keyブログ

Digi-Keyブログの一部(日本語タイトルは翻訳された記事を示す)
Digi-Keyブログの一部(日本語タイトルは翻訳された記事を示す)

日本語タイトルで日本語へ翻訳されたブログ記事が判るリンクです。大手サプライヤーの英語ブログですのでMCUだけでなく、幅広いデバイス情報が得られます。すきま時間でも読めるように記事は短く纏まっています。最新MCU情報やハードウェア開発者向け情報が多いのも特徴です。

IoT製品とプロトタイプ開発

EE Timesの2021年10月8日、半導体製品ライフサイクルの長さと製造中止対策の記事に、20年前、1990年代の事業分野別の製品開発リードタイムとライフサイクル変化が示されています。

事業分野別の開発リードタイムと製品のライフサイクル変化(出展:記事)
事業分野別の開発リードタイムと製品のライフサイクル変化(出展:記事)

1998年の値ですが、重電機器を除く製品開発時間(リードタイム)が2.3年以内という数値は、現在でも納得できます(0.5年程度のプロトタイプ開発時間は含んでいない実開発時間だと思います)。

MCUベンダ各社は、10年間のMCU供給保証を毎年更新します。つまり、2021年更新ならば、2031年迄の10年間は販売MCUの供給を保証するということです。

但し、セキュリティが重視されるIoT製品では、最新セキュリティハード/ソフト内蔵IoT MCUによる製品化をエンドユーザは望みます。SoC:System on a Chipによる製造プロセス進化により、IoT関連製品の開発期間は、再開発も含めると1998年よりも更に短くなる可能性もあります。

前章リンク情報を活用し、最新セキュリティ内蔵MCU状況、セキュリティ機能のOTA更新可能性、開発製品がエンドユーザのセキュリティニーズと開発コストを満たすか、などを個人でも常時把握・評価し、万一、開発製品の成功見込みが少なくなった場合には、MCU見直しなども必要でしょう。

IoTセキュリティのライフサイクルは変動的で、かつ、IoT製品の市場獲得に支配的です。短い開発時間中であっても、状況に応じてMCUを変更することは、製品の成功と失敗に直結します。

弊社MCUテンプレートを使ったプロトタイプ開発は、このような激変IoT製品開発のMCU評価に適しています。制御系MCUと被制御系を分離、低コスト、少ない手間でプロトタイプを早期に開発し、プロトタイプ実機によりIoT製品のMCU評価、適正判断ができるからです。

もちろん、最初に示したバーチャルなArm Total Solution for IoTとの併用も有効です。セキュリティ重視IoT製品開発の成功には、IoT MCU選択と開発期間の短さがポイントです。