MCU:マイコン,Cortex-M0+コア,Cortex-M0コアIoTマイコン,IoTデバイス,RISC-V,エッジ端末

2021年2月19日、東工大は、ARM Cortex-M0比1.4倍、電力効率2.7倍、エネルギー効率3.8倍のIoT向き新MCU:SubRISC+を65nmプロセスで開発しました。本稿は、このIoT MCU:SubRISC+と、IoTエッジ端末ソフトウェア開発にJavaを使う手法を紹介します。

これらが何をIoTエッジ端末の開発課題にとらえ、それにどのように対処しているかを知るメリットを示します。

様々なIoT開発課題と対処方法

開発プロジェクトが始まると、数か月~数年はその対象デバイスや開発方法に、開発者は係りっきりになります。具体的なIoT開発課題や対象デバイスを深く知ることができますが、問題のとらえ方や視野が狭くなる弊害もあります。

開発と並行して競合する別のアプローチを知ると、この弊害を抑え、課題や問題を多角的、効果的に解決する手立てになります。

例えば、開発中のCOVID-19ワクチンが、変異済み、または変異が予想されるウイルスへも十分な効果が見込めれば、人類にとって役立つでしょう。このための第一歩が、変異ウイルスを知ることと同じです。

SubRISC+

IoTエッジ端末の課題を、「小型化と低消費電力性」と捉え、解を示したのが東工大のSubRISC+です。

従来のプロセサは、実務アプリケーションでは殆ど使われないムダな命令も準備されています。このムダを削減し開発されたプロセサをRISC(リスク、Reduced Instruction Set Computer)プロセサと呼びます。従来プロセサは、RISCに対してCISC(シスク、Complex Instruction Set Computer)と呼ばれます。

関連投稿:ARM MCU変化の背景

SubRISC+は、このRISC手法をIoTエッジ端末の心電図、加速度センシングなどのヘルスケアや、ウェアラブル端末アプリケーションで必須となる命令4個に適用し、CISCのARM Cortex-M0(命令60個)比、小型化省電力化を両立、条件次第ではLR44アルカリボタン電池で約100日連続稼働が可能となります。

小型マイクロプロセッサの比較(出典:東工大ニュース 2021.02.19へ加筆)
小型マイクロプロセッサの比較(出典:東工大ニュース 2021.02.19へ加筆)

なお、SubRISC+は、想定アプリケーション以外へも汎用性(チューリング完全)を持つのでIoTセキュリティ向けなどへの応用も今後目指しています。

Java利用の組込みソフトウェア開発

「C/C++を使った組込みIoTソフトウェア開発の困難さ」の課題に対して、Java開発キット(JDK)で解を示したのが、Azul System社の“IoT組み込みソフトウェア開発に、オープンソースJavaの利用が最適である理由”です。

出展:Ian Skerrett, IoT Developerへ加筆
出展:Ian Skerrett, IoT Developerへ加筆

IoTエッジ端末にもC/C++の代わりにJava利用の仮想マシン(JVM)開発を提案し、ハードウエア非依存のIoTアプリケーション開発ができること、C/C++特有のポインタ利用なし、メモリ管理不要、マルチスレッド環境の無料またはオープンソースIoT APIがあること、などの特徴があります。

結果として、IoT市場への製品投入時間短縮、組込み以外のルータ/クラウド開発者採用が可能、開発コスト削減が可能になるそうです。

他社を知るメリット

例えば、Cortex-M0よりも電力効率が良いCortex-M0+コアとLR44電池を使ってIoTエッジ端末を開発中なら、「100日連続稼働がセールスポイント」になることがSubRISC+から判ります。1個のLR44で足りないなら、複数並列で使うなどの対策も開発中にとれます。

また、IDEシミュレーションを活用し「センサセンシングの電力消費を抑える工夫」を重点的に行うと差別化に効果的など、製品改良プライオリティを付ける手掛りにもなります。

筆者はJava利用開発経験がありませんが、IoTエッジ端末開発に必要となる無線機能やセキュリティなども含めたAPIが提供され、しかもハードウエア非依存だとすると、「本来のIoTエッジ端末アプリケーションそのものに注力した開発」ができます。また、顧客対応に横展開するのも容易でしょう。

IoT市場の変化は激しく、無線やセキュリティ仕様などは、国や地域により大きく変わる可能性もあります。少しでも早く低コストでIoTエッジ端末を市場投入できれば、デファクトスタンダード製品になる可能性もあります。

東工大開発IoT MCU:SubRISC+とAzul 社IoT端末ソフトウェア開発Java利用を例に、IoTエッジ端末開発中に陥りがちな視野狭窄を防ぎ、課題を効果的、プライオリティ付けて解決するために、開発と並行して他社アプローチを知るメリットを示しました。

RL78マイコン,MCU:マイコン,LPCマイコン,MPU/SBC:IoT用プロセサ,Kinetisマイコン,STM32マイコン,PSoC/PRoCマイコン,MSP432マイコン,Cortex-M0+コア,Cortex-M0コア,Cortex-M3コア,Cortex-M23コアアプリケーション,IoTデバイス,AI,半導体,ムーア

ARM Cortex-Mコア利用のIoT MCU現状と、次のムーア則を牽引すると言われるAI(人工知能)の関係についてまとめました。

Cortex-Mコア、IoT/組込みデバイス主要ポジション堅持

ARMベースチップ累計出荷個数は1,800億個以上(出展:ニュースルーム、February 16, 2021)
ARMベースチップ累計出荷個数は1,800億個以上(出展:ニュースルーム、February 16, 2021)

2021年2月16日、英)ARM社は、ARMチップの2020年第4半期出荷が過去最高の67憶個、累計出荷個数1800憶個以上、Cortex-Mチップも4半期最高44憶個出荷で「IoT/組込みデバイス主要ポジション堅持」と発表しました(ニュースルーム)。

Cortex-Mチップの出荷内訳は不明ですが、Cortex-M4やCortex-M0+などコア別の特徴が解るARM社の解説は、コチラにあります(フィルタのProcessorファミリ>Cortex-Mを選択すると、提供中の全10種Cortex-Mコア解説が読めます)。

筆者は、セキュリティ強化コアCortex-M23/33/35P/55を除く汎用IoT/組込みデバイスでは、Cortex-M4/M0+コア使用数が急増していると思います。

関連投稿:Cortex-M33とCortex-M0+/M4の差分

半導体ムーア則、牽引はチップレット

ムーアの法則 次なるけん引役は「チップレット」、2021年2月16日、EE Times Japan

次のムーア則を牽引するAI処理能力(出典:AI Hardware Harder Than It Looks)
次のムーア則を牽引するAI処理能力(出典:AI Hardware Harder Than It Looks)

半導体製造プロセスを牽引してきたのは、PCやスマホでした。しかしこれからは、人工知能:AIで急増するAIデータ処理能力を実現するため、レゴブロックのようにコアの各モジュールを歩留まり良く製造・配線するチップレット手法が必要で、このチップレット、つまりAIが次の半導体ムーア則を牽引するというのが記事要旨です。

このチップレット手法で製造したIoT MCUやMPUへ、主にソフトウェアによるAI化は、シンギュラリティ後のAI処理量変化にも柔軟に対応できると思います。

関連投稿:今後30年の半導体市場予測

ルネサス:ハードウェアアクセラレータコアCNN(Convolutional Neural Network)

ルネサスのCNNアクセラレータ(出典:ニュースルーム)
ルネサスのCNNアクセラレータ(出典:ニュースルーム)

2021年2月17日、ルネサスは、世界最高レベルの高性能/電力効率を実現するディープラーニング性能を持つCNNアクセラレータコアを発表しました(ニュースルーム)。これは、主にハードウェアによるAI化の例です。

ADAS実現に向け、性能と消費電力を最適化した車載用コアです。このコアに前章のチップレット手法を使っているかは不明です。3個のCNNと2MB専用メモリの実装により、60.4TOPS(Tera Operations Per Second)処理能力と13.8TOPS/W電力効率を達成しています。

車載で実績を積めば、IoT MCUへも同様のハードウェアアクセラレータが搭載される可能性があります。

まとめ

凸版印刷社は、画像認識AIを活用し、古文書の“くずし字”を解読支援するツールを開発しました(2021年2月16日、IT media)。このように、AIは、半導体技術のムーア則だけでなく、IoT MCUアプリケーションや人間生活に浸透し、牽引しつつあります。

エッジAIをクラウド接続IoT MCUへ実装する理由は、クラウドAI処理とクラウド送信データ量の両方を軽減することが狙いです。AI処理をエッジ側とクラウド側で分担しないと、チップレット手法を用いて制御チップを製造できたとしても、コスト高騰無しに急増するAIビックデータ処理を実現することが不可能だからです。

IoT MCUのエッジAIが、ソフトウェアまたはハードウェアのどちらで処理されるかは判りませんが、必須であることは確実だと思います。実例を挙げると、STマイクロエレクトロニクスは、既にSTM32Cube.AIにより汎用STM32MCUへAI/機械学習ソフトウェアの実装が可能になっています。

RL78マイコン,MCU:マイコン,LPCマイコン,Kinetisマイコン,STM32マイコン,PSoC/PRoCマイコン,MSP432マイコン,Cortex-M0+コア,Cortex-M0コア,Cortex-M3コア,Cortex-M23コア,Cortex-M4コアIoTデバイス,微細化,汎用MCU,製造プロセス,半導体,Flash

先端半導体の供給不足
先端半導体の供給不足

COVIC-19の影響で自動車、ゲーム機、PC、5Gスマホに搭載される先端半導体の供給不足が発生中です。自動車は生産調整、ゲーム機も品薄のため販売中止のニュースが流れています。一方で、任天堂Sonyは、ゲーム機好調で、業績上方修正も発表されました。

本稿は、これら先端半導体とMCUに使っている半導体の違いを、筆者を含めたマイコン開発者向けにまとめました。

先端半導体供給不足

AppleやQualcommなどの半導体ベンダの多くは、設計・開発は行うものの、生産は台湾TSMCやUMCなど世界に数社しかない先端半導体受託生産会社(ファウンドリー)へ製造依頼するファブレス企業です。このファウンドリーの先端半導体生産量がボトルネックとなり供給不足が発生しています。

需要に追いつくよう生産設備も増設中ですが、スグには対応できません。その結果、価格競争が起こり、ゲーム機など高パフォーマンスで高価格でもOKなデバイスが優先、一方、コスト要求の強い自動車向けデバイスなどは後回しになった結果が、最初のニュースの背景です。

MCU半導体と先端半導体の差

半導体の製造や生産技術は、ムーアの法則に則り、年々微細化が進みます。これは、MCU半導体でも先端半導体でも同じです。違いは、「製造プロセスの世代」と「大容量フラッシュ搭載の有無」です。

最先端半導体の微細化技術は、28nm→14nm→7nmと製造プロセス世代が進み現在5nmなのに対し、MCU半導体は、現在28nmの1つ手前、40nmです。

※微細化の指標は、いかに細いロジック配線を実現できるかで表されnm:nanometerは、1 nm = 0.001 µm = 0.000001 mm:10億分の1メートル。

MCU半導体の微細化が遅れる理由は、MCUデバイスには簡単に微細化できない大容量Flashメモリの内蔵が必須だからです。

つまり、我々が開発するアプリケーションは全てMCUに内蔵される訳で、ここがPCやゲーム機の外付けメモリ+キャッシュ内蔵の制御系と根本的に異なる点です。

最新MCU微細化技術

上記の難しい大容量Flash微細化にも、技術革新が起きつつあります。詳細を知りたい方は、世界最小のメモリセルで最先端マイコンの低価格化を牽引する相変化メモリの記事を参照してください。

IoT MCU開発には、エッジAIや無線通信、高度セキュリティ、OTA:Over The Air更新など従来MCUに無い多くのIoT機能追加が必要です。これら機能実装には、更なる大容量Flash搭載が必須です。

IoT MCUの将来
IoT MCUの将来

大容量Flashの低価格実装と製造プロセスの世代が進めば、MCUデバイスの開発アプリケーション適用幅は大きくなると筆者は思います。つまり、より汎用化すると思います。

現在のMCUは、アプリケーション毎に内蔵周辺回路やFlash/RAM容量が異なるなど多品種でデバイス選択時、開発者を悩まします。しかし、近い将来、IoT MCUデバイス選択に開発者が悩むことも無くなるかもしれません。

関連投稿:無線STM32WBと汎用STM32G4比較の6章

MCU大手ベンダは自社製造中

NXP/ST/Renesas などの大手MCUベンダもファウンドリーを利用しますが、どこも自社工場でも製造を行っています。各社の会社紹介パンフレットには、必ず自社製造拠点の図がありますし、販売後10年間のデバイス供給保証も謳っています。

ARM社提供のCortex-Mコア設計図は同じでも、それを活かす実装設計・開発・製造がベンダ毎に異なるので他社差別化ができる訳です。

また、これらMCUベンダは、自社デバイスと並行して自動車向けデバイスの設計・開発・製造も行っています。ADASやMCU微細化技術の進化、ファウンドリーの供給不足状況などが、MCUベンダ各社に今後どのように影響するかは注目して行きたいと思います。

関連投稿:5G、Wi-Fi6、NXP、STマイクロエレクトロニクスの3章:NXP対応

まとめ

  • MCU半導体と先端半導体には、製造プロセス世代と大容量Flash搭載有無に差がある
  • 現状のMCU半導体は、大容量Flash搭載の40nmプロセス、先端半導体は、5nmプロセス
  • IoT MCUの更なる大容量Flash実装に向け、MCU微細化技術革新が起こりつつある
  • 大容量Flash低価格実装と製造プロセス進化によりIoT MCUはより汎用化する
  • COVID-19による先端半導体供給不足がMCU半導体ベンダへ影響するかは、要注目

RL78マイコン,MCU:マイコン,LPCマイコン,Kinetisマイコン,STM32マイコン,PSoC/PRoCマイコン,MSP432マイコン,Cortex-M0+コア,Cortex-M0コア,Cortex-M3コア,Cortex-M23コア,Cortex-M4コアIoTデバイス,プロトタイプ開発,マイコンテンプレート,IoTエッジMCU

総務省総務省が、2021年3月24日まで無料IoT入門オンライン講座を開設しています。IoT基礎知識、IoT技術・関連法制度、IoT活用の全3章から成るPDF配布資料(A4/36ページ)付きで各ページ冒頭に2行程度のまとめ表記があります。

※受講方法は、コチラの記事を参照してください。

資料作成日:令和元年10月

COVID-19パンデミック前、令和元年:2019年10月作成資料に沿ったオンライン講座です。関連法の導入時期などに、COVID-19の影響があるかもしれません。

※関連投稿:総務省2020年4月以降IoT機器アップデート機能義務化予定(2019年9月13日)に関する記載は、資料内にはありません。

資料フォーマット

A4縦ページの上方にスライド、下方にテキスト、いわゆるパワーポイントノート形式の配布資料です。タイトル直下、スライド冒頭に2行程度のまとめ表記があり、このまとめでページ内容が解ります。

オンライン講座は、主にスライド部分を使います。配布資料を読めば、講座内容はほぼ取得できると思います。

IoT入門オンライン講座資料の印象点

A4パワーポイントノート形式のIoTオンライン講座配布資料、良くまとまっています。

資料のWeb転載は禁止ですので、本ブログ読者は配布資料を取得済みと考え、筆者がページ毎に印象に残った点をピックアップします。

※タイトル、まとめ表記は、配布資料を基に簡素化しています。

タイトル まとめ表記 印象点
13 IoT構成機器 IoTシステム構成は3要素 データ収集、分析結果表示がIoTデバイス
14 データ収集 センサでデータ収集 8種センサ概要説明
15 IoTデバイス通信 有線と無線の2種 有線/無線のメリット/デメリット分析
17 無線電波周波数 最適な周波数 波長/周波数/呼び名/特徴分析
18 電波法 電波利用法 無線利用時「技適マーク」必須
19 無線通信 距離・速度・消費電力 無線規格特徴一覧、選択に便利
23 セキュリティ 機密性・完全性・可用性 機密性と完全性と可用性維持がセキュリティ
24 セキュリティ対策 リスクと対策 IoT特有性質とリスク分析
25 セキュリティ対策 対策の5指針 5指針と21要点、具体例一覧
26 標準化動向 標準技術メリット 4標準化団体と最新技術動向把握重要
28 IoT進め方 アイデア → 試行錯誤 プロトタイプで試行錯誤 → 導入
29 ビジネス設定 IoT解決課題設定方法 情報整理に3C/SWOT/KPT活用
30 アイデア案出 IoT活用の3段階 アイデア案出方法
31 アイデア優先順位 効果と実現可能性 効果、実現可能性の考慮方法
32 データ留意点 利害関係調整と個人情報保護 具体的留意点説明
33 運用後の対応 想定と対応策 想定具体的トラブル説明

P28のIoTデバイスをプロトタイプで試行錯誤し開発する手法は、弊社マイコンテンプレートを利用すると、「複数デバイスで実証・比較評価できるなどより効率的・実践的」になります。

マイコンテンプレートのMCUデバイスはどれも汎用MCUですが、開発者のナレや接続センサとADCの使い方により差は生じます。さらに、デバイス消費電力も、開発ツールシミュレーションと評価ボードで評価します。最もアイデアに適し開発し易いMCUは、実はプロトタイプ化しなければ判らないと思います。

配布資料は、「IoTデバイスを中心」に基礎から導入後の運用など、IoT全般に関する幅広い内容です。IoTデバイス開発者の頭の中を整理、開発後のデバイス活用・運用などを予見する場合にも役立ちます。

資料にもCOVID-19影響?

スライド利用のプレゼンテーションは、パワーポイント/Impress(LibreOfficeパワーポイント相当)の資料作成が標準です。一方、弊社テンプレート配布資料は、A3 Visio/Draw形式で作成しています。これは、横長PCモニタ表示を前提としているからです(印刷時、70%縮小A4横出力想定)。

COVID-19の影響で、プレゼンテーションも対面からオンラインへ変わりつつあります。配布資料も従来のようにパワーポイント/ Impress形式が良いか、Visio/Draw形式か、モニタも3:4サイズが良いか、9:16かなど、配布資料フォーマットにも今後影響がでるかもしれません。

弊社テンプレート開発、配布資料のご意見、ご要望などは、info@happytech.jpへお寄せください。

サイト関連,MCU:マイコン,MPU/SBC:IoT用プロセサ,お知らせIDE,IoTデバイス,動作ボード

ブログ記載の「IoT制御デバイス」、「マイコンIDE」、「テンプレート動作ボード」が一目で解る表を追加しました。記載IoTデバイスのプルダウンメニューで表示します。

ブログ記載IoTデバイスのプルダウン表示
ブログ記載IoTデバイスのプルダウン表示

これらは、Wordpress固定ページ機能を使っていますので、通常ブログ記事よりも大きな範囲で表示します。

今後、デバイス追加や対象IDEが変化した時、テンプレート動作確認ボードを追加した時は、この表を随時更新していきます。最新のブログ対応状況をチェックする時などにご利用ください。