AIのCPUとMCUへの影響

AIのPC CPUへの影響
AIのPC CPUへの影響

2024年は、AIがPCへ急激な変化を与えそうです。そこで、 AIによる PCハードウェアの変化トレンドを調べました。これら変化は、組込みハードウェアのMCUへも影響すると思うからです。

CPU、GPU、NPUとは? MCUとの違いは?

超簡単にCPU、GPU、NPUを整理します。ついでに、DSPとMCUも加えます。

CPU(Central Processing Unit):パソコンの「汎用演算」装置。PCの頭脳。
GPU(Graphic Processing Unit):「グラフィック演算」専用装置。
NPU(Neural Processing Unit):GPU内の「AI関連演算」専用装置。
DSP(Digital Signal Processor):積和演算等「リアルタイム信号演算」専用装置。
MCU(Micro Controller Unit):組込みシステム「汎用演算」装置。ADC等周辺回路内蔵。

CPU~DSPまでが、PC向け演算装置、組込み向けの演算装置がMCUです。

MCUとPC向け装置の最も異なる点は、MCUは、ADC(Analog Digital Convertor)やメモリなどの周辺回路と汎用演算回路を一体化し小型装置にした点です。

GPU/NPU/DSPは、汎用CPU処理の一部を専用ハードウェアで高速処理します。CPUの代わりにこれら専用ハードウェアが処理するため、PC全体の処理速度が速くなります。

このようにPCハードウェアは、汎用CPUの高速化と汎用処理を補う専用ハードウェアにより進化を続けてきました。

NPUが行うAI関連演算は、Web会議の背景ぼかし、複数言語への同時翻訳、通話のノイズ除去などの処理です。これらは、GPUでも可能ですが、更なる高速処理が可能です。

AI PCのIntel Core Ultra

Intel Core Ultra Processors
Intel Core Ultra Processors

Intelは、AI処理のハイブリッド化が進むと考えているようです。

つまり、ネットワーク側データセンターやGPUのみを使ったAI処理ではなく、PCやスマホなどのエッジ側CPU/GPU/NPUも協力、ネットワークとエッジがハイブリッドにAI処理を行います。

これを実現するエッジ側PCが、Intel Core Ultra搭載AI PCだと発表しました。同記事でIntelは、2025年末までに1億台のNPU内蔵新CPU:Core Ultra搭載AI PCになる、とも宣言しています。

AI有効性が認識されれば、停滞気味のPC買換え需要は一気に加速するでしょう。また、AIハイブリッド化は、急増するAIリアルタイム処理の観点からも好都合です。

GPU+NPU内蔵AMD Ryzen 8000G

AMD Ryzen 8000G Series Processors
AMD Ryzen 8000G Series Processors

2月発表のAMD Ryzen 8000Gは、従来比内蔵GPU強化とNPU(Ryzen AI)内蔵の新CPUです。CPU単体でも、フルハイビジョン(1920×1080、1080p)ゲームが十分楽しめる性能を持つそうです。

コストパフォーマンスに優れるAMD CPUユーザの筆者も、Ryzen 8000Gは気になります。ビジネス用途としても、従来CPUと同じ消費電力(TDP=65W)でGPU+NPU高性能化、AIと高画質対応の新CPUは注目しています。

AI革命によるPCハードウェア変化

AI普及は、PCハードウェアに対し以下の変化トレンドを与えると思います。

・NPU内蔵CPU化
・エッジAIリアルタイム処理化
・低消費電力化

現状のままAIが普及すれば、世界の電力不足は避けられない、エッジ側はもとより、ネットワーク側でも更なる低電力化が必要との認識は、NTTのIOWNが広めました(関連投稿:IOWN、NTT)光電融合技術)。

現状のままでは2030年に世界総電力10パーセント程度をデータセンターが占める(出典:NTT STORY)
現状のままでは2030年に世界総電力10パーセント程度をデータセンターが占める(出典:NTT STORY)

AIがもたらす便利さ、効率性、生産性向上は、「⽣成AI⾰命」と呼ばれます。生成AIとの直接ユーザインタフェースでもあるPCは、ハード/ソフト含め大きく変わるのは明らかです。

Summary:AIのCPUとMCUへの影響

前章にAIによるPC CPU変化をまとめました。

本ブログ対象のMCU/IoT MCUへのAI影響は、簡単に言うと「PC変化の後追い」です。しかし、生成AI革命が、PC後追い時間差を、従来比より少なくすると思います。

AIによるMCU/IoT MCU急変トレンドをまとめると以下です。

・Tiny AIエッジ処理(アプリ例:ポンプ異常検出、顔認識、人物検出、故障検出など)
・超低消費電力動作

MCUは、小型低価格化のためNPU内蔵、または、ソフトウェアでエッジAI処理を行います。小型なAIのためTiny AIとも呼ばれます。アプリ例から、AIハイブリッドのPCより、エッジMCU AI処理比率が高い気がします。

また、数十億ものMCU数が必要なIoT MCUは、1個1個のハード/ソフトの超低消費電力動作が必要になります。

これら動向に対し、MCU開発者は、自ら生成AIを活用し、短納期開発に備えておくべきでしょう。

関連投稿:ハードウェアまたはソフトウェアMCU AI機能とアプリ例、MCU AI現状、生成AI活用スキル

Afterword:慌てず、騒がず、遅れず準備

生成AI革命は、顧客のAIアレルギーを無くし、MCU開発者には、これまでと全く異なる異次元の短期開発や手法を求めるかもしれません。CPUやMCUへの新技術導入もより早くなりそうです。

人間開発者は、慌てず騒がず、しかし、変化にも遅れずに追随が必要です。そのためにも、動向を常に把握し、的確な対応準備を心がけましょう。