PSoC 4100S CapSenseの使い方(その2)

Cypress PSoC 4 MCU内蔵タッチセンサ:第4世代CapSenseの使い方、2回目は、ハードウェアのタッチ・パッドやスライド・バー基板開発時のガイドラインを示します。と言っても、ソフトウェア開発に最低限必要なパッド仕組みを説明します。読者にソフトウェア開発者が多いからです。ハードウェアのPCBアートワーク担当者向けには、情報リンク先を示しています。

PSoC 4100S CapSenseの使い方(第2回内容)
PSoC 4100S CapSenseの使い方(第2回内容)

参照情報:AN85951 PSoC® 4 CapSense® Design Guide.pdf(日本語版)

タッチUIのメリット

メカニカルなボタンやスイッチでは、チャタリングや経年劣化、水濡れへの対応が必要です。タッチUIは、これらに対して有利です。また、パッド形状の自由度が高いので、スマホで一般的になった直感的なタッチ操作による優れたユーザインタフェース(UI)が実現できます。

これらタッチUIは、指をタッチ・パッドに近づけた時に生じる静電容量の変化をPSoC 4000S/4100S内蔵のCapSenseで検出し実現します。従って、確実に静電容量変化を生むパッドの基板設計が重要です。

タッチ・パッド、スライド・バー設計ガイドライン、AN85951の6.4章

静電容量変化の検出には、自己容量式(self-capacitance)、相互容量式(mutual-capacitance)という2方式があります。各方式の仕組みとパッド例が下図です。

自己容量式(左)と相互容量式(右)の仕組みとパッド例
自己容量式(左)と相互容量式(右)の仕組みとパッド例(出典:AN85951)

自己容量式は、1パッドに1個のGPIOを使います。相互容量式は、1パッドにTxとRxのGPIOペアが必要です。Txは複数ボタンで共有も可能で、自己容量式よりもGPIOを多く使うぶんタッチ検出性能が高くなります。電卓やキーパッドのような12個ボタンでも、下図のように7本のGPIOで実現できます。

マトリックス・ボタンのパッド例
マトリックス・ボタンのパッド例(出典:AN85951)

スライド・バーは、操作入力が増加、または減少する場合に用います。また、タッチ・パッドは、XとYの2次元で指位置を検出する方法で、X/Y各軸にスライド・バーを利用した例と考えれば良いでしょう。

※2019年6月現在、PSoC CreatorのCapSenseスライド・バーは、自己容量式のみをサポートしています。相互容量式は、今後のバージョンでサポート予定だそうです(AN85951、English、04/30/2019、P19)。

自己容量式スライド・バーのパッド例
自己容量式スライド・バーのパッド例(出典:AN85951)

このように、入力操作に応じたパッドを基板上にパターン設計(アートワーク)します。また、タッチ部分の基板保護のため、PCB表面に非導電性のオーバーレイ素材(タッチ表面材)を付けます。

CapSenceハードウエア構造
CapSenceハードウエア構造(出典:AN85951)

詳細なPCBレイアウト・ガイドラインは、前出AN85951の6.4章や、AN64846(日本語版)に記載されています。アートワーク担当者は参照してください(本稿は、ソフトウェア開発者が対象ですので、ガイドライン詳細説明は割愛いたします)。

このガイドラインに沿ってPCBアートワークを行えば、確実に静電容量変化を生むタッチUIパッドが開発できます。

評価ボードのパッド形状理由

本開発で用いる評価ボード、CY8CKIT-145-40XX PSoC 4000S CapSense Prototyping Kitのパッド形状が、なぜこんなカタチになっているか、前章の説明でソフトウェア開発者に理解できたと思います。

PSoC 4000S CapSense Prototyping Kit
タッチ・センサー基板付きで$15と安価なPSoC 4000S CapSense Prototyping Kit

つまり、上側の3パッドは、相互容量式で共有TX(1.3)と左からRX(1.6)、(1.5)、(1.4)の合計4GPIOを使います。下側は自己容量式のスライド・バーで、左から(0.6)、(0.3)、(0.2)、(0.1)、(0.0)の5GPIOを使います。TX(2.6)パターンはありますが、スライド・バーは、ソフトウェアは現在の自己容量式のみ対応です。但しハードウェアは、既に相互容量式に対応済みなのです。

パッド上下のLEDは、指タッチを検出した時に点灯させるインジケータです。また、オーバーレイ素材がパッド基板上に装着済みであることも判ります。

Capsenseパッド基板上のオーバーレイ素材
Capsenseパッド基板上のオーバーレイ素材

ガイドラインに沿って設計済み評価ボードの上側タッチ・パッド、下側スライド・バーの各パッド基板は、簡単に切離しができます。切離したパッド基板を、トラ技付録PSoC 4100S基板へ接続し、PSoC 4100S内蔵CapSenseでも開発したテンプレートを動作させる予定です。

CapSenseの使い方(その2:PCBハードウェア)まとめ

ソフトウェア開発者が最低限知るべきCapSenseのPCBハードウェアの使い方を示しました。

  1. タッチUIは、指をパッドに近づけた時に生じる静電容量変化をCapSenseで検出。このため、確実に静電容量変化を生むPCBハードウェア:パッド設計が重要。
  2. ソフトウェア開発者向けパッドPCB設計ガイドライン要旨を示し、評価ボードパッド形状の理由と、自己容量式(self-capacitance)、相互容量式(mutual-capacitance)のGPIO差を説明。
  3. PSoC 4000S評価ボードのパッド基板を切離し、トラ技付録PSoC 4100S基板と接続。 PSoC 4100SのCapSenseでも開発テンプレートを動作させ、PSoC 4000S/4100S両方対応CapSenseテンプレート化を図る。

PSoC 4100S CapSenseの使い方(その1)

CypressのPSoC 4 MCU内蔵のタッチセンサ:最新の第4世代CapSenseの使い方を何回かに分けて投稿します。目標は、従来のメカニカル入力インタフェース:スイッチやボタンに変わる、新しいタッチユーザインタフェース(タッチUI)入力処理専用のテンプレート開発です。

操作性や装置全体の印象に大きな影響を与えるユーザフレンドリーなタッチUIを、低開発リスク、低価格で実現するこのテンプレートは、競合他社との差別化に役立つと思います。

タッチユーザインタフェーステンプレート
タッチユーザインタフェーステンプレート。ボタンからタッチ・ベースへ変化したユーザ入力処理用PSoC MCUと、それ以外の2MCU構成。プロトタイプ開発速度向上とユーザフレンドリーが狙い。

第4世代CapSense特徴(第3世代比)

・タッチ検出性能向上 → 検出感度、反応特性改善
・木材、厚いアクリル材がタッチ表面材でも反応 → デザイン幅広がる
・液量センシング可能 → シャンプー、薬品ボトル液面検出可能
・自己容量方式と相互容量方式の両方対応 → 近接センサが多くても対応可能
・低消費電流化 → センサ毎に6uAから3uAへ半減

出典:静電容量タッチセンサの性能を大幅改善、対応するマイコンを2製品投入

CapSenseデータシート Version 6.0最初のページに、CapSense v6.Xコンポーネント(=コントローラ)は、v2.Xコンポーネント以前との後方互換は無いと明記されています。また、古いコンポーネントや第3世代CapSense利用経験が有る方のために第4世代マイグレーションガイドもあります。

本稿は、最新の第4世代CapSenseを使い、初めてタッチUI開発する方を対象とします。この第4世代CapSense内蔵MCUは、PSoC 4000S、PSoC 4100S(トラ技付録基板実装)、PSoC 4100S PlusとPSoC Analog Coprocessorです(2019年6月現在)。

低価格PSoC 4000SとタッチUI評価ボード

トラ技2019年5月号で紹介された第4世代CapSense内蔵MCUは、PSoC 4100Sです。同じCortex-M0+コアですが、機能を絞ったのがPSoC 4000Sです。両者の主な仕様差を表1に示します。

関連投稿:GWお勧め本:トラ技5月号PSoC 4100S基板付きで販売中

トラ技付録基板PSoC4100S仕様とPSoC 4000Sの主な特徴差
項目 トラ技付録基板PSoC4100S仕様

CY8C4146LQI-S433

PSoC 4000S仕様

CY8C4045AZI-S413

JPY1個価格(Mouser調べ、2019/06 ¥570 ¥453
CPUコア Cortex-M0+、48MHz
メモリ FLASH 64KB 32KB
SRAM 8KB 4KB
シリアル通信ブロック 3個(I2S/SPI/UART/LINに対応) 2個(I2S/SPI/UARTに対応)
ADC 逐次比較型 12ビット分解能、1Msps なし
シングル・スロープ型 10ビット分解能、11.6ksps
GPIO 34 36
DAC 電流出力型 7ビット分解能×2
その他アナログ・ブロック OPアンプ 2個、6MHzGB積、6V/usスルーレート なし
コンパレータ 3個、内2個はスリープ・モード時も動作 2個スリープ・モード時も動作
静電容量式第4世代タッチセンサ(CapSense 自動調節機能付き(特許取得済み)
論理演算ブロック スマートI/O 3入力1出力のLUT×8

PSoC 4000Sも第4世代CapSense内蔵MCUです。PSoC 4100SのOPアンプなどのアナログ機能を省いた結果低価格で、仕様からCapSense利用のタッチユーザインタフェース(タッチUI)入力処理専用のMCU向きであることが解ります。

例えば、メカニカルボタンを1個50円とすると、ボタン8個で400円。これをタッチUIで置換えるので同程度の低価格MCUは好適です。PSoC 4000SはPSoC 4100Sに比べ少機能なので、ソフトウェア開発も容易です。初心者向きの開発案件とも言えます。さらに、PSoC 4000S実装済みで、タッチ・パッドとスライド・バーが付属した低価格なタッチUI評価ボード:CY8CKIT-145-40XX PSoC 4000S CapSense Prototyping Kitも用意されています。

PSoC 4000S CapSense Prototyping Kit
タッチ・センサー基板付きで$15と安価なPSoC 4000S CapSense Prototyping Kit

CapSenseの使い方(その1:低開発リスク、低価格のタッチUI実現手段)まとめ

低開発リスク、低価格で第4世代CapSenseを使ったタッチユーザインタフェース(タッチUI)を実現する手段として、PSoC 4000S実装評価ボード:CY8CKIT-145-40XX PSoC 4000S CapSense Prototyping Kitを使い、タッチUI入力処理専用のテンプレート開発を行います。このテンプレートは、トラ技付録PSoC 4100S基板でも同じように動作します。

最初の図のように、様々な装置や別MCUの入力手段として単独利用もできます。また、個人レベルでチョット変わった下図のようなタッチUIモジュールを手軽に開発する時にも役立つと思います。

タッチUIモジュールイメージ(出典:トラ技P53 AIジェスチャ・スティック図を加工)
タッチUIモジュールイメージ(出典:トラ技P53 AIジェスチャ・スティック図を加工)

次回から、タッチUIのメリット、ハードウエアのタッチUI基板ポイント、CapSense制御ソフトウェアの構造、開発ツールPSoC Creatorの設定方法など、CapSenseの具体的な使い方を、主にソフトウェア開発者向けに判り易く説明していきます。

汎用STM32FxテンプレートのSTM32G0x使用法

LL APIを利用するSTM32G0x「専用テンプレート」開発は、3月からの投稿で一応目安が付きました。
※投稿下欄タグ:専用テンプレートをクリックすると本稿を含め関連投稿が読めます。

これらの投稿で販売中の汎用STM32Fxテンプレートは、HAL APIを使っているので別STM32MCU、例えばG0シリーズMCUのSTM32G071RBなどへの使用・移植も簡単であることを何度か書いてきました。

そこで、この「汎用テンプレート」のSTM32G071RBへの使用法を説明します。

STM32Fxテンプレートは、図1に示すようにF0シリーズMCUのSTM32F072RBと、F1シリーズMCUのSTM32F103RB両方で動作確認済みです。本稿は、このSTM32FxテンプレートをSTM32G0へポーティングします。

汎用STM32Fxテンプレートのソフトウェアアークテクチャ
汎用STM32Fxテンプレートのソフトウェアアークテクチャ

汎用STM32FxテンプレートのSTM32G0x使用法まとめ

  • HAL APIはSTM32MCUで共通なので、HAL API利用アプリケーション(この場合はテンプレート、STM32Fx Template)は、STM32デバイスが変わってもそのまま使える
  • HAL APIより下層のソフトウェアは、STM32CubeMXを使って自動生成
  • STM開発環境にMCU移植機能が無い現状では、移植デバイス先のSTM32CubeMX設定さえ間違わなければ、HAL APIより上層アプリケーションの使用・移植は、簡単

汎用STM32Fxテンプレートを購入検討中の方、または既にSTM32Fxテンプレートをお持ちの方は、HAL API利用STM32Fxテンプレートの別デバイス移植性が優れていることが本稿でご理解頂けると思います。

汎用STM32F0シンプルテンプレートのSTM32G071RB移植手順

手順1.SW4STM32で、F0SimpleTemplateプロジェクト名をG0SimpleTemplateへリネームコピー

手順2.STM32CubeMXで、評価ボードNucleo-G071RBプロジェクトを新規作成し、F0SimpleTemplate.icoと同じ変更を加え、手順1でリネームしたG0SimpleTemplate.icoへ上書き保存後、コード生成

手順3.SW4STM32で、G0SimpleTemplateのmain.cとUserDefine.hなど数か所を変更&コンパイル

手順4.STM32G071RB評価ボードNucleo-G071RBで、移植シンプルテンプレート動作確認

文章で書くと手順1~4のように量が多くなります。しかし、HAL APIはSTM32MCUで共通、デバイスが変わってもHAL API利用アプリケーションをそのまま使うために、下層の構築にSTM32CubeMXを使うだけです。HAL APIアプリケーション移植は簡単です。

手順詳細を説明します。

手順1:SW4STM32で、F0SimpleTemplateプロジェクトをG0SimpleTemplateへリネームコピー

F0SimpleTemplateをコピー、同じワークスペースへペーストする時にG0SimpleTemplateへリネームします。

F0SimpleTemplateをG0SimpleTempleteへリネームコピー
F0SimpleTemplateをG0SimpleTempleteへリネームコピー

G0SimpleTemplateフォルダ内のF0SimpleTemplate.iocをG0SimpleTemplate.iocへF2:リネームします。
※手順1の目的は、F0SimpleTemplateソースコードのユーザ追記部分を、丸ごとG0SimpleTemplateで流用するためです。

手順2:STM32CubeMXで、Nucleo-G071RB新規作成とコード生成

現状のSTM32CubeMXには、MCUデバイス間の移植機能がありません。そこで、F0SimpleTemplate.iocファイルを見ながら、新規作成Nucleo-G071RBの周辺回路を手動で同じ設定にします。

先ずG0SimpleTemplete.iocファイルを新規作成し、手順1でリネームしたG0SimpleTemplete.iocへ上書き保存します。その後、STM32CubeMXの2重起動を活かしF0SimpleTemplate.iocを見ながらG0SimpleTemplete.ioc周辺回路を同じ設定にします。最後に、全ての周辺回路をHAL APIでコード生成します。

STM32CubeMXのNucleo-G071RB設定
STM32CubeMXのNucleo-G071RB設定

※Connectivityは、F0SimpleTemplateに合わせてUSART2、Clock Configurationは、HCLK Max.の64MHz、Timerは、F0SimpleTemplateのTIM3機能に近いTIM7を使いました。

手順3:SW4STM32で、main.cとuserdefine.hの数か所を修正&コンパイル

どのようなアプリケーションソフトでも、デバイス依存の箇所があります。F0SimpleTemplateも同様です。これらは手動で変更・修正するとビルドが成功します。変更・修正箇所が下記です。

  • HALライブラリとBSP(Board Support Package)変更
    stm32f0xx_hal.h→stm32g0xx_hal_conf.h、stm32f0xx_nucleo.h→stm32g0xx_nucleo.h(UserDefine.h)
  • BSPはRepository\STM32Cube_FW_G0_V1.2.0\Drivers\BSP\STM32G0xx_Nucleoのstm32g0xx_nucleo.c/hをSrc/Incへコピー
  • TIM3の代わりにTIM7を使ったので、htim3→htim7(main.c)
  • G0SimpleTemplateに無関係ファイル削除(stm32f0xx_nucleo.c/h, system_stm32f0xx.c)

手順4:評価ボードNucleo-G071RBで動作確認

F0SimpleTemplateをG0SimpleTempletaへ流用したVitrual COMポート画面
F0SimpleTemplateをG0SimpleTempletaへ流用したVitrual COMポート画面

※表示メッセージは、STM32G0xデバイス対応に変更しています。

あとがき

繰返しますが、文章で書くと移植手順は長く複雑に感じます(特に手順3)。しかし、ソフトウェアアーキテクチャ図1が理解済みならHAL API利用アプリケーションの別デバイスへの移植は簡単です。手順3内容は、デバイスが変われば当然必要となる事柄です。

HAL API利用アプリケーションの最大メリットは、MCU移植が容易なことです。つまり、HAL APIアプリケーションは、「STM32MCUデバイス非依存」とも言えます。

現状では、このメリットを活かす開発環境が不備なだけです。不備分は手動で補い、STM32F0/F1アプリケーションをSTM32G0アプリケーションへ移植する方法を示しました。

近い将来、STM開発環境にMCUデバイス移植機能が提供されると筆者は思います。

お知らせ:LL APIを利用するLL APIのSTM32G0x「専用」テンプレートの販売時には、本稿のHAL API利用「汎用」G0SimpleTemplateも添付し、専用と汎用の両方を1パッケージで販売する予定です。

※LL APIとHAL APIの差を把握したい方は、STM32CubeMXのLow-Layer API利用法(2)を参照ください。

STM32G0xのADC利用法

STM32G0xのラインナップは、Value/Access/Access&Encryptionの3製品です。製品により内蔵周辺回路が異なりますが全製品共通回路が、2.5MSPS 12bit ADCです。本稿は、このSTM32G0xのADC利用法を解説します。

STM32G0xのADC資料一覧

時短に役立つ資料を表1にリストアップしました。

表1 STM32G0xのADC資料一覧(2019年4月現在)
資料名 概要
STM32G0 – ADC STM32G0のADCトレーニング資料。全20ページの内容は判り易く良書。
AN5110 STM32CubeMXを使い生成可能なSTM32G0x公式サンプルプロジェクト一覧表。
HAL API 4個、LL API 8個、HALとLL混在1個のADC公式STM32CubeMXプロジェクト掲載アプリケーションノート。
AN2834 全STM32MCUのADCを精度よく使う方法アプリケーションノート。全49ページ。

3資料と数は少ないですが、ADC内容は盛り沢山です。

STM32G0xのADC公式サンプルプロジェクトAN5110とオンライントレーニング資料を中心に、AN2834も参照するアプローチで解説します。

STM32G0とSTM32F0のADC差

STM32G0は最新IoT Edge MCU、STM32F0は普通の汎用MCUで、どちらもMainstream(≒汎用)MCUですが内蔵12bit ADCは異なります。トレーニング資料P18に特徴の比較があります。

STM32G0とSTM32F0のADC差
STM32G0とSTM32F0のADC差分(※説明のため着色しています。出典:ADCオンライントレーニング資料)

先ず、Conversion:ADC変換時間が0.4usと高速になった点。STM32G0xはMax. 64MHz動作(F0は48MHz)ですが2倍以上高速です。次に、Analog watchdog対応数が増え、バッテリー動作に備え低圧側に動作電圧が広がっています。ハードウェアオーバーサンプリングと高度なシーケンサーが新しい機能です。

勿論、普通のSTM32F0と同じADC制御もできますが、これら新機能を使いこなし、コアMCU負担を減らすように制御すると上手い使い方と言えるでしょう。

トレーニング資料は英文ですが、ポイントを抑えた非常に良くできた資料です。筆者の下手な解説より資料を読んで頂くと、STM32G0xのADCの使い方が判ると思います。

実践的ADCの使い方習得

トレーニング資料が一番効果的ですが、本稿では、開発中のSTM32G0x専用テンプレート動作確認評価ボードNucleo-G071RBで動作するAN5110のExamples_LL掲載サンプルプロジェクト(MXアイコン付きの下記8個)を使って、実践的にLL APIによるADCの使い方を習得します。

なぜLL APIを使うのかは、STM32G0x専用テンプレート開発全体像俯瞰、また、全般的なLL API利用法はSTM32CubeMXのLow-Layer API利用法 (1)~(3)を参照してください。

LL APIを使ったADCプロジェクト一覧(出典:AN5110)
LL APIを使ったADCプロジェクト一覧(出典:AN5110)

Descriptionを読むと、大別して4種類のサンプルプロジェクトがあることが解ります。AN5110は、Examples_LLフォルダを名前順に表示したもので、MXアイコン付き8個を制御別に解り易く並び変えたものが表2です。

表2 MXアイコン付き8プロジェクトを制御別に並び換える
制御 基本プロジェクト名(_Init省略) 応用プロジェクト名(_Init省略)
1 ADC SingleConversion TriggerSW

ADC SingleConversion TriggerSW DMA

ADC SingleConversion TriggerSW IT

ADC SingleConversion TriggerTimer DMA

2 ADC ContinuousConversion TriggerSW ADC ContinuousConversion TriggerSW LowPower
3 ADC Oversampling なし
4 ADC  AnalogWatchdog なし

4種類を整理すると、最も基本のADCプロジェクトが1です。

1のSingleConversion_TriggerSoftwareは、ソフトウェアトリガでADCを開始し、ポーリングでデータ取得、データ転送にDMA転送、割込みなどの応用例があります。タイマをトリガにDMA転送の発展例もあります。ADC処理回数は1回です。

2のContinuousConversionは、1のADC処理回数の連続形で、LowPowerでの応用例があります。
※1と2のConversion Mode説明が、トレーニング資料P11にあります。

3のOversamplingは、新機能のサンプルプロジェクトです。
※Hardware Oversampling説明が、トレーニング資料P12にあります。

4のAnalogWatchdogも、新機能の3個AnalogWatchdogを使ったサンプルプロジェクトです。
※AnalogWatchdog説明が、トレーニング資料P13にあります。

いかがですか? ADCサンプルプロジェクトだけでもおなか一杯で、しかも、これでもADCの豊富な機能の一部抜粋です。さらに、省電力動作や、実際に接続するアナログセンサ出力への対応、加えてAN2834記載の変換精度向上なども考慮すると、ADCだけでも上手く使うのはかなりのスキルや経験が必要なのが分ります。

こういう時は、最も基本のADC_SingleConversion_TriggerSWを先ず理解し、プライオリティに応じて順次ステップアップするのが常套手段です。プライオリティ無しの手当たり次第の理解は、消化不良を起こします😂。
※なおSTM32G0x専用テンプレートは、このADC_SingleConversion_TriggerSWを実装予定です。

ADC_SingleConversion_TriggerSW_InitのSW4STM32インポート

※統合開発環境SW4STM32とコード生成ツールSTM32CubeMXは、Windowsパソコンへインストール済みとします。インストール方法は、関連投稿を参照してください。

先ず、ADC_SingleConversion_TriggerSW_Initを使って、STM32G0xのADC使い方を説明します。

サンプルプロジェクト:ADC_SingleConversion_TriggerSW_InitをIDE:SW4STM32へインポートする方法は色々あります。簡単な方法が下記です。

1.STM32CubeMXをインストールしたPCの          、
STM32Cube\Repository\STM32Cube_FW_G0_V1.1.0\Projects\NUCLEO-G071RB\Examples_LL\ADC\ADC_SingleConversion_TriggerSW_Initフォルダを開き、ADC_SingleConversion_TriggerSW_Init.iocをクリックすると、STM32CubeMXが起動します。

2.起動したSTM32CubeMXのProject Manager>Projectで、Toolchain/IDEをSW4STM32へ変えます。Advanced SettingsタブでADCや周辺回路のLL利用を確認しておきます。

3.GENERATE CODEをクリックし、表示されるダイアログでOpen Projectをクリックすると、SW4STM32が起動します。ワークスペースを入力後、下記Successfully imported the project…が表示されればインポート完了です。

SW2STM32インポート成功時ダイアログ
SW2STM32インポート成功時ダイアログ

4.SW4STM32でreadme.txtを開くとインポートしたプロジェクト内容が解ります。評価ボード:Nucleo-G071RBのPA.04、またはArduinoコネクタCN8 A2接続の、0から3.3Vまでのアナログ入力電圧を、ソフトウェアトリガでADCスタートし、ADC完了ポーリングでデータ変換完了を確認するのがこのプロジェクトです。
評価ボード単独でもアナログ入力電圧は不定ですが、動作可能です。

サンプルプロジェクトmain.cソースコードの読み方

初めてmain.cを見た方は、ソースコード行数が多いのでビックリするかもしれません。しかし、以下のSTM32CubeMX(以下MX)生成ソースコードの構造を押さえて読めば簡単です。

  • 自動生成ソースコードは、ユーザコード/コメントを追記する部分と、MX生成部分の2つからなる
  • ユーザコード/コメント部分は、再度MXで新たにコード生成しても、上書きされそのまま残る
  • コーザコード/コメント部分は、/* USER CODE BEGIN… */ ~ /* USER CODE END… */で囲まれている

従って、サンプルプロジェクトのユーザコード/コメント部分は、「ユーザの代わりにSTMが作成したコードと明示的に説明を加えた箇所」です。注意して読みましょう。それ以外のMX生成部分は、コメントを眺める程度で十分です。

サンプルプロジェクトmain.c解説

ソースコードが読めると、サンプルプロジェクト内の重要関数も解ります。

ADC_SingleConversion_TriggerSW_Initの場合は、L121のConversionStartPoll_ADC_GrpRegular(void)とL120のActivate_ADC(void)が重要関数です。

これら以外のLED点滅関数(L122~124)とMX生成関数(L116~118)は、他のプロジェクトでも使える、いわばLL API開発時の汎用関数です。

ADC_SingleConversion_TriggerSW_Initのmain.c
ADC_SingleConversion_TriggerSW_Initのmain.c解説。重要関数と汎用関数に分けて読む。

L121へカーソルを移動し、F3を押すとConversionStartPoll_ADC_GrpRegular(void)の定義場所へ簡単に移動できます。

ConversionStartPoll_ADC_GrpRegular()
重要関数 ConversionStartPoll_ADC_GrpRegular()本体

ConversionStartPoll_ADC_GrpRegular(void)は、本来ユーザが作成する関数を、STMが代わりに作成した信頼性が高い関数です。ユーザが利用しない手はありません。ライセンス上も問題なく使えます。

しかも、STMが明示的に付けたコメントがありますので、自分の開発ソースコードへ利用・活用できるようにコメントを読んで内容を理解しておきましょう。内容理解には、readme.txtやトレーニング資料も役立ちます。

同様に、もう1つの重要関数:Activate_ADC(void)も利用・活用できるように理解しましょう。

以上のように重要関数を理解すると、サンプルプロジェクト:ADC_SingleConversion_TriggerSW_Initが示した処理内容とその中から利用できる関数を、自分が開発するプロジェクトの代替関数(≒一種の部品)として使えるようになります。

公式サンプルプロジェクトは、この「高信頼部品の宝庫」です。部品を利用すれば、開発速度が上がります。
また、公式サンプルプロジェクトは、「周辺回路利用時の作法」も明示STMコメントが示しています。

ユーザは、どこに、何を、追記すべきか

前章は、ADC_SingleConversion_TriggerSW_Initを使って、サンプルプロジェクトソースコード:main.cの理解方法を示しました。

一般的な周辺回路のユーザ追記箇所は、前章のように主としてmain.cの無限ループです。周辺回路の初期設定(前章で言えばMX_ADC1_Init(void)やMX_GPIO_Init(void))は、STM32CubeMXが担うからです。

サンプルプロジェクトには、周辺回路に割込みやDMAを利用した例もあります。

この場合は、STM32CubeMXのLow-Layer API利用法 (3)で示した割込みNVIC利用時のユーザ追記箇所と、本稿で示した周辺回路ユーザ追記箇所の2つに分けてソースコードを理解します。

STM32CubeMXが自動生成したソースコードの、「どこに、何を、ユーザが追記すべきか」は、本章で示した方法でサンプルプロジェクトを理解すれば、自然に解るようになります。
逆に、「どこに、何を、追記すべきか」かが解らないなら、まだサンプルプロジェクト理解が足りないと言えます。

公式サンプルプロジェクトのソースコードを作成するのは、STM32CubeMXと「ユーザ代替のSTMプロフェッショナル」です。両者の役割、作成部分やソースコード構造を理解するのがユーザ開発の第一歩です。

ここでは、表2の中で最も基本のADC_SingleConversion_TriggerSWサンプルプロジェクトを使って、STM32G0xのADC利用法を解説しました。

ADCサンプルプロジェクトは他にも多数あります。自分の開発プライオリティに応じて、他プロジェクトも同様に理解し、ステップアップすれば良いでしょう。

STM32G0x専用テンプレートの目的

MCUソフトウェア開発は、0から着手するのではなく、コード生成ツール:STM32CubeMX活用や前章で示した公式サンプルプロジェクトの部品利用・活用で、効率的に早く開発する、いわゆるプロトタイプ開発が主流です。また、プロトタイプ開発をしないと、競合他社とのビジネスには不利です。

プロトタイプ開発は、開発スピードが要求されます。何がしかの動作確認済みテンプレート(ひな形)と評価ボード、詳しい説明資料があれば、開発着手時のつまずきや手間が省け、より検討すべき項目に時間が割けます。
このテンプレートが、弊社汎用マイコンテンプレートです。

本稿のSTM32G0x専用テンプレートは、新しいEdge MCU「STM32G0xシリーズ専用」テンプレートで、STM32MCUで汎用性がある上記テンプレートとは異なりますが、目的や役割は汎用と同じです。

関連投稿:STM32G0x専用Edge MCUテンプレート開発

STM32G0x専用テンプレートには、本稿で示したADC重要関数や、USB経由のADC変換データパソコン出力、パソコンからの評価ボードLED点滅制御など、STM32G0x開発着手時に最低限必要な機能や部品をあらかじめテンプレートに実装済みです。

STM32G0x専用テンプレートをサンプルプロジェクトとの差分で説明すると、複数サンプルプロジェクトが実装済みで、プロトタイプ開発着手のレベルにより近いプロジェクト、これがテンプレートとも言えます。また、各種サンプルプロジェクト追加や削除が簡単なのも特徴です。

テンプレートのソースコードには、日本語コメントを豊富に付加し、初心・中級開発者が理解できるよう詳細な解説資料付きで提供します。

STM32G0x専用テンプレートを利用すると、STM32G0xプロトタイプ開発を即座に始められます。

STM32G0x専用テンプレートは、近日中に発売予定です。

GWお勧め本:トラ技5月号PSoC 4100S基板付きで販売中

トランジスタ技術2019年5月号が、サイプレス・セミコンダクター(以下サイプレス)のPSoC 4100S搭載基板付きで1,180円(税込)で販売中です。平成最後のトラ技で、PSoC 4と統合開発環境PSoC Creatorの良さが判る雑誌が、安価に入手できます。

ゴールデンウイークの読物に、MCUソフトウェア開発者だけでなくハードウェア開発者へもお勧めです。

トランジスタ技術平成31年5月号PSoC関連目次
トランジスタ技術平成31年5月号PSoC関連目次(※説明のため着色しています。出典:トランジスタ技術)

弊社ブログ掲載MCU中、筆者が最も好きなMCUが、Cortex-M0のPSoC 4シリーズです。MCU技術、サイプレスサイト掲載情報量と質、どれも競合他社より優れていると思います。但し、中級者以上の方には受けが良くても、初心者や初めてサイプレスサイトを訪れる方が解り易いかは疑問です。

ネット並みの手軽さはありませんが、紙媒体のトラ技は、セキュリティ不安や無駄な広告が無く、図表が多く2色で色分けされた文章は、CQ出版社構成済みです。PSoC 4やサイプレスが初めての方でも、短時間で重要箇所を読み・理解するのも簡単です。

ここからは、トラ技を入手した方を前提に、(少々差し出がましいのですが)PSoC 4やPSoC Creatorに解説を加えます。本ブログ対象の、「個人でも低価格で入手性が良いMCUにPSoC 4が該当」するからです。

PSoC 4と4000Sシリーズ

PSoCファミリラインナップがP60コラムにあります。PSoC 4の位置づけが良く解ります。このPSoC 4(Cortex-M0コア)に旧富士通のFM0+買収で得たCortex-M0+コアを採用し、世代改良したのがPSoC 4000Sシリーズです。S付きがCortex-M0+、無しがCortex-M0です。

PSoC 4000Sシリーズのラインナップが下図です。

PSoC 4000シリーズ分類
PSoC 4000シリーズ分類(出典:Cypress Semiconductorメールの一部抜粋)

メール画面切取り画像のためDigi-keyやMouserリンクは無効ですが、PSoC 4000Sシリーズは低価格で入手性も良いMCUであることが解ります。

Entry Level PSoC 4000Sのアナログ機能強化版であるPSoC 4100S:CY8C4146LQI-S433/Flash:64K/RAM:8K搭載基板がトラ技に付属しています。ブレッドボードなどで動作可能です(特設P115~に詳しい説明あり)。

PSoC 4100Sのトラ技採用理由は、第1部の(重い)処理内容や第2部のハイエンドPSoC 5LP(P104コラム参照)へのガイドがし易いからだと思います。

個人的には、先ずEntry LevelのPSoC 4000Sを使って、PSoCの良さをもっと手軽に読者に認知させた方が良いと感じました。4000Sと4100Sの差分は、内蔵アナログ・コンポーネントとその数だからです(MCU提供サイプレスの思惑もあるかもしれませんが…)。
※内蔵アナログ・コンポーネント解説は、特設P143~に詳しく説明されています。

PSoC Creator

PSoC Creatorは、EclipseベースIDEですが、他社IDEと異なります。使い勝手は、トラ技記事にあるように痒い所に手が届くように良くできたIDEです。モニタ1台ではなく、複数の高解像度モニタを使いたくなります。

簡単に言うと、MCUハードウェア開発者でも使える回路図機能とソフトウェア開発機能を全て盛り込んだ環境です。
※特設P129~のPSoC Creator操作マニュアルに詳しく説明されています。

PSoC Creator操作画面
PSoC Creator操作画面

筆者がPSoC 4000SとPSoC Creatorを勧める具体的理由が下記です。

MCUハードウェア開発者向け:自分で開発したハードウェアのテストプログラムを、できるだけ簡単に自作したいが、ソフトウェア開発技術を習得する時間が無い。

MCUソフトウェア開発者向け:制御ハードウェアの詳細を、データシートを読むよりも効率良く理解したい。ハードウェア担当者に直接聞くのも面倒だ。

これらの方々は、是非PSoC Creatorを試してください。ハード/ソフトの垣根がなく、自分が知りたいことをPSoC Creatorだけで調査でき、求める出力をCreateできるのがPSoC Creatorです。

PSoC Creatorを使うと、ハードウェア・ソフトウェア共に既存資産の活用と組み合わせでMCU開発するのが便利で効率的なのが良く解ります。ハードウェア的に言うとコンポーネント活用、ソフトウェア的に言うとAPI活用です。

PSoCの場合、外付けセンサー接続時にあると便利なアンプやコンパレータなどのアナログディスクリート回路や、AND/OR/NOTデジタルディスクリート回路などもMCU内蔵です。システム完成時の実装部品数が削減できます。

さらに、PSoC 4000Sには、タッチ・センサー制御に強いCapSenseも内蔵で、細かな調整もPSoC Creatorでできます。

一度使ってみれば、PSoC CreatorがPSoCの魅力を引き出すというトラ技解説が良く解ります。

PSoC 4000SとPSoC6テンプレート開発の可能性

弊社のPSoC 4/PSoC 4 BLE/PRoCテンプレートは、Cortex-M0対応で2015年発売当時は最新でした。

しかし、トラ技付属のPSoC 4100S搭載基板を活用できるテンプレートや、Entry Level第4世代PSoC 4000Sを使った新テンプレートも開発したくなりました。Cortex-M0+採用による低電力・高効率化が気になります。

例えば、PSoC 4000S CapSense Prototyping Kit($15)で新テンプレートを開発すると、タッチ・センサー機能も低価格で直にプロトタイプ開発ができそうです。更に高性能で低価格なPSoC 6ファミリ(Cortex-M4/M0+デュアルコア)にも興味があります。

PSoC 4000S CapSense Prototyping Kit
タッチ・センサー基板付きで$15と安価なPSoC 4000S CapSense Prototyping Kit

STM32CubeMXのLow-Layer API利用法 (2)

STM32G0x専用テンプレートで使うSTM32CubeMXのLL API利用法第2回は、LL APIとHAL APIの違いを説明します。
専用テンプレートはLL、汎用テンプレートはHALを使う理由がお判りになると思います。

LL(Low-Layer)とHAL(Hardware Abstraction Layer)相対比較

第1回で示したLL API関連資料一覧のUM2319の最初のページに、LLとHALの定義が示されています。

・LL:HALよりもハードウェアに近く、高速で軽量なエキスパート向けレイヤー
・HAL:ハードウェア抽象化で、STM32MCU間で最大限の移植性を保証するレイヤー

MCUハードウェアに依存するLLは、高速・軽量ですが移植性が低いので、LL APIを利用するソフトウェア(=アプリケーション)はそのMCU専用になります。一方、HALはMCU移植性が高いため、HAL API利用アプリケーションはSTM32MCU間で汎用的に使えます。

HALの方が現代的で少ないユーザ記述でアプリケーション開発ができ、さらに汎用なので開発労力が無駄にならない利点があります。しかし、HALが隠蔽している制御の分Flash(ROM)やRAM容量が必要で、LLに比べ低速です。モーター制御など高速処理が必要な部分にはLLの方が向いているかもしれません。

以前の投稿STM32CubeMXの使い方で示した、HAL APIとLL API相対比較表を再掲します。

HALとLL比較(出典:STM32 Embedded Software Overvire)
HALとLL比較(※説明のため着色しています。出典:STM32 Embedded Software Overvire)

専用テンプレートと汎用テンプレート

LL APIの利点は、ハードウェア性能を活かし少ない容量で高性能アプリケーション開発ができる点です。これは、小Flashで高性能なSTM32G0xデバイスに最適と言えるでしょう。

現状はSTM32G0xが「単独デバイス」でSTM32F0/F1両方のMCU性能をカバーしているので「専用テンプレートが最適」だと言えます。しかし、「STM32G0xシリーズに更に高性能なSTM32G1xデバイス」が発売されれば、移植性が高いHALでSTM32G0xソフトウェア開発を行う方が良くなる可能性はあります。

但しこの場合には、HAL API利用の販売中汎用STM32FxテンプレートをSTM32G0xデバイスへ適用すれば済みます。汎用性を示すこの適用例は、近く投稿する予定です。

特定ハードウェア性能を活かす専用アプリケーションが、少ないROM/RAM容量でも開発できるLL APIメリットを示すデバイス例としてSTM32G0xを選び、専用テンプレートを開発中です。

LL APIとHAL APIのアプリケーションサイズ実例比較

LL API利用時、容量がHAL APIに比べどの程度小さくなるかを実例で示します。

これも前の投稿STM32CubeMXの使い方で示したように、一般的にはLLの方がHAL比60~80%小さくなると言われます。

実例に評価ボードNucle-G071RBに処理は何もせず、64MHz動作のみをLL APIとHAL APIだけを変えてビルドした結果が下記です(SW4STM32 v2.8.1、STM32CubeMX v5.1.0、STM32G0 v1.1.0)。

  text data bss 使用容量 容量比(%)
LL API 3120 12 1564 4696 59
HAL API 9680 20 1708 11408 100

LL API利用の方が 59%小さく実現できることが判ります。

LL APIとHAL API混合利用時の注意点

AN5110には、LLとHAL両方を混在させた公式サンプルプロジェクトのExamples_MIXがNucleo-G071RBでも9例と少ないながら掲載されています。

LLとHAL混在利用の公式サンプルプロジェクト(出典:AN5110)
LLとHAL混在利用の公式サンプルプロジェクト(出典:AN5110)

LLとHALを混在利用時は、色々な注意点があります。UM2319の5章に詳細がありますが、一部抜粋します。

・同じ周辺回路をHALとLLで混在制御するのは避ける
・LLはHALがハンドルしているレジスタを上書きすることがあるので注意

また、UM2303の2章にLLとHALの示すアーキテクチャが示されています。

STM32CubeG0 Firmware Architecture(出典:UM2303)
STM32CubeG0 Firmware Architecture(※説明のため着色しています。出典:UM2303)

つまり、上層HALが下層LLを利用する場合がある訳です。LLは、HALがどのように周辺回路を制御しているかを知ることなく直接ハードウェアレジスタにアクセスします。混在時はレジスタ競合などの詳細な注意がAPI利用者側で必要です。

Nucleo-G071RB 利用時LLとHAL混在利用は、Examples_MIXの9例を除いては避けた方が良さそうです。
BSP(Board Support Package)も、同じ理由でSTM32G0x専用テンプレートには使いません。

※以上は、同一周辺回路でLLとHALを混在利用する場合の注意点です。
※では、周辺回路が異なれば混在は問題ないのでしょうか? 例えば、I2CはHAL、GPIOはLLの場合などです。この場合でも、HALがLLを利用することを考慮すると、アプリケーションレベルでの安全側評価では混在は避け、LLまたはHALに統一して利用する方が無難だと思います。

STM32CubeMXのLow-Layer API利用法 (2):LL APIとHAL APIの違いまとめ

STM32G0x専用テンプレートは、HAL APIとの混在利用は避け、LL APIのみで開発します。

従って、STM32G0xデバイス専用のアプリケーションとなります。
汎用テンプレートSTM32Fxテンプレートは、HAL APIを使っていますので、STM32MCUで汎用的に使えるアプリケーションです。
※このSTM32Fxテンプレート汎用性を示すため、STM32G0xデバイスへこの汎用テンプレートを適用した例を示す予定です。

LLとHAL混在アプリケーション開発は、レジスタアクセス競合などの詳細注意が、API利用アプリケーション側で必要です。
公式サンプルプロジェクトExamples_MIXで示されたやむを得ない場合を除いては、避けた方が無難です。

STM32CubeMXのLow-Layer API利用法 (1)

STM32G0x専用テンプレートで使うSTM32CubeMXのLL(Low-Layer) API利用法を3回に分けて投稿します。

第1回:LL API初期化処理(本稿)
第2回:LL APIとHAL APIの違い
第3回:STM32CubeMXのLL API利用時注意点と第1回~第3回全体まとめ

第1回は、LL API初期化処理です。組込みソフトウェアは、初期化処理と無限ループ内処理の2つから構成され、LL APIでも汎用テンプレートで使ったHAL(Hardware Abstraction Layer)APIでもこの2構成は同じです。

LLとHALに関するSTマイクロエレクトロニクス(以下STM)資料は数多くあります。ただSTMは、STM32ソフトウェア開発は、基本的に「HAL API利用を推薦」していると思います。MCUハードウェア差を隠蔽でき、開発ソフトウェア移植性にも優れているからです。また、STM32CubeMXで生成する関数もHAL APIがデフォルトです。

STM32G0xシリーズLL API関連ソフトウェア資料一覧

筆者がそう考えるからかもしれませんが、STM32G0xシリーズのLL API関連資料は、投稿時点では未だ少ない状況で、リストアップすると表1の4個程度です。近くより小ピン小容量のSTM32G0xがリリースされますので、もっと多くなると期待しています。
※5番目のSTM32Cube ファームウエア テクニカル・プレゼンテーションにはLL API関連はありませんが、BSPやUSB制御をSTM32G0x専用テンプレートでも使う可能性を考慮して追加しました。

高性能ハードウェアを活かしコードサイズもHALより小さいSTM32G0x専用LL API関連資料4+1個の範囲でその利用法をまとめます。

表1 STM32G0xシリーズLL API関連ソフトウェア資料一覧(2019年3 月末)
資料名 概要
AN5110 STM32CubeMXで生成可能なSTM32G0公式サンプルプロジェクトの一覧表。HAL APIのみ、LL APIのみ、HALとLL混在などに区分けされたアプリケーションノート。
UM2303 STM32CubeMXを使いSTM32G0ソフトウェア開発着手時のユーザマニュアル
UM2319 STM32G0のHAL APIとLL APIユーザマニュアル
STM32Cube G0 Firmware Package STM32G0公式サンプルプロジェクト概要を示すオンライントレーニング資料
STM32Cube ファームウエア テクニカル・プレゼンテーション STM32シリーズSTM32CubeMXのHAL/BSP/ミドルウェア/USBライブラリの日本語解説書

STM32CubeMX LL API利用法の習得アプローチ

表1の概要を読むと、実践的にはAN5110のLL APIのみのサンプルプロジェクトとUM2303、万全を期すにはUM2319のLL API解説章の理解が必要です。

そこでLL API利用法は、実践的アプローチから着手し、不明な点やレファレンスが必要な時にUM2319を参照することにします。

STM32G0のLL API利用例:AN5110のExamples_LL

STM32G0x専用テンプレート動作確認評価ボードは、Nucleo-G071RBです。Nucleo-G071RBは、AN5110のExamples_LLで示されたLL API利用サンプルプロジェクト数が75個と掲載ボード中最も多いので前章アプローチに最適です。

これら多くのLL APIサンプルプロジェクトから、2つのGPIOプロジェクトに着目します。この2プロジェクトは、どちらも評価ボード実装済みLD4を250ms毎に点滅させます。

GPIOサンプルプロジェクト差
2つのGPIOサンプルプロジェクト差(※説明のため着色しています)

MXアイコンが付いているGPIO_InfiniteLedToggling_Initは、STM32CubeMXで生成可能、GPIO_InfiniteLedTogglingは生成不可です。その差は、Descriptionによると初期化処理(Initialization FunctionとUnitary Service Function)です。両者ソースコードの初期化処理を下図に示します。

GPIO_InfiniteLedToggling_InitとGPIO_InfiniteLedTogglingの初期化処理の差
GPIO_InfiniteLedToggling_Init(左)とGPIO_InfiniteLedToggling(右)の初期化処理の差

MX_GPIO_Init()が、STM32CubeMX生成可能プロジェクト、Configure_GPIO()が、生成不可プロジェクトの初期化処理です。

つまり、
・MX_GPIO_Init()=Initialization Function (generated by STM32CubeMX)
・Configure_GPIO()=Unitary Service Function (generated by User or by Peripheral Library)
です。※()内は、筆者が追記。

MX_GPIO_Init()は、STM32CubeMXが生成した初期化処理で、MX_が接頭語として付いていることからLLとHAL混在時でも使える関数です。一方、Configure_GPIO()は、MX_GPIO_Init()と同じ機能ながら少ないソースコードで記述できています。

その結果、Configure_GPIO()の方が、MX_GPIO_Init()よりも高性能で小サイズとなります(初期化処理以外は、どちらも同じ)。

MX_GPIO_Init()は、付属オリジナルSTM32CubeMXプロジェクトに変更を加えた時にでも中身はSTM32CubeMXが自動生成する関数で置換えられるだけで、MX_GPIO_Init()はそのまま残ります。一方、Configure_GPIO()は中身のユーザ修正が必要です。

結局、STM32CubeMXで生成可能なGPIO_InfiniteLedToggling_Iniプロジェクトは、ユーザが何らかの変更を加えても初期化処理をSTM32CubeMX任せにでき、無限ループ内にある変更処理に集中できる訳です。

STM32G0xのLL API利用法 (1):初期化処理まとめ

・初期化処理生成はSTM32CubeMXを使う方法と、高性能小サイズなユーザ自作方法の2つがある
・STM32CubeMX生成の初期化処理関数名は、HAL API混在時でも使用可能なMX_が接頭語
・STM32CubeMXを使うとプロジェクト変更時、無限ループ内処理のみに集中できる

STM32CubeMXは、LL APIまたはHAL APIの利用切替えが周辺回路毎に設定可能です。そこで、たとえLL APIのみ利用するプロジェクトでも、初期化処理関数の接頭語には、後々の周辺回路のHAL利用・変更・追加などに備えてML_を付けるのだと推測します。

LL API利用時、初期化処理をSTM32CubeMX任せにすると、ユーザ自作よりも多少サイズが犠牲になります。但しその差は、着目したプロジェクトGPIO_InfiniteLedToggling_Init:2808B、GPIO_InfiniteLedToggling:2604Bと微々(7.3%減)たるものです(SW4STM32 v2.8.1、STM32CubeMX v5.1.0、STM32G0 v1.1.0)。

公式サンプルプロジェクト応用が簡単にできることを考慮すると、その差を十分補える効果があります。

STM32G0x専用テンプレートのLL  API初期化処理方針

以上のことから、LL APIを利用するSTM32G0x専用テンプレートの初期化処理は、STM32CubeMX任せにします。

勿論、STM32G0x専用テンプレート用STM32CubeMXプロジェクトも添付いたしますので専用テンプレート応用・流用は簡単となります(汎用STM32Fxテンプレートは、既にテンプレート用STM32CubeMXプロジェクト添付済みです)。

訂正のお知らせ:STM32CubeMX 5.1.0でSTM32G0 1.1.0公式サンプルプロジェクト生成可能

前投稿で2019年3月末時点ではSTM32G0 V1.1.0の公式サンプルプロジェクト内の付属STM32CubeMX全プロジェクトファイルが未完成と書きましたが、一部改善されました。
つまり、公式サンプルプロジェクトExamples_LLがSTM32CubeMXで生成可能になりました。

お詫びして😔、訂正いたします。

STM32CubeMXは、起動毎に更新チェックやインストール済みのMCUパッケージを自動更新します。STM32G0 1.1.0のままプロジェクトファイルからの生成が可能に変わりましたので、STM32CubeMX本体が更新されたと思うのですが、版数はVersion 5.1.0のままで変わりません(何回か起動を繰返すと正常化するのかもしれません😅、同じ症状の方はお試しを…)。

なんにせよ、STM32G0x専用テンプレートで使うSTM32CubeMXのLL(Low-Layer) API開発には朗報に変わりありません。めでたしめでたしです。

朗報:STM32G0公式サンプルプロジェクトがSTM32CubeMXで生成可能

STマイクロエレクトロニクス(以下STM)の新MCU:STM32G0xシリーズだからこそできた快挙です。AN5110 – Rev 3 – February 2019で、STM32G0公式サンプルプロジェクトが、付属STM32CubeMXプロジェクトファイル(拡張子.ioc)で生成できるようになりました(Table 1のMXアイコン部分)。

AN5110のTable 1
AN5110掲載のTable 1(一部抜粋)

従来サンプルプロジェクトとSTM32G0サンプルプロジェクト比較

例えば、従来のSTM32F0公式サンプルプロジェクトは、エキスパート自作のもの(多分、むかしの標準ペリフェラルライブラリ利用)でした。STM32ソフトウェア開発は、今はSTM32CubeMXコード生成出力へユーザコードを追加する方式です。

従って、従来サンプルソースコードを利用するには、エキスパート作成の必要部分を解読後カットし、STM32CubeMXで生成した自分のソースコードへペーストして流用してきました。

AN5110は、この公式サンプルプロジェクトが、付属STM32CubeMXで直接生成できることを示しています。サンプルプロジェクト流用・活用が、これまで以上に簡単・便利になります。従来のソースコードカット&ペーストから、付属STM32CubeMX変更と生成コードへユーザコードを追加すれば済むからです。

STM32ソフトウェア開発の最重要ツール:STM32CubeMX活用に即した方法がAN5110と言えます。

2019年3月末時点では付属STM32CubeMXプロジェクトファイル未完成

重要なのは、ここからです。

3月末時点では、公式サンプルプロジェクト内のSTM32CubeMXプロジェクトファイルが未完成です。例えば、Table 1一番上のNucleo-G071RBのADC_AnalogWatchdogプロジェクト付属STM32CubeMXプロジェクトファイルを開いた様子が下図です。

ADC_AnalogWatchdogの.ico
図1 ADC_AnalogWatchdogサンプルプロジェクト付属STM32CubeMXプロジェクトファイルの.iocを開いた様子

このままコード生成してもADC_AnalogWatchdogサンプルプロジェクトはできません😴。

ADC_AnalogWatchdogプロジェクトだけではなく、全ての公式サンプルプロジェクトで同様です。

つまり、現時点では、残念ながら公式サンプルプロジェクト内の付属STM32CubeMXプロジェクトファイルは未完成です。公式サンプルプロジェクトの素:STM32G0 1.1.0改版を待たねば、AN5110は実現しません。
前投稿で書いたようにSTM32G0 1.1.0(2019/02/26)は、STMに買収されたAtollic TrueSTUDIOへも未対応でした(図1にTrueSTUDIOフォルダが無いことからも判る)。

新しいMCU発売にはありがちですが、開発に一番重要なツール完成には、開発元ベンダーであっても年単位の時間が必要です(AN5110 Revision historyより)。

STM32CubeMXを使って公式サンプルプロジェクトを生成するAN5110の方向性は、正しいと思います。
新MCU:STM32G0シリーズSTM32G0だけでなく、他の既存MCU:STM32F0/F1シリーズSTM32F0/F1などもこの方向の対応を期待します。

まとめ

以上のように、STM32G0x専用テンプレート開発環境は整いつつありますが、少し待ってから、具体的には、STM32CubeMXへインストールするSTM32G0xシリーズMCUパッケージ、STM32G0 V1.1.0改版を待ってから先へ進めた方が良さそうです。

この改版までの待ち時間は、STM32G0x専用テンプレート開発で使うLL(Low-Layer)APIの習得に充てます。

TrueSTUDIOとSTM32CubeMXインストール方法、STM32G0xとSTM32F0xの差異

STM32G0x専用テンプレートのIDE:TrueSTUDIOを使った開発環境構築手順も、汎用STM32Fxテンプレートのそれと同じです。

本稿はSTM32G0x専用テンプレート開発用IDE TrueSTUDIOとスタンドアロン版STM32CubeMXのインストール方法を示し、インストールしたSTM32CubeMXを使って同じ汎用MCUでもSTM32G0xとSTM32F0xのどこが違うかを具体的にまとめます。

STM32G0x専用テンプレートIDE:TrueSTUDIOを使った開発環境構築手順

2017年5月投稿のSW4STM32のIDE構築手順が左側、これがTrueSTUDIOに変わると右側になります。

表1 TrueSTUDIOとSTM32CubeMXインストール手順とSW4STM32構築時の比較
手順 SW4STM32で構築(2017年5月) TrueSTUDIOで構築(本稿)
1 SW4STM32インストールとUpdate TrueSTUDIOインストールとUpdate
2 STM32CubeMXプラグインとUpdate STM32CubeMXスタンドアロン版とUpdate
3 評価ボードMCUコアのライブラリダウンロード STM32G0パッケージのダウンロード
4 ライブラリのファイル構成確認 同左(しかし、当面見合わせ)
5 評価ボードデモソフト説明と構築環境の動作検証 同左(しかし、当面見合わせ)

差分はIDEと、STM32CubeMXスタンドアロン版をインストールする点、評価ボードがNucleo-F072RBからNucleo-G071RBに変わったので、STM32CubeMXへダウンロードするMCUパッケージにSTM32G0を加える点です。

前半で手順1~5の簡単な説明、後半は、インストールしたSTM32CubeMXを使って同じ汎用MCUグループのSTM32G0xとSTM32F0xが、電源ピン数やデフォルト使用周辺回路が異なることを示します。

手順1 TrueSTUDIOインストールとUpdate

Atollic TrueSTUDIO for STM32 9.3.0(2019/2/22リリース)は、atollicサイトからダウンロードボタンのクリックで入手できます。以後、Windows版で説明します。

ダウンロード後、インストーラを実行すると言語選択ダイアログが現れます。日本語を選択するとインストール後のTrueSTUDIOメニューも自動的に日本語化されます。
インストール後、ヘルプ(H)>更新の検査、をクリックしTrueSTUDIO を最新状態にします。

※TrueSTUDIOインストール検討中の方は、手順4を読んだ後に再検討してください。

手順2 STM32CubeMXスタンドアロン版とUpdate

コード生成ツールSTM32CubeMX V5.1.0は、SW4STM32と今回インストールするTrueSTUDIOの両方で使います。そこで、各IDEのプラグインではなく、スタンドアロン版としてインストールします。インストール方法は、UM1718 Rev28の3.2を参照してください。
インストール後、Help>Check for Updates、をクリックしSTM32CubeMXを最新状態にします。

※UM1718は、チュートリアルも豊富でSTM32CubeMXの重要マニュアルです。全356ページと分量は多いのですが、読む章を選択するなどして目を通すことをお勧めします。

スタンドアロン版はSTM32CubeMX更新が簡単で、1つのSTM32CubeMXで両方のIDEに生成ファイルを出力する時に便利です。

手順3 評価ボードMCUコアのライブラリダウンロード

評価ボードNucleo-G071RBのMCUコアは、Cortex-M0+です。STM32Fxと同じMainstream(≒汎用)MCUですが、新世代の汎用MCUです。
関連投稿:STM32G0x専用Edge MCUテンプレート開発

STM32CubeMXのHelp>Manage embedded software packagesでSTM32G0を選択し、最新版Package1.1.0をインストールします。

STM32G0インストール
STM32G0 MCU Packegae 1.1.0のインストール

手順4 ライブラリのファイル構成確認

STM32CubeMXは優れものソフトウェアで、IDEプラグインからスタンドアロン版へ途中変更してもデフォルトRepositoryディレクトリ(C:\Users\ユーザ名\STM32Cube\Repository)を変えなければ、プラグイン版Packagesの各MCUパッケージがスタンドアロン版へそのまま引き継がれます。

ただし今回のSTM32G0は、ライブラリファイル構成がSTM32F0/F1をインストールした時と一部異なります。

Repository/STM32Cube_FW_G0_V1.1.0\Projects\NUCLEO-G071RB\Templatesフォルダ内にTrueSTUDIOフォルダが無いのです(EWARM/MDK-ARM/SW4STM32は以前と同様有るが、UM1718にもTrueSTUDIO説明無し)。

残念ながら、手順3でインストールしたSTM32G0は、TrueSTUDIOへ生成コードを現状は出力できないようです😴。

SW4STM32の必然性
TrueSTUDIOではなくSW4STM32の必然性を示す結果となった

という訳で、手順4と5以降は、STM32G0がTrueSTUDIOへ対応した後に検証を行います。Communityによると次版のSTM32G0で対応予定だそうです。

STM32G0x専用テンプレート開発IDEに、SW4STM32からSTM買収後のAtollic TrueSTUDIOへの変更必要性を示すつもりが、今現在は、SW4STM32の使用を続ける必然性を示す結果となりました😴。

STM32CubeMXを使ったSTM32G0xとSTM32F0xの差異まとめ

TrueSTUDIOへ生成コードを出力しなければSTM32CubeMXに問題はないので、(個人的にはマルチOS対応SW4STM32が好きですし……気を取り直して…)、STM32CubeMXを使いSTM32G0xとSTM32F0xの違いをまとめます。

STM32G0xもSTM32F0xも共にMainstream、つまり、汎用MCUに属します。しかし、STM32CubeMXを使うと、評価ボード実装の同じ64ピンパッケージでも、電源ピン数やデフォルト利用の周辺回路が異なることが良く判ります。

Nucleo-G071RBとNucleo-F072RB差異
Nucleo-G071RB(左)とNucleo-F072RB(右)の利用ピン差異

Tips:STM32G0 1.1.0では、評価ボードNucleo-G071RB使用中のLD4(PA5)とB1(PC13)がPinout & Configurationに表示されません。その理由は不明ですが、手動で追加設定する必要があり上左図は設定済みのものを示しています。ちなみに、上右図Nucleo-F072RBは、LD2とB1がデフォルトで表示されます。

電源ピン(VDD/VSS)数

STM32G0xは、黄色で示された電源ピン(VDD/VSS)が1組、一方STM32F0xは4組あります。STM32G0xのCortex-M0+コアと70nmプロセスの結果、電力供給1組でも十分動作します。

不要になった電源ピンは、GPIOに変更し同じ64ピンパッケージでもSTM32F0xよりも多くの外部制御が可能です。

パッケージのピン配置

STM32G0xシリーズのパッケージピン配置が下図です。将来リリース予定の4パッケージピン配置は一貫しています。これにより、基板アートワークや周辺部品の配置も一貫した設計計画が立てられます。

電源ピンはどのパッケージでも1組で、左辺中央です。

STM32G0xシリーズパッケージピン配置(出典:STM32G0 and CubeMX Webinar)
STM32G0xシリーズのパッケージピン配置(出典:STM32G0 and CubeMX Webinar)

デフォルト利用周辺回路

STM32G0xのConnectivity(通信処理)は、デフォルトでLPUART1(Low Power UART、Stopモードからの再起動可)ですが、STM32F0xはUSARTです。STM32G0xもUSARTを実装していますが、低電力動作に適したLPUARTを推薦しているためと思います。

LPUARTとUSARTの差異(出典:STM32G0オンライントレーニング)
LPUARTとUSARTの差異(出典:STM32G0オンライントレーニング)

その他の差異

これら以外にも、STM32G0xは、USB Type-C™ Power Delivery controllerや2.5MspsのADC、メモリープロテクションなどIoT Edge MCU向きの周辺回路を実装済みです。

また、Nucleo-G071RB評価ボードのUSBはMicro-Bコネクタ、Nucleo-F072RBはMini-Bコネクタです。

USB Micro-BとMini-Bコネクタ(出典:ウィキペディア)
USB Micro-BとMini-Bコネクタ(出典:ウィキペディア)

まとめ

STM32G0x専用テンプレート開発に使うTrueSTUDIOとSTM32CubeMXインストール方法を示し、そのSTM32CubeMXを使ってSTM32G0xとSTM32F0xの差異を示しました。

STM32CubeMXは2重起動可能です。STM32G0xとSTM32F0xそれぞれのSTM32CubeMXプロジェクトファイルを同時に開いて比べると、各デバイスのデータシートで比べるより差異が早く良く判ります。

STM32G0x専用テンプレート開発IDEには、当面、筆者が好きなSW4STM32が適していることも判りました。