ハードでセキュリティ機能を強化したIoT版Cortex-M0/M0+という位置づけのCortex-M23コアマイコンに関する情報、Tipsなどをまとめています。

RL78マイコン,MCU:マイコン,LPCマイコン,Kinetisマイコン,STM32マイコン,PSoC/PRoCマイコン,MSP432マイコン,Cortex-M0+コア,Cortex-M0コア,Cortex-M3コア,Cortex-M23コア,Cortex-M4コアRaspberry Pi,Arduino,LPCXpresso54114,半導体不足

3月26日投稿で危惧した半導体供給不足が深刻化しており、MCU開発者へも影響が出始めています。コチラの記事が、具体的な数字で深刻さを表していますので抜粋し、MCU開発者個人としての対策私案を示します。

半導体不足の深刻さ

今回の半導体不足は、通常時に比べ2倍以上のリードタイム増加となって現れています。

通常時と現在(半導体不足時)のリードタイム比較
発注から納品までのリードタイム 通常 現在
MCU、ワイヤレスチップ、パワーIC、Audio Codec、

パワーモジュール、GPUチップ

8~12週 24~52
ロジックIC、アナログIC、ASIC、電源用MOSFET、受動部品 8~12週 20~24週
LCDパネル 6~8週 16~20週
CPU 8週 12~20週
メモリ、SSD 6~8週 14~15週
PCB(基板)製造 2~4週 8~12週

記事によると、特にMCUとワイヤレスチップのリードタイムが長くなっており、52週!ものもあるそうです。

表記した第1行目の部品で半導体不足が語られることが多いのですが、PCB(基板)製造へも影響しているのは、MCU/ワイヤレスチップ供給不足により、基板作り直しが生じるため、またロジックIC以下の部品も同様に製品再設計の影響と推測します。

MCU、ワイヤレスチップの供給不足がリードタイム激増の主因、それ以外の部品リードタイム増加は、主因の影響を受けた結果と言えるでしょう。

半導体供給の意味

日本では半導体は、別名「産業のコメ」と言われます。世界的には、「戦略物資」という位置付けです。半導体で米中が対立するのは、政治体制だけでなく、近い将来の経済世界地図を大きく変える可能性があるからです。

半導体製造は、国際分業化が進んできましたが、今回の半導体不足の対策として、国や企業レベルでは全て自国や自社で製造を賄う動きもでてきました。持続的経済成長には、食糧と同じように半導体の自給自足が必須だということです。

MCU開発対策案

MCU開発者個人レベルでの半導体不足対策は何か、というのが本稿の主題です。

MCU開発者は、半導体を使った顧客要求の製品化が目的です。半導体不足の対策は、「代替MCUの開発能力と製品化方法の見直し」だと思います。例えると、COVID-19収束のため、複数ワクチンの中から入手しやすいものを利用するのと同じと言えば解っていただけるかもしれません。目的と手段を分けるのです。

製品化方法の見直しとは、評価ボード活用のプロトタイプ開発により製品完成度を上げ、最終製品化直前まで制御系の載せ替えを可能とすることです。CADやIDE消費電力シミュレーションなどを活用し、プロトタイプの製品完成度を上げます。

製品完成度を上げる段階で、更なるMCU能力の必要性や低消費電力性などが判明することも多々あります。載せ替え可能な制御系でこれら要求に対応します。プロトタイプ開発着手時に、候補となる複数ベンダのMCU評価ボードを事前準備しておくのも得策です。

MCU評価ボード載せ替えプロトタイプ開発案
MCU評価ボード載せ替えプロトタイプ開発案

現在も様々なMCU新製品が発表されています。評価ボードは、これら新MCUの販売促進ツールですので、個人でも比較的安く、早く調達できます。また、ワイヤレスチップ搭載済みでArduinoなどの標準インターフェースを持つ評価ボードならば、この標準インターフェースで独自開発ハードウェアと分離した製品設計ができるので、制御系を丸ごと別ベンダの評価ボードへ載せ替えるのも容易です。

つまり、第2 MCU開発能力と評価ボードを標準制御系とし、自社追加ハードウェアと分離したプロトタイプ開発により、第1 MCU供給不足と顧客製品化の遅れを少なくすることができます。標準インターフェース分離により、PCBを含めた自社追加ハードウェア開発部分の作り直しは無くすことも可能です。少なくとも、1章で示した半導体不足主因(MCUやワイヤレスチップの不足)に対して対処できます。

複数ベンダのMCU開発を経験すると、ソフトウェアやハードウェアの作り方も変わります。

ソフトウェア担当者は、万一のMCU載せ替えに備え、共通部分と個別部分を意識してソフトウェア化するようになります。ハードウェア担当者は、自社追加ハードウェアの単体試験をソフトウェア担当者に頼らずテストプログラム(TP)で自ら行うようになり、次第にソフトウェア開発能力も身に付きます。

このプロトタイプ開発の最終製品化時は、制御系評価ボードの必須部品のみを小さくPCB化するなどが考えられます。制御系は、他の部分に比べ故障率が高く、制御系のみを載せ替え可能な製品構成にしておけば、故障停止時間の短縮も図れます。

MCU評価ボードの制御系のみを小さくPCB化するイメージ(出展:マルツ超小型なRaspberry Pi)
MCU評価ボードの制御系のみを小さくPCB化するイメージ(出展:マルツ超小型なRaspberry Pi)

最新MCU情報

上記プロトタイプ開発でも通常時は、第1 MCUで開発完了でしょう。実際に第2 MCU制御系へ載せ替えるのは、半導体供給リスクに対する最後の手段です。そこで、最新MCU情報をピックアップし、第2 MCUを選ぶ参考にします。

・2021年3月31日、ARMv9発表

Cortex-M33などのセキュリティ強化コアARMv8発表から約10年ぶりに機械学習やデジタル信号処理能力強化の最新コアARMv9をARMが発表。MCUベンダ評価ボードはこれから。

・2021年4月6日、STマイクロエレクトロニクスSTM32G0で動作するエッジAI

AIによる推論だけでなく学習も行えCortex-M0+コアでも動作する新アルゴリズムMST:Memory Saving Tree搭載のSTM32G0により既存機器のエッジAI実現可能性が拡大。販売中の弊社STM32G0xテンプレートは、コチラを参照。

・2021年4月15日、MCUXpresso54114の150MHz動作:

開発中のFreeRTOSアプリケーションテンプレートで使うMUCXpresso54114評価ボード搭載のCortex-M4コア最高動作周波数は、旧データシートでは100MHzでした。しかし、MCUXpresso SDKベアメタルサンプルプログラム診ると、追加ハードウェア無しで1.5倍の150MHz動作例が多いのに気が付きます。

LPCXpresso54114の150MHz動作
LPCXpresso54114の150MHz動作

動作クロックを上げるのは、MCU処理能力を上げる最も簡単な方法です。そこで、最新データシートRev2.6(2020年9月更新)を確認したところ、Maximum CPU frequencyが100MHzから150MHzへ変更されていました(Table 44. Revision History)。

データシートも最新情報をチェックする必要がありました。製造プロセスが新しいMCUXpresso54114やSTM32G4(170MHz)などの最新Cortex-M4コアMCUは、どれも150MHz程度の実力を持つのかもしれません。


MCU:マイコン,STM32マイコン,Cortex-M0+コア,Cortex-M23コア,Cortex-M4コアARMマイコン,Cortex-M0+,IoTマイコン,Cortex-M4,TrustZone,プロトタイプ,Cortex-M33,STM32U5

STマイクロエレクトロニクス2021年2月25日発表の先端性能と超低消費電力動作両立のSTM32U5を紹介し、STのIoT MCU開発動向をセキュリティ、MCUコア、製造プロセスの観点から分析しました。

先端性能と超低消費電力動作のSTM32U5

STM32U5ベンチマーク(出典:公式ブログ)
STM32U5ベンチマーク(出典:公式ブログ)

公式ブログから抜粋したSTM32U5のベンチマークです。従来の超低消費電力MCU:STM32L0~L4+シリーズと、Cortex-M33コア搭載STM32L5、今回発表のSTM32U5をメモリサイズとパフォーマンスで比較しています。

STM32U5は、従来Cortex-M0+/M3/M4比、Cortex-M33搭載により後述のセキュリティ先端性能と、従来Cortex-M33搭載STM32L5比、230DMIPS/160MHzと大幅向上した超低消費電力動作の両立が判ります。STM32U5の詳細はリンク先を参照ください。

本稿はこの最新STM32U5情報を基に、STのIoT MCU開発動向を、セキュリティ、MCUコア、製造プロセスの3つの観点から分析します。

セキュリティ

STM32マイコンセキュリティ機能一覧(出典:ウェビナー資料)
STM32マイコンセキュリティ機能一覧(出典:ウェビナー資料)

昨年10月27日ウェビナー資料:ARM TrustZone対応マイコンによるIoTセキュリティのP17に示されたSTM32マイコンセキュリティ機能一覧です。セキュリティ先端性能のTrustZoneは、Cortex-M33コアに実装されています。

関連投稿:Cortex-M33とCortex-M0+/M4の差分

今回の超低消費電力STM32U5発表前なのでSTM32L5のみ掲載されていますが、STM32U5もL5と同じセキュリティ機能です。STM32WLは、後述するワイヤレス(LoRaWAN対応)機能強化MCUです。

この表から、後述する最新メインストリーム(汎用)STM32G0/G4も、STM32U5/L5と同じセキュリティ機能を実装済みで、STM32U5との差分はTrustZone、PKA、RSSなど一部であることも判ります。

STM32U5のSTM32L5比大幅に動作周波数向上と低消費電力化が進んだ背景は、セキュリティ機能に対するより高い処理能力と40nm製造プロセスにあることが2月25日発表内容から判ります。

STM32ファミリMCUコア

STM32ファミリMCUコア(出典:STサイトに加筆)
STM32ファミリMCUコア(出典:STサイトに加筆)

STM32ファミリMCUコアは、ハイパフォーマンス/メインストリーム(汎用)/超低消費電力/ワイヤレスの4つにカテゴライズされます。前章のSTM32WLがワイヤレス、STM32U5/L5は超低消費電力です(STM32U5は加筆)。

STM32WLとSTM32WBの詳細は、コチラの関連投稿をご覧ください。

STM32U5と同様、従来の120nmから70nmへ製造プロセスを微細化して性能向上した最新メインストリームが、STM32G0/G4です。

新しいSTM32G0/G4は、従来汎用STM32F0/F1/F3とソフトウェア互換性があり、設計年が新しいにも係わらずデバイス価格は同程度です。従来メインストリームのより高い処理能力と低電力動作の顧客ニーズが反映された結果が、最新メインストリームSTM32G0/G4と言えるでしょう。

製造プロセス

製造プロセスの微細化は、そのままの設計でも動作周波数向上と低電力消費、デバイス価格低減に大きく寄与します。そこで、微細化時には、急変するIoT顧客ニーズを満たす機能や性能を従来デバイスへ盛込んで新デバイスを再設計します。STM32U5やSTM32G0/G4がその例です。

MCU開発者は、従来デバイスで開発するよりも製造プロセスを微細化した最新デバイスで対応する方が、より簡単に顧客ニーズを満たせる訳です。

関連投稿:開発者向けMCU生産技術の現状

まとめ

セキュリティ、MCUコア、製造プロセスのそれぞれを進化させた最新のIoT MCUデバイスが、次々に発表されます。開発者には、使い慣れた従来デバイスに拘らず、顧客ニーズを反映した最新デバイスでの開発をお勧めします。

また、短時間で最新デバイスを活用し製品化する方法として、最新メインストリーム(汎用)デバイスSTM32G0/G4を使ったプロトタイプ開発もお勧めします。

最新メインストリーム(汎用)プロトタイプ開発イメージ
最新メインストリーム(汎用)プロトタイプ開発イメージ

前章までで示したように最新メインストリームSTM32G0/G4は、他カテゴリデバイスの機能・性能を広くカバーしています。メインストリームプロトタイプ開発資産は、そのまま最新の他カテゴリデバイスへも流用できます。

従って、他カテゴリデバイスの特徴部分(セキュリティ、超低消費電力動作やワイヤレス)のみに注力した差分開発ができ、結果として短期製品化ができる訳です。

ちなみに、プロトタイプ開発に適したSTM32G0テンプレートは、コチラで販売中、FreeRTOS対応のSTM32G4アプリケーションテンプレートは、6E目標に開発中です。

あとがき:文字伝達

ソフトウェア開発者ならソースコード、ハードウェア開発者なら回路図が、最も直接的・正確に技術内容を使える手段です。文字は、記述者の理解を変換して伝える間接的手段です。両者に違い(文字化ノイズ)が生じるのは、やむを得ないと思います。

報ステのTSMCのニュースに頭の抱えてしまった”、“TSMCは日本で何をしようとしているのか“からも分かるように、マスメディアは文字や画像で情報を伝えます。受けての我々開発者は、これらノイズを含むと思われるマスメディア情報を、自分の頭で分析・処理し、理解する必要があります。

と言うわけで本稿も、筆者が文字化ノイズを付けて分析した例です……、という言い訳でした😅。

MCU:マイコン,MSP432マイコン,Cortex-M0+コア,Cortex-M0コア,Cortex-M3コア,Cortex-M23コア,Cortex-M4コアIoTマイコン,ADC,温度,非接触型体温計,放射温度計

COVID-19の影響で、どこの入口でも見かける非接触型体温計は、遠赤外線センサとLCD温度表示で1000円台から購入できます。一方で、「体温計ではありません」と明記した放射温度計も見た目は同じですが、価格は2倍程度違います。

同じ温度センシング機器でも、価格が異なる理由を探ります。

温度センシング設計ガイド

エンジニアのための温度センシング設計ガイド
エンジニアのための温度センシング設計ガイド

アナログセンサの老舗、Texas Instrumentsのホームページから“エンジニア向け温度センシング設計ガイド”が無料でダウンロードできます。体温、システム温度、周囲温度、液体温度の4種類の温度センシング設計上の課題とその解決方法、センサ利用のアナログデジタル変換(ADC)基礎知識が記載されています。

主にハードウェア設計ガイドですが、MCUソフトウェア開発者も、各種センサ特徴、線形性、第7章の温度補償などが参考になると思います。

温度検出テクノロジーの比較(出典:エンジニアのための温度センシングガイド)
温度検出テクノロジーの比較(出典:エンジニアのための温度センシングガイド)

価格と利益

ビジネスは、利益の上に成立します。低価格でも大量に開発機器が売れれば利益も増えます。機器の価格は、様々なパラメタから成る関数ですが、ここではごく単純化し下式と仮定します。

価格=f(実装機能、想定利用者(≒販売数量))

同じ温度センシング機器でも価格が異なるのは、実装機能が異なるからです。

そこで、TI温度センシング設計ガイド第4章、体温監視から課題と解決方法をピックアップします。

実装機能と想定利用者

想定利用者を疾患患者やアスリートとすると、国際標準に準拠した医療体温計要件である校正後、精度±0.1℃以内、35.8℃~41.0℃の読取りと表示が必要です。但し、アプリケーションの温度読取り間隔は、電池節約のため10秒~60秒でも十分です。

これら機能を非接触型体温計へそのまま実装すると、開発に時間がかかるだけでなく、価格も上がるのは当然です。

CODIV-19の現状では、入口対象者の多くはコロナ患者ではない可能性が高いので、医療体温計レベルの要件は不要でしょう。また、計測機器に必須の測定値校正処理も、一般向けには無理な作業です。

このように、機器使用者/利用者を限定すれば、開発機器への実装機能も絞ることができます。

例えば、電源投入時にのみセンサ校正をソフトウェアで行い、温度読取り間隔は数秒以内に早くし、販売価格を2000円前後に目標設定すれば、一般向け非接触型体温計としてベストセラーになるかもしれません。

開発速度

目標設定が適切でも、開発が遅れれば先行他社に利益を取られます。早く開発できるスキルは、日頃の自己鍛錬が必要です。最新の開発手法やその試行も、通常の開発と並行して行うとスキルに磨きがかかります。

弊社マイコンテンプレートは、複数の公式サンプルソフトウェア流用・活用が容易で、アプリケーションの早期開発ができるなど、自己鍛錬にも適しています。

まとめ

Texas Instrumentsの温度センシング設計ガイドを基に、非接触型体温計と放射温度計の機器価格差は、ADC実装機能、想定使用者が異なるためと推測しました。利益を得るには、開発速度の向上努力も重要です。

ソフトウェアとハードウェアのインタフェースさえ解れば機器開発は可能です。しかし、ADCは、IoT MCUの最重要技術です。ソフト/ハードの垣根を越えた知識や理解が、結局は利益を生む機器開発に繋がることを言いたかった訳です。

RL78マイコン,MCU:マイコン,LPCマイコン,MPU/SBC:IoT用プロセサ,Kinetisマイコン,STM32マイコン,PSoC/PRoCマイコン,MSP432マイコン,Cortex-M0+コア,Cortex-M0コア,Cortex-M3コア,Cortex-M23コアアプリケーション,IoTデバイス,AI,半導体,ムーア

ARM Cortex-Mコア利用のIoT MCU現状と、次のムーア則を牽引すると言われるAI(人工知能)の関係についてまとめました。

Cortex-Mコア、IoT/組込みデバイス主要ポジション堅持

ARMベースチップ累計出荷個数は1,800億個以上(出展:ニュースルーム、February 16, 2021)
ARMベースチップ累計出荷個数は1,800億個以上(出展:ニュースルーム、February 16, 2021)

2021年2月16日、英)ARM社は、ARMチップの2020年第4半期出荷が過去最高の67憶個、累計出荷個数1800憶個以上、Cortex-Mチップも4半期最高44憶個出荷で「IoT/組込みデバイス主要ポジション堅持」と発表しました(ニュースルーム)。

Cortex-Mチップの出荷内訳は不明ですが、Cortex-M4やCortex-M0+などコア別の特徴が解るARM社の解説は、コチラにあります(フィルタのProcessorファミリ>Cortex-Mを選択すると、提供中の全10種Cortex-Mコア解説が読めます)。

筆者は、セキュリティ強化コアCortex-M23/33/35P/55を除く汎用IoT/組込みデバイスでは、Cortex-M4/M0+コア使用数が急増していると思います。

関連投稿:Cortex-M33とCortex-M0+/M4の差分

半導体ムーア則、牽引はチップレット

ムーアの法則 次なるけん引役は「チップレット」、2021年2月16日、EE Times Japan

次のムーア則を牽引するAI処理能力(出典:AI Hardware Harder Than It Looks)
次のムーア則を牽引するAI処理能力(出典:AI Hardware Harder Than It Looks)

半導体製造プロセスを牽引してきたのは、PCやスマホでした。しかしこれからは、人工知能:AIで急増するAIデータ処理能力を実現するため、レゴブロックのようにコアの各モジュールを歩留まり良く製造・配線するチップレット手法が必要で、このチップレット、つまりAIが次の半導体ムーア則を牽引するというのが記事要旨です。

このチップレット手法で製造したIoT MCUやMPUへ、主にソフトウェアによるAI化は、シンギュラリティ後のAI処理量変化にも柔軟に対応できると思います。

関連投稿:今後30年の半導体市場予測

ルネサス:ハードウェアアクセラレータコアCNN(Convolutional Neural Network)

ルネサスのCNNアクセラレータ(出典:ニュースルーム)
ルネサスのCNNアクセラレータ(出典:ニュースルーム)

2021年2月17日、ルネサスは、世界最高レベルの高性能/電力効率を実現するディープラーニング性能を持つCNNアクセラレータコアを発表しました(ニュースルーム)。これは、主にハードウェアによるAI化の例です。

ADAS実現に向け、性能と消費電力を最適化した車載用コアです。このコアに前章のチップレット手法を使っているかは不明です。3個のCNNと2MB専用メモリの実装により、60.4TOPS(Tera Operations Per Second)処理能力と13.8TOPS/W電力効率を達成しています。

車載で実績を積めば、IoT MCUへも同様のハードウェアアクセラレータが搭載される可能性があります。

まとめ

凸版印刷社は、画像認識AIを活用し、古文書の“くずし字”を解読支援するツールを開発しました(2021年2月16日、IT media)。このように、AIは、半導体技術のムーア則だけでなく、IoT MCUアプリケーションや人間生活に浸透し、牽引しつつあります。

エッジAIをクラウド接続IoT MCUへ実装する理由は、クラウドAI処理とクラウド送信データ量の両方を軽減することが狙いです。AI処理をエッジ側とクラウド側で分担しないと、チップレット手法を用いて制御チップを製造できたとしても、コスト高騰無しに急増するAIビックデータ処理を実現することが不可能だからです。

IoT MCUのエッジAIが、ソフトウェアまたはハードウェアのどちらで処理されるかは判りませんが、必須であることは確実だと思います。実例を挙げると、STマイクロエレクトロニクスは、既にSTM32Cube.AIにより汎用STM32MCUへAI/機械学習ソフトウェアの実装が可能になっています。

RL78マイコン,MCU:マイコン,LPCマイコン,Kinetisマイコン,STM32マイコン,PSoC/PRoCマイコン,MSP432マイコン,Cortex-M0+コア,Cortex-M0コア,Cortex-M3コア,Cortex-M23コア,Cortex-M4コアIoTマイコン,ルネサスエレクトロニクス,市場予測,AI,半導体,シンギュラリティ

Runesas

半導体不足が騒がれています。これがCOVID-19の一時的なものか否かが判る下記記事と、最新のルネサスエレクトロニクス動向を関係付け、今後のMCU開発について考えました。

2050年までの半導体市場予測~人類の文明が進歩する限り成長は続く、2021年1月14日、EE Times Japan

今後30年の半導体市場予測

本ブログ読者は、殆どが現役の「日本人」MCU開発者です。定年退職が何歳になるかは分かりませんが、上記記事の2050年まで、つまり、今後30年の半導体市場予測は、在職中のMCU開発を考える上で丁度良い時間の長さです。

予測ですので、大中小のシナリオがあります。我々開発者にも解り易い結論だけをピックアップすると、概ね下記です。

  • 今後、先進国と新興国中間層人口は、COVID-19で人類滅亡しない限りそれぞれ5億人/10年で増加し、2050年に先進国が30億人、新興国中間層が40億人、貧困層が20~30億人の人口ピラミッド構成へ変遷
  • 1人年間の半導体消費量は、先進国が150ドル、新興国中間層が75ドル
  • 2050年の半導体市場は、2010年比2.5倍の7500憶ドルへ成長

ルネサス動向

英)Dialog買収車載半導体改良「AI性能を4倍に」など、SoCアナログ機能増強、ADAS実現やIoTに向けた動きが、2021年になってからのルネサス最新動向です。

これら動向の結果が出るまでには、年単位の時間が必要です。しかし、前章の2050年半導体市場2010年比2.5倍へ向けての行動の1つとすると、なぜ今か(!?)という疑問に対して、理解できます。

2倍化MCU開発

2倍化MCU開発

MCUも半導体の1つです。半導体市場が増えれば、それらを制御するMCU量も増えます。2010年比2.5倍なら、現在の2倍程度MCU開発も増えると思います。

従来と同じ人員と開発方法では、量が2倍になれば、2乗の4倍の労力が必要になります。新しい手法やその効率化なども導入する必要がありそうです。ルネサス同様、今スグに着手しなければ乗り(登り)遅れます。

使用した半導体の貴金属部分はリサイクルされますが、搭載ソフトウェアやハードウェアパターンは回収されずに消費されます。開発物の資産化、最新プロセスで大容量Flash搭載の新開発MCU、新開発手法にスグに対応できるMCU開発者が生き残るかもしれません。

関連投稿:開発者向けMCU生産技術の現状

MCU利用者

先進国だけでなく、新な対象として新興国中間層へもMCU利用者が広がります。新興国中間層は、先進国よりも10億人も多い予想で、1人当たりはより低コスト半導体(=MCU開発)が求められます。

この新興国中間層向けのMCUアプリケーションを検討するのも良いかもしれません。

2045年のシンギュラリティ

Singularity:和訳(技術的特異点)は、人類に代わって人工知能:AIが文明進歩の主役になることです。

最初の記事にも、2045年と言われるシンギュラリティは、一層半導体市場を広げる可能性があるとしています。IoT MCUにもエッジAIが組込まれるなど、今後のMCU開発もAI化は必然です。



RL78マイコン,MCU:マイコン,LPCマイコン,Kinetisマイコン,STM32マイコン,PSoC/PRoCマイコン,MSP432マイコン,Cortex-M0+コア,Cortex-M0コア,Cortex-M3コア,Cortex-M23コア,Cortex-M4コアIoTデバイス,微細化,汎用MCU,製造プロセス,半導体,Flash

先端半導体の供給不足
先端半導体の供給不足

COVIC-19の影響で自動車、ゲーム機、PC、5Gスマホに搭載される先端半導体の供給不足が発生中です。自動車は生産調整、ゲーム機も品薄のため販売中止のニュースが流れています。一方で、任天堂Sonyは、ゲーム機好調で、業績上方修正も発表されました。

本稿は、これら先端半導体とMCUに使っている半導体の違いを、筆者を含めたマイコン開発者向けにまとめました。

先端半導体供給不足

AppleやQualcommなどの半導体ベンダの多くは、設計・開発は行うものの、生産は台湾TSMCやUMCなど世界に数社しかない先端半導体受託生産会社(ファウンドリー)へ製造依頼するファブレス企業です。このファウンドリーの先端半導体生産量がボトルネックとなり供給不足が発生しています。

需要に追いつくよう生産設備も増設中ですが、スグには対応できません。その結果、価格競争が起こり、ゲーム機など高パフォーマンスで高価格でもOKなデバイスが優先、一方、コスト要求の強い自動車向けデバイスなどは後回しになった結果が、最初のニュースの背景です。

MCU半導体と先端半導体の差

半導体の製造や生産技術は、ムーアの法則に則り、年々微細化が進みます。これは、MCU半導体でも先端半導体でも同じです。違いは、「製造プロセスの世代」と「大容量フラッシュ搭載の有無」です。

最先端半導体の微細化技術は、28nm→14nm→7nmと製造プロセス世代が進み現在5nmなのに対し、MCU半導体は、現在28nmの1つ手前、40nmです。

※微細化の指標は、いかに細いロジック配線を実現できるかで表されnm:nanometerは、1 nm = 0.001 µm = 0.000001 mm:10億分の1メートル。

MCU半導体の微細化が遅れる理由は、MCUデバイスには簡単に微細化できない大容量Flashメモリの内蔵が必須だからです。

つまり、我々が開発するアプリケーションは全てMCUに内蔵される訳で、ここがPCやゲーム機の外付けメモリ+キャッシュ内蔵の制御系と根本的に異なる点です。

最新MCU微細化技術

上記の難しい大容量Flash微細化にも、技術革新が起きつつあります。詳細を知りたい方は、世界最小のメモリセルで最先端マイコンの低価格化を牽引する相変化メモリの記事を参照してください。

IoT MCU開発には、エッジAIや無線通信、高度セキュリティ、OTA:Over The Air更新など従来MCUに無い多くのIoT機能追加が必要です。これら機能実装には、更なる大容量Flash搭載が必須です。

IoT MCUの将来
IoT MCUの将来

大容量Flashの低価格実装と製造プロセスの世代が進めば、MCUデバイスの開発アプリケーション適用幅は大きくなると筆者は思います。つまり、より汎用化すると思います。

現在のMCUは、アプリケーション毎に内蔵周辺回路やFlash/RAM容量が異なるなど多品種でデバイス選択時、開発者を悩まします。しかし、近い将来、IoT MCUデバイス選択に開発者が悩むことも無くなるかもしれません。

関連投稿:無線STM32WBと汎用STM32G4比較の6章

MCU大手ベンダは自社製造中

NXP/ST/Renesas などの大手MCUベンダもファウンドリーを利用しますが、どこも自社工場でも製造を行っています。各社の会社紹介パンフレットには、必ず自社製造拠点の図がありますし、販売後10年間のデバイス供給保証も謳っています。

ARM社提供のCortex-Mコア設計図は同じでも、それを活かす実装設計・開発・製造がベンダ毎に異なるので他社差別化ができる訳です。

また、これらMCUベンダは、自社デバイスと並行して自動車向けデバイスの設計・開発・製造も行っています。ADASやMCU微細化技術の進化、ファウンドリーの供給不足状況などが、MCUベンダ各社に今後どのように影響するかは注目して行きたいと思います。

関連投稿:5G、Wi-Fi6、NXP、STマイクロエレクトロニクスの3章:NXP対応

まとめ

  • MCU半導体と先端半導体には、製造プロセス世代と大容量Flash搭載有無に差がある
  • 現状のMCU半導体は、大容量Flash搭載の40nmプロセス、先端半導体は、5nmプロセス
  • IoT MCUの更なる大容量Flash実装に向け、MCU微細化技術革新が起こりつつある
  • 大容量Flash低価格実装と製造プロセス進化によりIoT MCUはより汎用化する
  • COVID-19による先端半導体供給不足がMCU半導体ベンダへ影響するかは、要注目

サイト関連,RL78マイコン,MCU:マイコン,LPCマイコン,Kinetisマイコン,STM32マイコン,PSoC/PRoCマイコン,お知らせ,MSP432マイコン,Cortex-M0+コア,Cortex-M0コア,Cortex-M3コアMCU開発,blog,配慮,心構え

本Blogテーマを、今週~来週にかけて変更中です。期間中は、画面表示が乱れる可能性もありますがご容赦ください😌。Blogツール:WordPressにご興味が無い方は、最後の章:MCU開発顧客満足をお楽しみください。

オープンソースCMSのWordPressによるBlog投稿

Blogテーマ変更理由

本Blogは、WordPressというオープンソースCMS(Contents Management System)を使って投稿しています。テーマとは、Blog表示の見た目を変える、着せ替え洋服のようなものです。テーマ変更理由は、2つです。

  1. 約2年前に導入されたWordPressの新しいGutenbergエディタ対策
  2. 昨年後期から続くサイトマップトラブル対策

Gutenbergエディタ

従来のWordPress標準エディタは、Classicエディタと呼ばれ、Web版無償Microsoft Wordのようなものです。基本的な文章エディタ機能を提供し、使い方も簡単でした。これに対し、新しく標準となったGutenbergエディタは、ブロック単位の編集・加工を行うなど操作性や使い方が大きく変わりました。

※Gutenbergエディタは、15世紀に活版印刷技術を発明したヨハネス・グーテンベルクにちなんで命名されました。WordPressの記事投稿に際し、活版印刷登場ほどインパクトがあると言うことです。

旧Classicエディタを使い続けたい多くのブロガーのために、標準Gutenbergエディタを無効化し、Classicエディタを復活するプラグインが提供され、筆者もこれを使い続けてきました。

但し、Gutenbergエディタは、毎年改良され機能や使い方も進化、この進化系Gutenbergエディタ対応の新しいテーマも増えてきました。

xmlサイトマップ

xmlサイトマップは、GoogleやYahoo、Bingなどの検索エンジンへ、弊社Blogの投稿内容等を知らせる手段です。

原因不明ですが、昨年後半から投稿数は週一で増やしているにも係わらず、サイトマップの有効ページ数が減り続けています。検索エンジンにマップされなければ、投稿しても読者に発見されず苦労が報われません。

ネット情報によると、プラグイン間の相性など様々な原因がありえますが、解決しません。いわゆるPCとアプリケーションとの相性問題と同じようです。

そこで、1のGutenbergエディタ対策時に、新テーマ導入と同時にプラグインを変える/減らすなどして対処しようと考えました。

Blogテーマ変更結果

今回のBlogテーマ変更の結果、WordPressの新Gutenbergエディタは習得しました。

しかし残念ながら、サイトマップトラブルは、更に悪化しました。プラグイン相性だけでなく、新導入テーマにも関係している可能性もありますが、依然として原因不明です。

算定措置として、Gutenbergエディタと新テーマ利用へ変更し、追加プラグインは最小にします。サイトマップトラブルは、継続検討とします。

MCU開発顧客満足

MCU開発でも課題に対し期待する成果が得られない等は、筆者には日常茶飯事です。費やした時間やコストは、戻ってきませんが、実際にやってみなければ本当は判らない事だらけなのがMCU開発業務です。

MCU開発業務は、以下2点の配慮が必要です。

  1. スケジュール立案時は、マージンを織り込む
  2. 成果に直結しない結果でも、今後に活かす

※織り込んだマージンを使わず成果が出た時は、未消化マージンをリフレッシュ休暇に替えます😁。

今回の対策も、年末年始の予定でした。しかし、新テーマの多さやその理解に時間がかかり、結局マージンを使い果たし1月末実施、そして少ない成果となりました。顧客は、自分自身ですが顧客満足は低いです。

しかし、成果に直結しなくても得た(貴重な!?)結果もある訳です。これを今後に活かす事が、費やした時間やコストを無駄にしない唯一の策で、しかも長い目で見れば、顧客満足にも繋がると信じます😤。

MCU開発は、日々の努力が、即成果に結びつかなくても、将来必ず顧客を満足させる結果・スキルになると自分を信じて続ける心構えが重要です(日本では、周囲になかなか理解してもらえないと思いますが😭、欧米開発者は、これがあたりまえの文化でした)。

RL78マイコン,MCU:マイコン,LPCマイコン,Kinetisマイコン,STM32マイコン,PSoC/PRoCマイコン,MSP432マイコン,Cortex-M0+コア,Cortex-M0コア,Cortex-M3コア,Cortex-M23コア,Cortex-M4コアARMマイコン,Cortex-M0+,IoTマイコン,Cortex-M4,STM32Fx,STM32G0x,FRDM-KL25Z,Baseboard

COVID-19パンデミックの2020年も残すところ2週間になりました。2020年の金曜ブログ投稿は本日が最後、次回は2021年1月8日(金)とし休暇に入ります。

※既存マイコンテンプレートは、年中無休、24時間販売中です、いつでもご購入お持ちしております。

2020マイコンテンプレート案件総括

  1. 🔴:Cortex-M4コア利用のマイコンテンプレート開発(2020年内)
  2. 🟡:FRDM-KL25ZとIoT汎用Baseboard利用のKinetis Lテンプレート発売(12月)
  3. 🟢:IoT MCU向け汎用Baseboard開発(10月)
  4. 🟢:STM32FxテンプレートV2発売(5月)
  5. 🟢:STM32G0xテンプレートV2発売(5月)

1のCortex-M4テンプレート開発は、STM32G4のRoot of Trustと、NXP LPCXpresso54114のRTOSサンプル解説で、Cortex-M4テンプレート化には程遠い状況です(赤ステータス)。

2のKinetis Lテンプレート(FRDM-KL25Z、Cortex-M0+/48MHz、Flash:128KB、RAM:16KB)は、添付説明資料作成が未着手です(黄ステータス)。

3のArduinoプロトタイプシールド追加、IoT MCU汎用Baseboardは完成しました(緑ステータス)。

4と5のSTM32FxテンプレートSTM32G0xテンプレート発売までは、ほぼ順調に進みました(緑ステータス)。

対策としてブログ休暇中に、2のKinetis Lテンプレート完成と、これに伴うHappyTechサイト変更を目標にします。
1のCortex-M4テンプレート開発は、2021年内へ持越します。

ブログ記事高度検索機能(1月8日までの期間限定)

休暇中、ブログ更新はありません。そこで、読者の気になった過去の記事検索が、より高度にできる下記Googleカスタム検索機能を、1月8日までの期間限定で追加します。

上記検索は、WordPressのオリジナル検索(右上のSearch…窓)よりも、記事キーワード検索が高度にできます。少しでもキーワードが閃きましたら、入力してご活用ください。

あとがき

激変の2020年、テンプレート関連以外にも予定どおりに進まなかった案件や、新に発生した問題・課題も多数あります。例年より少し長めの休暇中、これらにも対処したいと考えております。今年のような環境変化に対し、柔軟に対応できる心身へ変えたいです(ヨガが良いかも? 3日坊主確実ですが…😅)。

本年も、弊社ブログ、HappyTechサイトをご覧いただき、ありがとうございました。
今後も、引き続きよろしくお願いいたします。よいお年をお迎えください。

MCU:マイコン,STM32マイコン,Cortex-M0+コア,Cortex-M23コア,Cortex-M4コアCortex-M0+,IoTマイコン,Cortex-M4,セキュリティ,IoT,IoTエッジMCU,Cortex-M33

STマイクロエレクトロニクスが、STM32マイコン体験実習(セキュリティ編①~⑤)という動画でCortex-M33 TrustZone解説とSTM32L5(Cortex-M33/110MHz、Flash/256/512KB、RAM/256KB)のセキュリティ実習を行っています。

このセキュリティ編①:31min17secから、IoT MCU向けセキュリティ強化Cortex-M33コアのARM TrustZoneマイコンと、通常Cortex-M0+/M4コアマイコンとの差分を抽出しました。TrustZoneマイコン基礎知識の習得が目的です。

Cortex-M33とCortex-M0+/M4差分

セキュリティ編動画①~⑤概要

①P3(動画①、スライドP3を示します)に、動画①~⑤の概要が示されています。動画①でCortex-M33コアの解説、②でSTM32L5開発環境の準備、後半③~⑤でSTM32L5評価ボード:NUCLEO-L552ZE-Q(¥2,303 Mouser)を使ったセキュリティ演習という構成です。

本稿は、動画①から、ARM TrustZone Cortex-M33コアと通常Cortex-M0+/M4コアとの差分を一覧表にしました。

※ARM公式差分情報を知りたい方は、①P48の参考文献が参考になります。

Cortex-M33とCortex-M0+/M4の差分

オンデマンド動画ですので、好きな個所で止める、再生読度を変えるなどが可能です。動画①は、筆者が経験したTrustZone解説の中で最も分かり易い動画です。

特にP36/P37/P39は、4段階に増えたステート処理内容が具体的に判りTrustZoneマイコン特徴理解に役立ちます。
また、P19は、様々なセキュリティレベルと対応STM32MCUのセキュリティ機能差が一目で判る重要な資料です。

要旨(ARM TrustZone Cortex-M33と通常Cortex-M0+/M4差分)
7 ソフトウェア攻撃防御策がTrustZone。物理攻撃対策はセキュアマイコン(≠汎用MCU)が有効。
12 Secure呼出し=予め決めた手順で内蔵周辺回路(I2C/SPI/RAMなど)へアクセスする技術
Security Isolation=Secure呼出しを使い通常アクセスと隔離・分離する技術
ARM TrustZone=Security Isolationを対象MCUで柔軟に構成する技術
16 タンパ=物理攻撃を検出→検出後バックアップレジスタやSRAM自動消去
JTAGピン無効化→設定後はGPIOなどで運用
WRP(WRite Protection):数KB単位設定可能
RDP(ReaD Protection):JTAG読出し禁止→読出検出でプログラム実行停止→PORで解除
Secure Memory=起動時のみ読出し可能な領域
17 MPU(Memory Protection Unit):最大16個メモリ領域の読書き、命令実行許可/禁止設定
18 セキュリティは単独では効果が薄く、複数重ね攻撃への敷居を上げ強化(暗号鍵保存例掲載)
19 STM32マイコン内蔵セキュリティ機能差一覧。TrustZone対応はSTM32L5のみ(2020/12時点)
STM32G0/G4(Cortex-M0+/M4)でもSRAM RDP機能などあり
22 TrustZoneは、アドレス空間とバス通信の両方をハードウェア監視しアクセス制御
23 アドレス空間監視=コア内蔵SAU IDAU、バス通信監視=TZ(TrustZone) ControllerとAHBバス
24 STM32L5は、内部FlashアクセスにST独自Flashレジスタとオプションバイトで保護
26 TrustZone-aware周辺回路=DMA1&2/GPIO…などAHB接続回路は個別セキュリティ設定要
上記以外がSecurable周辺回路=UART/SPI…などでAHB/APBブリッジがアクセス監視
29 従来MCUベアメタル開発は、mainループも割込みハンドラも常に特権モード動作の1段階
30 従来MCUのRTOS開発は、割込みハンドラ/RTOSが特権モード、ユーザタスクは非特権の2段階
32 Secureステート追加TrustZoneは、4段階化→各層の処理配置がTrustZoneソフト設計第一歩
35 Secureソフトと従来ソフトのプロジェクト差一覧
(セキュリティ関連設定はSecureソフトのみ可能でmain関数はあるがmainループなしなど)
36 TrustZoneマイコンベアメタル開発の4段階ステート処理配置例(TrustZoneソフト設計例1)
37 TrustZoneマイコンRTOS開発の4段階ステート処理配置例(TrustZoneソフト設計例2)
38 TrustZoneソフト開発時、Secureソフトと通常ソフトの2プロジェクト作成必要
39 TrustZoneソフトの基本実行フロー(Secureソフトから通常ソフトへの処理内容一覧)
40
41
42
Secureステートと通常ステートのアドレス空間の見え方差まとめ
44 動画①全体まとめ
45 STM32L5開発時のキーポイント一覧(全18項目)
46 STM32L5開発時のキーポイント演習項目一覧(18項目中9項目を動画③~⑤で演習)
48 おすすめARMv8-M(Cortex-M33コア)TrustZone参考文献一覧

TrustZoneマイコン開発は工数2倍、スキルも必要

動画①は、他ベンダのARM Cortex-M33 TrustZoneマイコン開発でも基礎知識が得られます(※P24のST独自Flashレジスタとオプションバイト保護は除く)。IoT MCU向けセキュリティ強化Cortex-M33コアで導入されたTrustZoneを活用するには、①の理解は最低限必要です。

従来Cortex-M0+/M4に比べ、Cortex-M33シングルコア開発でもSecureと通常(Normal)ソフトウェアの2プロジェクト必要、メモリ空間と周辺回路のセキュリティ設定必要(メモリ分割損も生じると予想)、JTAGピン無効化など、従来のアプリケーション開発とそのデバッグに加え、ソフトウェア攻撃対策TrustZone導入による工数やその動作確認/解除などの手間が余分に必要になります。

このTrustZone導入オーバーヘッドは、少なくないです(セキュリティ編②~⑤でオーバーヘッド工数が判ります。補足章に動画②~⑤リンク添付)。Cortex-M33コア最高速度が110MHzと他コア比高速で、Flash/RAMも大容量なのは、このオーバーヘッドのハードウェア対策だと思います。

TrustZoneマイコンのソフトウェア開発工数は、同じアプリケーションの通常マイコン開発の2倍程度は必要になると思います。また、TrustZone起因のトラブルに対する分析スキルも必須です。

ソフトウェア攻撃に対する防御壁の高さは、言い換えると、ソフトウェア開発のし難さと等価です。セキュリティレベルが上がるにつれ、開発コストも上がります。

全てのIoT MCUがTrustZone対応MCUである必要は無いと思います。コスト重視の場合は、従来Cortex-M0+/M4コアでセキュリティ強化対応(例えば、関連投稿:STM32G0/G4のRoot of Trust(1)~(3)など)でも使える可能性があります(関連投稿:IoT MCUコア次世代像のIoT MCUコアの3層構造最下層のFront End IoT MCUに相当)。

セキュリティは、強固な方が良いのは当然ですが、それ相応の追加コストも生じます。セキュリティ対コストの観点からIoT MCUの選択が必要となるでしょう。

* * *

セキュリティ対策は、いわば自動車保険のようなものです。保険代金の負担は、開発者かエンドユーザか、エンドユーザがTrustZone導入オーバーヘッドを理解することは難しいと思いますので悩ましい問題です😅。

Cortex-M33 TrustZoneマイコンは、ソフトウェア開発者が記述した処理を攻撃とマイコンが誤認識(正常認識)した場合は、無視、あるいは最悪、マイコンを使用不能にします。見つけにくい無視された処理が、開発者起因か、あるいはTrustZone起因かを分析できるスキル、これが、通常マイコン開発との最大の差分です。

STM32マイコン体験実習は、TrustZone起因スキルを習得できるよく考えられた教材です。

補足

STM32マイコン体験実習(セキュリティ編②
STM32マイコン体験実習(セキュリティ編③
STM32マイコン体験実習(セキュリティ編④
STM32マイコン体験実習(セキュリティ編⑤

関連投稿:STM HTML版マンスリー・アップデートの見かた4章の全体像リンク集なども役立ちます。

Cortex-M33コア以外でTrustZone技術を用いたマイコンは、Cortex-M35P、Cortex-M23があります。

RL78マイコン,MCU:マイコン,LPCマイコン,MPU/SBC:IoT用プロセサ,Kinetisマイコン,STM32マイコン,PSoC/PRoCマイコン,MSP432マイコン,Cortex-M0+コア,Cortex-M0コア,Cortex-M3コア,Cortex-M23コアIoTマイコン,Bluetooth Low Energy,Bluetooth,IoT,IoTエッジMCU,Wi-Fi6,Bluetooth LE 5.2

IoTに適した無線LANの条件とは?(TechTarget、2020年11月27日)記事を紹介し、IoT MCU関連のプライベート網無線LAN規格を説明します。

IoT向き無線LAN条件と規格

纏まった良い記事なので、一読をお勧めします。

記事を要約すると、IoT向きの無線LANの選定には、3つの検討ポイントがあります。

  1. 省電力性:バッテリーだけで長時間無線LAN通信ができる
  2. 長距離伝送性:アクセスポイント(AP)から1km以上離れる場合がある
  3. 国より異なる利用周波数の空き状態確認

各ポイントを満たす無線LAN規格として下記3つを挙げ特徴を説明しています。

  • IEEE 802.11ah(別名Wi-Fi HaLow):Target Wake Time(TWT)により通信タイミングを調整しAP通信競合を防ぐと同時にスケジュールタイムまでスリープし電力消費を抑える
  • IEEE 802.11ba:TWTに加えWake-Up Radio省電力機能を利用しAPからの通信要求に対応
  • IEEE 802.11af: 54MHz~698MHz利用で900MHz~1GHzの802.11ah/802.11baより長距離伝送可能
    ※11afは、テレビ用ホワイトスペースのVHF/UHFバンド(54 MHz~790 MHz)利用なので空き状態により耐ノイズ注意

IoT向き無線LANとBluetooth

無線LANには、2.4GHz利用、数m~10m程度の「近距離無線通信規格」:IEEE 802.15.1(別名Bluetooth)もあります。コイン電池で1年以上動作できるなど超省電力動作ですが、低速です。PCやスマートフォンでは、マウス/キーボード/ヘッドホンなどの周辺機器との接続に使われます。

より高速、より長距離(400m程度)、より高スループットを目指し、Bluetooth v4.2、Bluetooth 5などと規格が変化しています。

IoT MCUへの実装は、Bluetooth 5内蔵MCUBluetooth 5モジュールとMCUを接続する方法があります。

IoT 向き無線LANとPC/スマホ向き無線LAN

2020年12月時点のPC/スマートフォン無線LAN規格が下表です(出展:NTT西日本公式ホームページ)。

規格 周波数帯 最大通信速度
IEEE 802.11b 2.4GHz 11Mbps
IEEE 802.11g 2.4GHz 54Mbps
­­­­IEEE 802.11a 5GHz 54Mbps
IEEE 802.11n 2.4GHz 600Mbps
5GHz
IEEE 802.11ac 5GHz 6.9Gbps
IEEE 802.11ad(WiGig) 60GHz 6.8Gbps
IEEE 802.11ax 2.4GHz 9.6Gbps
5GHz

IoT向き無線LANと異なるのは、周波数帯がより高周波の2.4GHz/5GHzを利用する点と、新規格11ac/11ad/11ax、従来規格11b/11g/11a/11n、ともにデータ伝送速度が速い点です。スマホのAPは、家庭や店舗に設置された無線LANルータで、高周波利用のため伝送距離は精々100m程度、60GHzの11adでは10m程度です。公衆網5G高速化に伴い新無線LAN規格:11ac/11ad/11axが普及しつつあります。

動画再生などの利用形態も多いPC/スマホ向き無線LANは、「高速大容量化」が求められます。IoTの「長距離省電力」要求とは、異なる無線LAN規格となっています。

まとめ:IoT MCUプライベート網の無線LAN規格

無線LANアクセスポイントからの伝送距離変化
無線LANアクセスポイントからの伝送距離変化

プライベート網無線LAN規格は、APからの伝送距離により、

  1. 「近距離(10m以下)超省電力」規格(周辺機器向き):Bluetooth(IEEE 802.15.1)
  2. 「短距離(100m程度)高速大容量」規格(PC/スマホ向き):IEEE 802.11a/11b/11g/11n/11ac/WiGig(11ad)/11ax
  3. 「長距離(1km以上)省電力」規格(IoT向き):Wi-Fi HaLow (IEEE 802.11ah)/11.af/11.ba

の3種類があります。

IoT MCUには、最新のBluetooth 5や屋外や1km半径の広い敷地内でも使える長距離省電力規格のWi-Fi HaLowが望まれるようです。

但し、普及済みのPC/スマホ向き無線LAN規格が使えると、屋内の既存PC/スマホ無線LANルータをインターネット空間へのAPに利用でき、常時電力供給も可能なため、低コストIoT MCUを実現する方法になりうると思います。