マイコンテンプレート活用プロトタイピング開発(4)

マイコンテンプレートへ機能を追加するには、既に枠組みが出来上がっているテンプレートへ、追加機能名のファイルを新規作成し、追加機能をこのファイル内で記述、テンプレートのLauncher()で起動すれば完成です。長文であった第3回を、一口で言えばこうなります(トホホ… Orz)。

Basic Form of Embedded Software (Initial Setting and Repetitive)
無限ループ前に1回実行する初期設定処理と、無限ループ内の繰返し処理の2つから構成される「組込みソフトの基本形」

これは、Arduino IDEの新規作成ファイル画面です。このsetup()とloop()の構造は、Arduinoに限らず全ての「組込みソフトの基本形」です。つまり、無限ループ前に1回実行する「初期設定処理」と、無限ループ内の「繰返し処理」の2つから構成されます。

弊社マイコンテンプレートもこの基本形に則っています。但し、機能追加がし易いように、無限ループがLauncher()に変形し、複数のユーザ関数を起動できるように工夫しているだけです。

従って、最も安直(!?)な機能追加の方法は、追加機能のサンプルソフトを見つけることです。あとはテンプレートのLauncher()でこのサンプルソフトを起動すれば、テンプレートへ機能追加ができるのです。

今回の目標は、テンプレートへのSDカード機能の追加です。そこで、このSDカード機能追加に最適と思うサンプルソフト:Developing Applications on STM32Cube with FatFs:UM1721を解説します。

UM1721: Developing Applications on STM32Cube with FatFs

2014年6月版 UM1721では、STM32Cubeと記述されていますが、これはSTM32CubeMX(以下CubeMX)のことです。また、STM32F4xxとSTM32CubeF4で記述されていますが、全てのSTM32デバイスとCubeMXに置換えて読めば使えます。

FatFsは、ユーザアプリケーションと下層HAL(Hardware Abstraction Layer)の間で機能するミドルウェアで、主目的は、開発するアプリケーションが読書きするデータと、物理ストレージファイルの割付(領域管理)です。パソコンなどでは、本来WindowsなどのOSが行う機能を代行するのがFatFsと考えれば良いでしょう。また、FatFs自体はMCUハードウェアには依存しないので、本稿STマイクロエレクトロニクス以外のマイコンでも使えます。

FatFs Middleware module architecture (Source:UM1721)
FatFs Middleware module architecture (Source:UM1721)

もっと知りたい方は、UM1721の2章までに詳しく記述されています。本投稿は、FatFsを使うサンプルソフトが目的ですので読み進めると、3.3のサンプルソースが見つかります。

FatFsサンプルソフト

FatFs Sample Software (Source:UM1721)
FatFs Sample Software (Source:UM1721)

懇切丁寧なサンプルソフトとは言えませんが、必要最低限で記述しているのでしょう。一見、組込みソフトの基本形と違うと思われるかもしれませんが、初期設定処理はCubeMXが自動生成し、別の場所にソースコードを出力するため(おそらく)省略しています。また、ファイルアクセスは低速なので、繰返し回数を1で処理すると考えれば、このサンプルソフトも基本形に則っています。

サンプルソフトから、FatFsを使うAPI(Application Programming Interface)が5種、FatFsとLow Level Disk I/O Driversをリンクする2種のAPIを使えば、SDカードへの読書きができることが解ります。
※書込み:f_write()を、f_read()に置換えれば読込みができます。

FatFsサンプルソフトで使用するAPI
用途 API
FatFsとアプリケーション間

f_mount()

f_open()

f_close()

f_read()

f_write()

FatFsとLow Level Disk I/O Driversリンク間

FATFS_LinkDriver()

FATFS_UnLinkDriver()

FatFsサンプルソフトAPI動作テスト

このサンプルソフトを、第3回で使用したレファレンスプロジェクトへ挿入し、各APIの動作を確認します。

FatFs Sample API Test Source
レファレンスプロジェクトへ挿入したFatFsサンプルソフト。

結果は、FatFsとアプリケーション間5種全てのAPIで正常動作が確認できました。つまり、レファレンスプロジェクトでは、このサンプルソフトを使いSDカードへの読書きができます。その結果、SDカードへwtext[] = “text to write logical disk”のデータを、ファイル名STM32.txtとして保存できました。

FatFs Write Test to SD Card
FatFsサンプルソフトを使い、SDカードへ書込んだファイルSTM32.txtと書込みデータ。

レファレンスプロジェクトは、Low Level Disk I/O Driversリンク側のAPI相当を、エキスパートが自作しているのでコメントアウトしています。

STM32CubeMXでFatFs機能追加

第3回と同様、シンプルテンプレートをRenameし、機能追加用のSPI1FatFs_Sdプロジェクトを作成し、CubeMXでSPI1とFatFs機能を追加します。また、SdCard.cファイルを作成し、この中に前章で動作確認したサンプルソフトを挿入します(プロジェクトやファイル作成の詳細は、第3回を参照)。

FATFS and SPI1 Functions Add by STM32CubeMX
STM32CubeMXでFATFSとSPI1を追加。SPI1のピン割付は、実装シールド基板に合わせている。

Launcher()からサンプルソフトを起動し、1回のみ処理するように変更を加え、レファレンスプロジェクトと同様各APIのリターン値を確認しましたが、f_open()以降で正常動作しません。

初期設定処理を自動生成するCubeMXのFatFs設定に間違いが無ければ、SPI1FatFs_SdプロジェクトでもユーザデータをSDカードへ読書きできるハズです。UM1721には、FatFsの設定記述がないので、CubeMXのFatFsデフォルト設定にしましたが、お手上げです。

そこで、STM Communityを検索すると、例えばコチラのように現在のCubeMXのFatFsにはバグがあるようです。対策もCommunityにありますが、STMもバグ状況を把握していますのでCubeMXの改版を待つ方が良さそうです。

*  *  *

サンプルソフト自体は、レファレンスプロジェクトで動作確認済みです。CubeMXのFatFs初期設定生成に問題があることは間違いありません。つまり、組込みソフト基本形の初期設定以外の半分(50%)の処理をUM1721から獲得できたと言えます。

Tips: 動作サンプルソフトは、FatFsがMCUハードウェアに依存しないので、他社マイコンでも使えます。獲得した50%処理は、適用範囲が広いものです。

対策としては、STMによるCubeMX改版を待つこと、レファレンスプロジェクトからFatFs関連の初期設定を抜き出すこと、の2つあります。後者については、検討中です。

STM32マイコンへ深層学習実装、「走る」「歩く」動作判断

日刊工業新聞3月7日電子版掲載の日本で2桁成長を狙っているSTマイクロエレクトロニクス、このSTMが、STM32シリーズマイコンへディープニューラルネットワーク:DNN(深層学習)を実装し、マイコンの「走る」「歩く」状態を正確に判断するデモを展示しました。

STM32F7(Cortex-M7)搭載時計でユーザ動作を正確に判断(記事より)
STM32F7(Cortex-M7)搭載時計でユーザ動作を正確に判断(記事より)

マイコンDNN実装の3課題と解決ツール

記事によるとSTM32マイコンへDNNを実装する時の3つの課題、

  • マイコン実装のためのコードサイズ実現
  • ソフトウェア最適化
  • マイコンとクラウドの相互運用性

解決のため、STM32CubeMx.AI(現在αバージョンで2018年後半リリース予定)ツールを使うそうです。

このSTM32CubeMx.AIは、STM32CubeMXの機能拡張版だと思います。
現在のSTM32CubeMXも、全てのSTM32シリーズで共通に使えるAPIを自動生成します(STM32CubeMXのTipsはコチラの投稿も参照)。機種共通API生成とソフトウェア最適化は、既にSTM32CubeMXでも実現済みです。

従って、弊社STM32Fxテンプレートも、STM32CubeMXを使えばSTM32シリーズ全般にテンプレートが適用できるハズです(STM32F0とSTM32F1のみ実機検証済み。APIが共通なので機種差は、インクルードするヘッダーファイルなど数点のみ。他機種は未検証です念のため…)。

※STM32マイコンの開発環境は、弊社ブログのカテゴリで、“STM32マイコン”をクリックすると投稿がカテゴライズされ読みやすくなります。投稿ページの初めの方に開発環境構築方法などの投稿が集まっています。

STM32マイコン重点分野

電子版によるとSTM32マイコンは、自動車、産業用、スマートホームなどのIoT分野を重点にして市場拡大を狙うそうです。STM32マイコンに、上記クラウドAI技術が適用され、その開発環境の使い勝手も良いとなると、かなり期待ができます。

STM32評価ボードNUCLEO-F072RB選定理由

STM32マイコンテンプレートを開発するにあたり、秋月電子さん販売中の多くのSTM32評価ボードのうち、Cortex-M0のNUCLEO-F072RBとCortex-M3のNUCLEO-F103RBを選びました。今回は、この選定理由を示します。

STM Evaluation Boards and MCUs Performance
STM Evaluation Boards and MCUs Performance

NUCLEO-F072RB選定の理由(ARM Cortex-M0)

STMサイトに散りばめられたSTM32 MCU情報から、NUCLEO-F072RB選定の決め手となった資料が下記4つです。UM: User Manual、AN: Application Noteです。

1) UM1779          Getting started with STM32CubeF0 for STM32F0 Series
2) AN4735           STM32Cube firmware examples for STM32F0 Series
3) UM1718          STM32CubeMX for STM32 configuration and initialization C code generation
4) UM1727          Getting started with STM32 Nucleo board software development tools

1)はボード毎に提供されるサンプルソフト数を記載し、STM32F072RBが134個と断トツに多いことが判ります。STM32F072RBとは、NUCLEO-F072RB実装MCUです。MCU/ボードの混在表記なので注意が必要です。2)は、1)のサンプルソフト詳細内容が示されています。

3)は、2)のサンプルソフトを生成するコード生成ツールSTM32CubeMXのユーザマニュアルで、スタンドアロンやEclipse IDEプラグインなどの3動作モードと使用法が書かれています。4)は、STM32MCU開発に使える4IDEの紹介です。

これら資料から、STM32マイコンテンプレートの開発環境を以下としました。

・評価ボード: NUCLEO-F072RB(64ピンSTM32F072RBT6実装、ROM 128KB/RAM 16MB、DAC/CAN/USB等)
・統合開発環境:SW4STM32(無償版コード生成サイズ制限なし)+STM32CubeMxプラグイン

※KeilのuVision(MDK-Lite)は、STM32F0/L0専用ライセンスを使うとコードサイズ256KBまで利用可能です。しかし、F0/L0専用となりSTM32F1開発(NUCLEO-F103RB選定理由参照)には残念ながら使えませんのでやめました。F0/L0のみ開発をする方は、2018年2月までの期間限定のようですが、無料で全機能使えます(少し使ってみた感想はエディタが貧弱ですがまあまあという感じです)。

数種類の評価ボードが簡単に入手できても、STM提供サンプルソフト数が少ないものもあります。弊社マイコンテンプレートは、これらサンプルソフトが簡単に組込めることを特徴としますので、サンプル数の多さは、テンプレート活用機会も多くします。

以上のことから、STM32マイコンテンプレート開発環境を決めました。

STM32 Template Development Environment
STM32 Template Development Environment

STM32マイコンテンプレート開発方針

これら4つ以外にも、様々な有用資料(例えばAN4617:Migrating between STM32F0 and STM32L0 microcontrollersなど)がサイト内に散りばめられていて、ハッキリ言ってCypressサイトなどと比較すると、平面的で資料が見つけにくいサイト構成です。応答速度も遅いです。
しかし、掲載資料は、いずれも優秀なエンジニアが書いたものと思われ、英文量は多いものの中身は良好です。

STM32マイコンテンプレート開発では、このSTMサイトリンクもブログ記事に積極的に掲載しようと思います。私の下手なブログ記事を読むより、STMサイトへ直接アクセスする方が良い読者も多いと思うからです。その結果、2016年マイコン売上5位の実力を持つSTM MCUを使う弊社STMマイコンテンプレートのご購入者が増えることも期待もしております。

NUCLEO-F103RB選定の理由(ARM Cortex-M3)

これまで弊社テンプレート対象MCUは、Cortex-M0/M0+クラスでした。しかし、前回記事に記載したようにRTOSやCMSIS普及を考慮すると、このクラスに拘る必要が薄くなってきました。

MCU価格では、Cortex-M4のSTM32F303K8T6が410円、Cortex-M0のSTM32F042K6T6が250円とややM4が高いものの、ここで使うM0/M3評価ボード価格は、どちらも1500円で同じです(2017年5月秋月販売価格)。

製品の大きさが許せば、評価ボードをそのまま製品へ実装するというのは、いつも私が考える製品構想です。評価ボードが同価格なので、コア性能が不足しても、ホードごと載せ替え可能で安心です。STM32評価ボードは、UM1724: STM32 Nucleo-64 boardで詳細が解ります。

しかも、STM32ソフトウエアスタック(UM1779掲載)から、コアクラスの依存性が低いテンプレート作りも可能だと思います。つまり、LL: Low Layerの代わりにHAL: Hardware Abstraction Layerを使ってテンプレート開発すれば、STM32F0(Cortex-M0)以外にSTM32F1(Cortex-M3)、他のコアへも適用できると考えるからです。

STM32CubeMx Software Stack
STM32CubeMx Software Stack

この可能性を検証するために選んだCortex-M3評価ボードが、NUCLEO-F103RB(64ピンSTM32F103RBT6実装、ROM 128KB/RAM 20MB、CAN/USB等)です。勿論、LLの方が高速処理可能でしょうが、HALの移植性の高さも捨てがたい利点があります。

NUCLEO-F103RB
NUCLEO-F103RB

そこで、STM32マイコンテンプレートでは、あえてF0やF1などと対象コアを明記せず、両方に対応できる(と今は思っている)HAL版テンプレートと、速度重視のLL版テンプレートの両方を開発する予定です。HALで共通化できない場合には、LL版のみをリリースします。この開発経緯などもブログに記載していきます。

*  *  *

STMのMCUが、2016年マイコン売上5位というのは驚きでした。少なくとも私の周りにはSTMマイコンを使う人がいなかったからです。入手性も良く評価ボードも低価格です。STMサイトの情報がもう少し解り易く整理されれば、日本でも人気がでるMCUだと思います。また、HALやCMSIS対応も他社に比べて早そうなので、今後の発展性も期待できます。

まとめると、STM評価ボードは、サンプル数の多さからCortex-M0のNUCLEO-F072RBを選び、M0/M0+とM3とのテンプレート共通化検証のためCortex-M3のNUCLEO-F103RBを選びました。IDEは、Eclipse IDEベースのSW4STM32へSTM32CubeMXをプラグインしてテンプレート開発に使います。

私は、STMサイト構成が、平面的、網羅的で情報検索しにくいと思うので、ブログに関連資料などへのリンクを掲載し、テンプレート開発経緯を記載していきます。