マイコンデータシートの見かた(その2)

現役STマイクロエレクトロニクスの「メーカエンジニアの立場」から記載された、ユーザ質問の多かった事項を中心にマイコンデータシートの見かたを解説する記事(連載2回目)を紹介します。

全3回の連載記事内容

第1回:凡例、絶対最大定格、一般動作条件、電源電圧立上り/立下り(2017年10月1日投稿済み
第2回:消費電流、低消費電力モードからの復帰時間、発振回路特性(← 今回の投稿)
第3回:フラッシュメモリ特性、ラッチアップ/EMS/EMI/ESD、汎用IO、リセット回路

記事タイトル:データシート数値の “裏の条件” とは

先入観を与える前に、記事を読んでください。消費電流、復帰時間、発振回路特性の留意点が記述されています。記事タイトルの “裏の条件” とは何でしょうか?

私は、データシート数値は、理想的動作環境のマイコン単体の最高数値、これが裏の条件と理解しています。
例えば、車の性能を燃費で比較する方は、普通の運転では絶対に達成できないカタログ燃費で車を評価します。マイコンも同じです。データシート数値は、このカタログ燃費相当だと思います。

カタログ燃費(出典:日本自動車工業会)
カタログ燃費(出典:日本自動車工業会)

実際は、この最高数値にマージンを入れて考える必要があります。どの程度のマージンを入れるかが問題で、安全側評価ならデューティ50%、つまり性能半分位が良いと思います。

但し、これもマイコン単体の話で、マイコン:MCUと電源、発信器や必須周辺回路を含めた制御系で考えると、どの程度マージンを入れるかは複雑怪奇になります。

そこで、ベンダ開発の評価ボードを手本とする考え、つまり、10月1日投稿で示した評価ボードをハードウエアテンプレートとして用いる考え方を、私は提案しています。

10月15日記事のように、評価ボードでもWi-Fi起動時電流に電源部品の余裕が(短時間ですが)少ないものもありますが、大方のベンダ評価ボードは、実用に耐えられる厳選部品が実装済みです。そこで、プロトタイピング時には、この評価ボードで制御系を作り、実装部品のマージンが十分かを評価するのです。

マージンが足りない場合には、同じ評価ボードへ、より高性能な部品を載せ替えるなどの対策が簡単にできます。制御される側もこのようなモジュールで開発しておけば、モジュール単位の設計、変更が可能です。

ソフトウエアも同様です。評価ボードを使えば、少なくとも最低限のソフト動作環境は整いますので、プロトタイピングのソフトをなるべく早く開発し、動作マージンを確認しておきましょう。

完成・出荷時には、ソフトへ様々な機能が後追加されるので、プロトタイピング時はハード同様デューティ50%、つまりROM/RAMの残りに50%位は残しておくと安心です。

ソフトウエアのプロトタイピング開発には、弊社マイコンテンプレートが最適です。

連載第2回範囲のMCUハードウエアまとめ

  • 水晶振動子のMCUクロック供給は、発振波形が正弦波に近いため貫通電流が増え消費電流大となる。
  • 未使用GPIO端子は、外来ノイズ対策に10k~100kプルアップorダウンし、電位固定が望ましい。
  • データシート低消費電力復帰時間がクロックサイクル規定の場合はそのまま使え、㎲規定の場合は参考値。
  • 外付け水晶振動子の利用時は、ベンダ推薦部品を使う。
  • 内蔵発振回路の利用時に、MCU温度変化やリフローによる機械的応力による周波数変動が無視できない場合は、周波数トリミングソフトを組込む。
  • PLL動作最低/最高周波数の設定ミスは多いが、マージンがありそのまま動作するので注意。

マイコンデータシートの見かた(その1)

現役STマイクロエレクトロニクスの「メーカエンジニアの立場」から記載された、ユーザ質問の多かった事項を中心にSTM32マイコンデータシートの見かたを解説する記事(連載1回目)を紹介します。

全3回の連載記事内容

予定されている第2回、第3回の解説内容が下記です。

第1回:凡例、絶対最大定格、一般動作条件、電源電圧立上り/立下り(← 今回の記事)
第2回:消費電流、低消費電力モードからの復帰時間、発振回路特性
第3回:フラッシュメモリ特性、ラッチアップ/EMS/EMI/ESD、汎用IO、リセット回路

今回の第1回を読むと、データシートの読み誤り易いポイントが説明されており、興味深いです。ハードウエアに興味がある、または、ハードも自分で設計するソフトウエア開発者は、読むことをお勧めします。

マイコンハード開発を数回経験すると、おおよその感触とデータシートの見る箇所が解ってきます。私も新人の頃は、網羅されたデータシートの、”どこの何を見れば良いかが判らず”困惑したものでした。

ハードウエアテンプレートは評価ボードがお勧め

私は、使用するマイコンの評価ボードを、ハードウエアのテンプレートとして使います。
例えば、STM32F072RB(=NUCLEO STM32F072RB)は、配線パターン(=gerber files)や使用部品リスト(=BOM)もサイトに公開されています。

これらのデータは、「短納期を要求される開発者の立場」なら、網羅的記載のデータシートよりも、効率よく回路設計をする手助けとなります。

データシートを見ることは、間違いなく重要です。

しかし、具体的にハードウエア設計をする時は、評価ボードのような既に設計済みの「ブツ」を参考にしながら、なぜこの部分はこうなっているのか?などの疑問を持ってデータシートを見る方が、効率が良く、しかも、分厚いデータシートのポイントを理解するのにも役立ちます。

アナログとデジタル電源の1点接地や、パスコン実装位置などは、文字で注意書きをいくらされても解り難くいものです。この点、実物は、文字に勝ります。

ソフトウエアテンプレートはマイコンテンプレートがお勧め

ソフトウエア開発は、マイコンテンプレートの宣伝をするな!と思われた、勘のいい読者の方は、コチラのサイトを参照してください。

サンプルソフトは、”メーカ立場での提供ブツですが、”開発者の立場からの実物として、STM32ファミリ、サイプレスPSoC、NXPのLPC8xx/LPC111x/Kinetis、ルネサスRL78/G1xの各種マイコンテンプレートを、ソフトウエア開発者様向けに提供中です。

連載第1回範囲のハードウエアまとめ

第1回記事の範囲で、マイコンハード開発ノウハウをまとめると、以下になります。

  • マイコン外部接続ハード駆動能力は、I2C、USART、数点のLED直接駆動可能端子を除いては極小で基本的には直接駆動はしない。
  • 外部接続ハードの駆動と接続方法は、Baseboard(mbed – Xpresso Baseboard)や、各種Arduinoシールドを参考にする。
  • マイコン電源は、評価ボードのパターン、実装部品も含めてまねる。
  • 開発製品版の未使用(空き)端子処理は悩ましいが、ソフトはデフォルト、ハードはソルダーブリッジ経由で接地。

私は、今後の連載を読んで、未使用(空き)端子処理の見識などを深めたいと思っています。

マイコンIDE習得のポイント

Windows 10 Home Update制御

販売中のマイコンテンプレート説明資料は、テンプレートについて重点的に説明しています。しかし、ご購入者様から頂く質問には、テンプレート動作環境、つまりマイコンIDEに関するものも多くあります。
今回は、このマイコンIDE使い方のコツ、ポイントを説明します。

Windows 10発売を機に、皆さんは今新しいOSの機能や利用方法を習得中だと思います。マイコンIDEと、このWindows 10を関連付け解説を試みます。

マイコンIDEは、OSと考えるべし

Windows 10、旧Windows 7や8と比べると、新ハードウエアやネットワーク、セキュリティ対応に機能満載です。多くの設定項目がありますが、最初はデフォルト設定で動かすのが良いでしょう。慣れてくれば、設定をいろいろに変えて、自分好みにカスタマイズもできます。

マイコンIDEも同じです。IDEは、多くのマイコン機種、使用言語、デバッグ方法に対応できるよう多くの選択肢:プロパティを持ちます。ユーザマニュアルにも、多くのページを使ってプロパティの説明があります。しかし、IDEを使う時に、これら多くのプロパティを、全部知るのは無理ですし不要です。

Windowsと同じく最初はデフォルトで使用し、徐々にカスタマイズするのがIDEやOSなどの環境ソフトの使い方です。

初心者にとって、デフォルト設定でIDEが使えればありがたいのですが、多くのIDEは、中級~上級者へも対応する、いわば「初心者と中級者以上の二兎を追う方式」のため、多少のカスタム設定が必須です。
このカスタム設定が最も少ないのが、IDEベンダ提供の標準評価ボードを使ったマイコン開発時です。弊社テンプレートが、この評価ボードで動作確認しているのもこのためです。

  • マイコンIDEのプロパティ設定が多いのは、しょうがない。
  • カスタムプロパティ設定の少ないIDE+標準評価ボードが、マイコン初心者には適す。

マイコンIDEの使い方ポイント

使用するマイコン、開発言語(C/C++ または アセンブラなど)、IDE(コンパイラやデバッガなどの開発環境)は選定済みとします。この時のIDE設定手順が下記です。3段階から構成されます。

マイコンIDE設定手順
マイコンIDE設定手順

IDEへ使用マイコンとデバッガなどの環境ツール設定が、最初の段階です。ここでは、Rapid Application Development: RADツールを使用するか否かなども選択肢になります。MCU:マイコン本体クロック設定と周辺回路の設定が、次の第2段階です。最後が、IDEが出力したスケルトンソースへ、ユーザソースを追加し、ビルド&ボードデバッグを繰り返し行い、アプリケーションを完成させます。

ポイント1:IDE生成スケルトン理解

直ぐにユーザソースを追記したい気持ちは解ります。しかし、使用するRADツールに応じてIDEが生成するスケルトンが異なることがよくあります。例えば、FreescaleのKinetis Design Studioの場合、RADツールにProcessor Expertを選ぶ場合と、Kinetis Software Development Kitを選ぶ場合とでは、スケルトンが異なります。ルネサスのCS+でも、コード生成の有無でスケルトンは全く異なります。

先ず、IDEが生成する「スケルトン動作を把握することが最重要」です。このために、RAD選択肢を変えることも必要でしょう。殆どのIDEの場合、第2段階のMCUクロックは、デフォルトで安全動作周波数に設定済みです。従って、周辺回路なしでも生成されたスケルトンコードでボードデバッグができます。

スケルトン動作把握とは、「マイコン電源投入後、順番にどの処理を行い、main()を呼出しているか、次に、割込み処理の記述はどこで行っているかを知ること」です。

main()呼出しまでの処理(スタートアップ処理)は、MCU動作クロックを変更する場合などを除けば、大体把握できればOKです。また、マイコン機種による違いも少ないです。

一方、割込み処理記述は、使用マイコンやIDEにより様々です。経験的に、IDEと標準評価ボードの組合せで用いる記述方法が、解りやすさや柔軟性に優れます。素直に、この方法でユーザ処理を追加することをお勧めします。

  • IDE生成スケルトンは、使用RADツールにより異なる。
  • 生成スケルトンの動作を把握することが最重要。

ポイント2:デバッガ接続

最初は、MCUクロックはデフォルト設定、周辺回路なし、スケルトンコードのみでビルドします。このビルドは、IDE生成分のみですので100%成功するハズです。

問題は、デバッガ接続です。

IDEがサポートするデバッガは、通常4~6種類もあります。デバッガに応じてさらに詳細設定が必要ですので大変です。ここは、ユーザマニュアルの「対応デバッガ部分のみ」を注意深く読んで、設定する必要があります。ユーザマニュアルが分厚いのは、このように対応種類が多いためです。使用するデバッガのみに絞って読めば、恐れるに足りません。

IDEとデバッガを接続後、ビルド出力をボードへダウンロードし、デバッガで動作確認します。何もユーザ処理を追加していない時の動作、例えばスタートアップ処理後のRAMクリア状態などが確認できます。

ユーザ処理は追加していませんが、これでIDEの処理全体を一通り試すことができます。

  • IDEとデバッガ接続は、ユーザマニュアルの対応部分を拾い読み。
  • 最初のビルドは、スケルトンコードのみでデバッガ接続しIDE全体処理を体験。

ポイント3:サンプルソフトAPI利用例を活用

スケルトンは、骨組みです。この骨組みに、ユーザ処理を追記すれば、アプリケーションが完成します。

骨組みには、IDEが使用周辺回路に応じてライブラリを生成します。このライブラリへのインタフェースがAPIです。IDEの役割は、APIの中身を作ることです。

ユーザソースは、このAPIの使用順序を記述するのみと考えても良いです。少し前までは、このライブラリもユーザが開発していました。しかし最近は、ライブラリはベンダが提供します。ベンダ提供ライブラリを使えば、ユーザソースは、API使用順序のみですので、移植性やメインテナンスも楽です。

APIの使用法は、これも分厚いAPIレファンスマニュアルに記述されています。しかし、真面目にこれを読む前にサンプルソフトを参照します。典型的な周辺回路APIの使い方、これがサンプルソフトです。サンプルに出てくるAPIのみをレファレンスマニュアルでチェックすれば十分です。サンプルソフトの選び方は、コチラを参照ください。

  • IDEは、スケルトンと、使用周辺回路に応じたAPIを生成。
  • サンプルソフトを参照し、典型的なAPIの使い方を学ぶ。

まとめ

多くのプロパティがあり、付属マニュアルも厚いので取っ付きにくいマイコンIDEですが、ここで示した方法を用いれば、早く効果的にIDEを習得できます。

具体的な話が少ないので、皆様のお叱りを受けそうですが、少しでもご参考になれば幸いです。

* * *

Windowsには、様々なTipsがあります。各マイコンIDEのTipsも少なからずありますが、ここでは個々のIDEによる違いは無視して説明しました。実は、IDEで差が生じるのはRADです。RADに対しては、初心者の方は、少し力を入れてマニュアルを読む必要があるかもしれません。
但し、これも必要な周辺回路の箇所のみを拾読みすれば、事足ります。分厚いマニュアルは、読む箇所を間違わないように、拾読みで対処しましょう。

Windows 10 Home UpdateコントールTips

マイコンIDEで具体例が無かった代わりのTipsです。
Windows 10 HomeでOS Updateをユーザが制御できない問題に対し、フリーソフト: Winaero Tweakerが役立つかもしれません。Technical Preview対応ですが、製品版にも使えそうです。

Windows 10 Home Update Control
Windows 10 Home Update Control

LPCXpreeso824-MAXのCMSIS-DAP使用法

今回は、次期マイコンテンプレートのLPCXpresso824-MAXボードを、無償IDEのLPCXpressoで動作させる方法を示します。無償IDEでも、ROM 256KBまで開発できますので、LPC8xxには十分です。
LPCXpressoのインストールからアクティベーションの方法などは、トラ技サイトを参照してください。ここでは、LPCXpresso824-MAXボードとインスト済みのLPCXpresso IDEの設定を解説します。

LPCXpresso824-MAX and LPCXpresso IDE
LPCXpresso824-MAXとLPCXpresso IDE

mbed動作のLPCXpreeso824-MAX

LPCXpresso824-MAXボードは、mbed動作がデフォルトです。つまり、ボードとパソコンを接続すると、USBメモリとして認識され、このUSBメモリへmbedネット環境で作成したオブジェクトをダウンロードしさえすれば、LPC824が動きます。この時に必要なツールは、ネットアクセスのブラウザのみです。

このように手軽にネットでオブジェクトが作成できるのがmbedの利点です。しかし、デバッグ環境としては、今後の進展を待つ必要があります。効率的なデバッグを行うには、IDEデバッガは必須です。

mbed動作からCMSIS-DAPへの変更

ボードユーザマニュアルUM108304~5章にも方法が書かれていますが、要点を示します。この手順で、オブジェクト作成とLPCXpresso IDEデバッグができるローカル環境が整います。
1.mbed-windows-serial-portドライバをWindowsパソコンへインストール
2.LPCOpenのLPC824用サンプルプロジェクトv2.15 Release Date:01/08/2015をダウンロードし、LPCXpressoへインポート
※2015年3月最新版LPCXpresso v7.6.2_326をインスト済みならば、C:\nxp\LPCXpresso_7.6.2_326\lpcxpresso\Examples\LPCOpenフォルダ内に同じサンプルがあるので、ここからインポートしても良い。
3.periph_hello_worldプロジェクトをビルドし、デバッガ起動。起動時、下図CMSIS-DAP認識要

CMSIS-DAP認識
CMSIS-DAP認識

4.Tera Termなどのシリアル通信ソフトを1でインストしたmbed Serial Portと接続(115200bps, 8-Non-1)
5.デバッガでResume (F8)実行。シリアル通信ソフトのTerm画面にHello World!が2秒毎に表示

Hello world!表示とCMSIS-DAP、USB Com LEDs
Hello world!表示とCMSIS-DAP、USB Com LEDs

この時、ボードCMSIS-DAP LED緑が点灯し、シリアル通信時にUSB Com LED青が点灯します。これがCMSIS-DAP (Cortex Microcontroller Software Interface Standard – Debug Access Port) デバッグ状態のボードです。CMSIS-DAP認識は、プロジェクトデバッグ初回のみで、次回起動時はありません。

LPCOpenライブラリ

2でインポートしたLPCOpenは、LPCXpresso以外のKeilやIAR開発環境でも同じAPIを提供するなど、適用範囲が広く、可読性も優れたライブラリです。また、3で使用したperiph_hello_world プロジェクトを含め、LPC824周辺回路30種以上のサンプルソフトも付属しています。

mbed環境も多くのサンプルソフトがありますが、NXPのLPCOpenサンプルソフトは高品質で、NXP Forumサイトで情報共有もできます。

販売中のLPC812用テンプレートと同じく、LPC824用テンプレートもこのLPCOpenライブラリを使って開発します。

LPCXpresso824-MAXボードの留意点

LPCXpresso812やLPCXpresso1114/5ボードは、パソコンとの接続に一般的なUSBケーブルを使います。しかし、LPCXpresso824-MAXの接続には、スマートフォンの充電、データ転送に使われるMicro-USBケーブルが必要です。このケーブルは、ボードに付属していませんので別途必要です。

2でインポートした最新のLPCOpenライブラリv2.15は、LPCXpresso v7.5.0以降で動作確認されています。古い版使用時は、v7.5.0以降へ更新が必要です。
※私のパソコンのみの可能性もありますが、Windows8.1(無印)でLPCOpenライブラリをビルドすると本来発生しないハズのエラーが発生します(互換モード変更でも同じ)。Windows8.1ProとWindows7ではこの問題は発生しません(いずれも64bit版)。同じ現象の方は、Windows8.1 ProかWindows7のご使用をお勧めします。

マイコンテンプレート利用法ページ追加

販売中の4種マイコンテンプレート説明資料に、テンプレート利用法ページを追加しました。
既にテンプレートご購入の皆様へは、近日中に追加済みのテンプレート説明資料をメールにて送付いたしますので、しばらくお待ちください。

テンプレート利用法ページの内容一部抜粋

テンプレート利用法ページには、ソースコードを見やすくするための記述の工夫テンプレート機能とその処理関数どこにユーザ関数を追加した結果、シンプル/メニュードリブンテンプレートになるのかを3ページにわたって示しております。
説明資料の全ページ内容は、テンプレートサイトの各テンプレート説明資料右下のもくじを参照して下さい。P1とP2は、サイトからダウンロード可能です。

RL78/G1xテンプレートの内容を一部抜粋します。他の3種LPC8xx、LPC111x、Kinetis Eテンプレートも同様です。

テンプレート機能とその処理関数
テンプレート機能とその処理関数(RL78/G1xテンプレートの例)
テンプレートに追加するユーザ関数の場所
RL78/G1xテンプレートに追加したユーザ関数:LedBluToggle()の例

これらのページにより、より具体的にテンプレート使用方法がお判り頂けると思います。

テンプレートご購入者様、ご検討中の方にとって一番知りたいことは、「テンプレートが簡単に使えるかどうか」です。追加したページが、このご参考になることを期待しております。

マイコンテンプレートのサイト立上げのお知らせ

マイコンテンプレート関連の情報を、1ページにまとめた専用サイトを2つ立上げました。

ブログは、マイコンテンプレートの開発情報や開発経緯、Tipsなどを時系列で記載します。
ブログを最後まで読んでいただく手間を省くため、重要内容を抽出し再編しました。
紆余曲折の検討結果が、最新版テンプレートの状況になり、専用サイトにまとめられたと考えてください。

マイコンテンプレートサイト

マイコンテンプレート専用サイト
マイコンテンプレート専用サイト

記載マイコンテンプレートは、下記です。

  • Cortex-M0/LPC111xテンプレート
  • Cortex-M0+/LPC8xxテンプレート
  • S2/S3コア RL78/G1xテンプレート
  • Cortex-M0+/Kinetis Eテンプレート

サイトの「もくじ」をクリックすると、記載位置へジャンプします。スマホなどの小さい画面でも観やすいように、解像度の高いテンプレート動作中写真も掲載しております。

アプリケーション開発手順サイト

マイコンアプリケーション開発手順サイト
マイコンアプリケーション開発手順サイト

マイコンアプリケーションの開発手順を1ページにまとめました。
マイコンテンプレートを使ってアプリを開発する時の、10手順と、2補足を掲載しています。

CodeWarriorクイックレファレンス

ARM Cortex-M0+のfreescale Kinetis Eテンプレート開発は、Kinetis Design Suite :KDSを使うほうが、CodeWarrior :CWよりも良さそうだということは以前のブログで書きました。但し、今はCWの方がより習得が容易だと思います。このCW習得に便利なクイックレファレンスを見つけましたので、紹介します。

マイコンIDEとEclipse

全てのマイコンIDEは、Eclipseベースになりつつあります。ルネサスのRL78シリーズならe2 studio、NXPやfreescaleの無償IDEは全てEclipseベースです。メリットは、プラグインが多少違っていても同じベースなので使い方を知っていれば、他社IDEでも「即使える」ことです。MS Officeを知っていれば、Office互換ソフトが、簡単に使えるのと同じです。

このIDEを即使えることは、重要です。マイコンソフト開発準備労力のかなりの部分を短縮できるからです。分厚いユーザマニュアルを読んでも、肝心のソフト開発には、直接結びつかない苦労を避けられます。

CWクイックレファレンス

クイックレファレンスP1
クイックレファレンスP1(一部抜粋)
クイックレファレンスP4
クイックレファレンスP4(一部抜粋)

CWインストフォルダのHelpフォルダ内に、Eclipse Quick Reference Card.pdfがあります。簡潔に良くまとまっていて、CWだけでなく、全てのEclipse IDEに応用が利きます。Eclipse Quick Reference Card.pdfでネット検索すると、CWをパソコンへインストしなくても参照できると思います。

ページ1~2にショートカット、ページ4以降は、Eclipseの操作画面説明です。Eclipseを使ったソフト開発なら、これだけ知っていれば十分だと思います。

Kinetis Eソフト開発のポイント:Processor Expert

2014年末発売予定のfreescale Kinetis Eテンプレートソフト、この開発にProcessor Expertを使いこなすことがポイントと考えた理由を示します。

Processor Expert :PEとは

PEは、ルネサスRL78/G1xのCS+コード生成ツールに相当します。使用周辺回路のパラメタをGUIで設定できます。例を示します。Kinetis Eテンプレート開発で使うボード:FRDM-KE02Z40Mと、その赤LEDをPWM点灯する時の設定です。設定ミスがあると、そのパラメタが黄色で表示されるので、すぐに修正や変更ができます。

FRDM-KE02Z40MとProcessor Expert設定画面
FRDM-KE02Z40MとProcessor Expert設定画面

設定後、コード生成ボタンを押すと、ユーザソース所定か所にPE生成コードが自動挿入されます。ユーザは、PEが生成したAPIを使ってアプリ開発に着手します。PE設定パラメタを変更後、再生成しても、ユーザソースは残ったまま、生成コードが再挿入されます。

つまり、周辺回路APIをPEで生成 → 動作パラメタはAPI内部に隠ぺい → ユーザソースそのものの流用が可能、です。CS+のコード生成ツールと同じ目的です。

PEを使わないサンプルソフト

旧来のマイコンソフト開発は、デバイスドライバ開発担当が、このAPIを自作していました。高性能APIが自作できますが、機種が変わるとAPIも変わることが多く、同じ処理でもアプリ作り直しが必要でした。API自動生成ツールPEは、アプリ作り直しの回避と再利用を可能にするツールです。

もちろん、Kinetis EでもPEを使わずに旧方法のアプリ開発もできます。IDE付属サンプルソフトの多くは、この旧方法で提供中です。サンプルソフトの目的が、1個の周辺回路のシンプルな説明に主眼があり、PEを使うよりはこの目的に適していること、従来からあるサンプルソフトをそのまま流用したこと、などが理由だと思います。

因みに、PEユーザガイドは、約200ページ、CS+のRL78 APIリファレンス編は、400ページ以上のボリュームがあること、などもAPI自動生成ツールがサンプルソフトで使われない原因かもしれません。良いツールには、それなりの解説書が必要です。ただ、背景記述が少ないのと、クイックレファレンスがほしいです。

iPhoneやスマホを使うと、本当に良いツールは、マニュアル無しでも使えるモノかな?とも思いますが、コンシューマ向けと、マイコン開発のようにプロフェショナル向けのモノとでは違って当然ですね。

テンプレート開発ボードのPE

テンプレート開発ボードFRDM-KE02Z40MでPEが自動生成する周辺回路一覧を、アルファベット順に示します。

テンプレート開発ボードのコンポーネントリスト
テンプレート開発ボードのコンポーネントリスト

多くの周辺回路=Componentの設定が可能です。使用頻度が高いタイマ、GPIO、UART関連、また、ボード実装のTSS: Touch Sensing Softwareや、3軸加速度センサ接続のI2CもKinetis Eテンプレートで使う予定です。 Component Levelとは、アプリ流用の容易さを示していて、Logical Device Driver :LDD、High、Lowの順で流用性が高くなります。

例えば、Lowレベルコンポーネント使用時、既に動いているアプリを別機種へ移植した時に、想定外動作をする時は、このLowレベルコンポーネントからデバッグしていくと良いかもしれません。これはCS+コード生成には無かった機能です。

また、これらPEの設定を出力し、別プロジェクトへ移植する機能もあります。これもCS+コード生成にはありません。CS+は日本語操作できる良くできたIDEですが、多くのコード生成パラメタを別プロジェクトへ引継げないのが(唯一の)欠点だと思います。

PE出力は、テンプレート使用中IDEのCode Warrior :CWとKinetis Design Suite :KDSのどちらにも移植でき、CWからKDSへ変更してもそのまま使えます。Kinetisシリーズ開発環境が、今年CWからKDSへ移行中ですので重要です。

つまり、PEを使えば、

1.アプリ流用性が高まる
2.CW←→KDSのIDE変更は問題なし
更にfreescaleマイコンは(おそらく)同じ周辺回路を使っており、それらのAPIがPEで生成ができるので、
3.freescaleマイコン機種変更も問題なし(の可能性あり)
など3拍子揃ったソフト開発が期待できる、これらがAPI生成ツール:PEをfreescale Kinetis Eテンプレート開発に使う理由です。

RL78/G1x開発役立ち4ドキュメント

2014/6/20ルネサス発行のRL78/G1x開発に役立つ資料を4つお知らせします。このページ一番下、その他に分類されている資料で、NEW!マークが付いた以下4タイトルです。

1.RL78ファミリ用CコンパイラCA78K0R SADDR領域とCALLT命令の使用

SADDR領域とCALLT命令の効果を解りやすく解説しています。

販売中のRL78/G1xテンプレートも、SADDR領域は使っていますが、CALLT命令は、コードサイズは小さくなるものの、速度が遅くなるので使いません。RL78/G1xは比較的大きなROMを持つマイコンなので、コードサイズよりも速度を優先して設計したためです。

有効なSADDR領域ですが大きさに限りがあるので、コンパイルオプションのROM/RAM使用量を表示し、上限に近い場合には、配置変数の選択も必要でしょう。

2.RL78ファミリ用CコンパイラCA78K0R データフラッシュへの定数の配置方法

ROM、RAM、データフラッシュの3領域を持つRL78/G1xデバイスで、データフラッシュ領域へconst定数を配置する方法を記載しています。

RL78/G1xテンプレートは、データフラッシュライブラリを使い4KBデータフラッシュ領域をEEPROM的に使っています。このような使い方が不要な場合には、巨大テーブルの定数配置などで解説の方法も使えそうです。

3.スタック領域の変更方法

4.リンク・ディレクティブの説明

どちらの資料もROM、RAMへのセグメント配置に関する基本的な解説です。文章や図にすると、説明が長くなるのが欠点ですが、まとまっているので理解し易いでしょう。

RL78/G1xテンプレートでは、コンパイラ領域がRAM内で連続するように、データフラッシュライブラリの占有領域を決めるリンク・ディレクティブ設定を行っています。また、作成する関数間インタフェースは、基本的に関数引数を使わずRAMを使います。従って、関数単独のデバッグが容易で、スタック使用量も引数利用に比べ少ないのが特徴です。結果として、スタック領域の配置は、コンパイラにお任せでも問題なく動作します。

RL78常設セミナテキスト改版

2014年5月30日発行のルネサスサポート情報 vol.197で、ルネサス常設セミナテキストの改版がレポートされました。レポートでは、「新規公開」とありますが、ダウンロードして旧版と比較した結果を示します。

セミナテキスト改版内容

コース名 レポート記事 旧版との比較結果
R8Cマイコンコース テキスト新規公開 2012年3月21日 Rev. 2.20と同じ
RL78マイコンコース テキスト新規公開 2013年12月18日 Rev. 1.30へ改版
RL78コンパイラコース テキスト新規公開 2014年3月13日 Rev. 1.07へ改版
RL78リアルタイムOSコース テキスト新規公開 2014年3月31日 Rev. 1.02へ改版

※R8Cマイコンコーステキストは、改版内容が不明で、公開テキストは前版と同じでした。

テキストの変更履歴がないので、具体的にどこを変更して改版したのかは不明です。しかし、どのテキストも内容が濃く、一読に値します

テキストですので、重要項目を1~10まで記載しています。初心者には、読むだけで大変で、理解にかけられる労力が不足することも多いと思います。そんな時は、各テキストの最重要箇所のみを抽出したコレに先ずザット目を通してください。特に、コンパイラコースのその1~3を理解した後に、テキストに戻ると理解が捗ると思います。

テンプレート活用のマイコン開発

限られた時間で効率的にマイコンを習得するには、手軽に用意できる開発環境と、テンプレートを活用するのも一つの方法です。ワードやパワーポイントには多くのテンプレートが提供されますが、組込みマイコンのテンプレートは少ないようです(サンプルソフトは、あくまでサンプルでテンプレートとは、別物です)。

そんな時は、販売中のRL78/G1xテンプレートを活用下さい。業務に使えて、テキストの重要箇所エッセンスをプログラムへ盛り込んだテンプレートになっています。世界標準のARM 32ビットマイコンLPC8xxテンプレートも販売中です。