100MBフラッシュマイコンとFreeRTOS

ルネサス、100MB超の大容量フラッシュ内蔵、160℃で10年以上のデータ保持もできる車載可能な次世代マイコン実現にメドの記事が、EE Times Japanで12月6日発表されました。

ルネサス100MBフラッシュマイコン実現にメド
ルネサス100MBフラッシュマイコン実現にメド(記事より)

これは、ルネサスが車載半導体シェア30%を狙う動きとリンクしています。マイコンは、ROM128KB、RAM128KB(Cypress PSoC 4 BLEの例)の「キロバイト」容量から、5~6年後には「メガバイト」へと変わろうとしています。

FreeRTOS

Richard Barry氏により2003年に開発されたFreeRTOSもVersion 10が発表されました。12月3日投稿で示したようにアマゾンがAWS:Amazon Web Service接続のIoT MCUにFreeRTOSカーネルを提供したことで、マイコンへのFreeRTOS普及が一気に進む可能性があります。

Amazon FreeRTOS
Amazon FreeRTOS(サイトより)

従来のFreeRTOSは、5KB以下のROMにも収まりリアルタイム性とマルチタスク処理が特徴で、小容量マイコンでも十分に使えるRTOSでした。しかし、Amazon FreeRTOSの魅力的ライブラリをフル活用すると大容量ROM/RAMが必要になるハズです。フラッシュ大容量化、製造技術の細分化の流れは、マイコン高性能と低消費電力ももたらし、Amazon FreeRTOSを使用しても問題はなさそうです。

世界的な電気自動車化:EVシフトの動きは、マイコンに数年で激しい変化を与えます。弊社もCortex-M0\M0+コアに拘らず、STM32F1で使ったCortex-M3コアなどの更に高性能マイコンにも手を伸ばしたいと考えています。

ポイントは、FreeRTOSだと思います。その理由が以下です。

Amazon FreeRTOS対応のSTM32L475 Discovery kit for IoT Nodeのサイトで、AWS経由でどのようにクラウドに接続し、評価ボード実装済みの各種センサデータをグラウド送信する様子や、逆にグラウド側からボードLEDを制御する様子が英語Video(約11分)に紹介されています。
英語ですが、聞き取り易く、解り易いので是非ご覧ください。

Videoで使用したサンプルソフトも同サイトからダウンロードできます。殆ど出来上がったこのサンプルソフトへ、必要となるユーザ処理を追加しさえすれば、AWS IoT端末が出来上がります。

追加ユーザ処理は、FreeRTOSのタスクで開発します。タスクの中身は、初期設定と無限ループです。無限ループは、使用マイコン(Videoの場合はSTM32L4+)APIとFreeRTOS APIの組合せです。

つまり、従来マイコン開発に、新たにFreeRTOS API利用技術が加わった構成です。従来マイコン開発は、マイコンテンプレートで習得できます。但しFreeRTOS利用技術は、別途習得する必要がありそうです。

その他の細々したクラウド接続手続きは、通信プロトコル上の決まり文句で、独自性を出す部分ではありません。

マイコンテンプレートサイト、レスポンシブ化完了

その弊社マイコンテンプレートサイトのレスポンシブ化が完了しました。閲覧の方々が、PCやスマホで画面表示サイズを変えても、自動的に最適表示に調整します。

また、サイト運営側も従来サイトに比べ、ページ追加/削除が容易な構成に変わりました。より解りやすく充実したサイト内容にしていきます。動作テストを十分にしたつもりですが、ご感想、バグ情報などをメールで頂ければ幸いです。

Amazon、IoTマイコンへFreeRTOS提供

Amazon:アマゾンがFreeRTOSをカーネルにして、IoT端末とのクラウド接続、セキュリティ確保、将来的にOTA:Over The Airによるアップデート機能をライブラリで提供というニュースが入りました。

嬉しいのは、「FreeRTOS」と「OTA機能がRTOSで提供」されることです。

Amazon FreeRTOS

IoT端末とクラウドを接続するには、IoT通信プロトコルが必要です。BLE:Bluetooth Low EnergyやThreadが有力ですが、国内外の網側事情が異なるため、実質的なIoTプロトコル実装は間違いなく大変です。

もしこのIoT通信機能が、最大手アマゾンの無償ライブラリで提供され、マイコンUARTと同様にIoT Communication APIを使え、しかもセキュリティ対策済みであるならば、IoT端末は爆発的に普及するでしょう。普及の足かせとなっているIoT通信とセキュリティ問題が解決されるからです。

Amazon FreeRTOS
Amazon FreeRTOS利用イメージ (出典:記事、AWS)

現在Amazon FreeRTOSのハードウエアパートナーは、テキサス・インスツルメンツ:TI、マイクロチップ、NXP、STマイクロエレクトロニクスの4社で、NXPは、LPC54018 IoT Module、STMは、STM32L4 Discovery Kit IoT Node評価ボードでサポートするそうです。

NXP、STMいずれもかなり高性能MCU評価ボードを使っていますが、これは高機能IoTエンド端末(≒簡易スマホ)を想定しているからだと思います。FreeRTOSカーネルなので、ROM/RAMが少ない低価格IoTエンド端末にも実装できるハズです。

弊社ブログでも紹介してきたFreeRTOS自身は、様々なベンダの低価格MCUにも実装実績があります。

残念ながら弊社のFreeRTOSサンプルソフトは、NXPのLPCXpresso824-MAX上で完全動作しているとは言えませんが、近いうちにSTMのSTM32F103RB(Cortex-M3:64MHz、ROM/RAM:128KB/20KB)で再チャレンジし、新たにFreeRTOS版のテンプレートを開発できないか検討中です。

OTA機能

出荷後の組込みソフトを更新したいことは良くあります。但し、Windows更新でも失敗があるように、技術的にハイリスクで、また更新費用を顧客が負担してくれないこと(ノーリターン)も多いので、悩ましい事柄です。

Amazon FreeRTOSのOTAがRTOS関連のみか、または、RTOSにとってのアプリ、つまり開発ソフトも含むかは不明ですが、たとえRTOSのみであってもOTAが提供されれば好都合です。セキュリティ起因の不具合解消に役立つからです。

従来のベアメタル開発でもOTA関連の資料は、英語版で難解な記事はあります。しかし、私の場合は、結局現地でIDE書き換えの経験が多いです。リクスを少しでも下げたいのもあります。RTOSが機能提供してくれれば、責任転嫁(?)ですが助かります。

弊社FreeRTOSへの取組み

IoTクラウドサービスは、アマゾンのAmazon Web Services IoT:「AWS IoT」が先行し、マイクロソフトの「Azure IoT」、これらを追いかけるグーグルの「Weave」とアップルの「HomeKit」、その後ろにARMの「mbed Cloud」という状況だそうです。アマゾンは最先端を走っているのです。

先行アマゾンが2017年末に発表したAmazon FreeRTOSの詳細は不明ですが、IoT MCUのRTOSにFreeRTOSが有力であるのは、確実になりそうです。

FreeRTOSソフト開発の場合、タスク自体は簡単で単純な初期設定+無限ループ構成です。タスク同期やタスク通信にRTOS APIが使えれば、それ程難しくはないと(今は)考えています。この考え方が、タスクが増えたりプライオリティを変えたりしても正しいか、間違っているかは、実践経験あるのみです。

個人で実践できるFreeRTOS動作環境の構築が、弊社FreeRTOS版テンプレートの目標となりそうです。

評価ボードから読む最新マイコン技術動向

最新マイコンの評価ボードから、IoT向けMCU技術動向を考察します。参考にしたのは2017年後半開発の下記2種評価ボードです。

つい最近、2ボードはWebinarで解説されており充実内容でした。興味がある方は、上記リンクから探せばOn Demandでも見られると思います。英語ですが非常に参考になります。

CY8CKIT-062-BLE
CY8CKIT-062-BLE

私は、「ベンダ製評価ボードは、ハード/ソフト両方の早期開発レファレンスとすべきだ」と何度か説明してきました。この認識に基づき最新評価ボードから今後のIoT MCU技術動向を抽出したのが下記です。

リッチ表示、タッチパッド、大容量ストレージ、IoT無線通信、FreeRTOS

IoTマイコンには、以下5項目が現状MCU技術に加わると思います。

IoT MCU技術動向(2017年11月)
追加技術 概要
リッチ表示出力 2×16文字程度のLCD表示から、128×160ドットカラーTFTディスプレイなどよりリッチ表示が可能な出力。
タッチパッド入力 従来タクトスイッチから、タッチパッドなどのより柔軟なユーザインタフェース入力。
大容量ストレージ 小容量EEPROM or RAMから、ロギングデータ等の保存も可能なSDカードなどの大容量ストレージ。
IoT無線通信 UART/SCIから、IoTプロトコルに応じた間欠動作で低電力志向の無線通信。
FreeRTOS ベアメタル開発から、複雑なリアルタイム処理実現のためのRTOS開発。

※IoT通信は様々なプロトコルが乱立状態ですが、BLE/Thread両方サポートに集約されそうな気配です。
※RTOSもCMSIS_RTOS/mbed OS 5/FreeRTOSと様々ですが、FreeRTOS利用例が多いです。

5項目全てが追加される訳ではなく、現状MCUにIoT通信処理のみを追加したコスト重視IoT MCUと、全て追加した高機能IoT MCUの2タイプに分かれそうです。

2タイプのIoTエンド端末

IoT MCUで開発するデバイスを、ここではIoTエンド端末と呼びます。端末の方がイメージし易いからです。コスト重視IoT MCUは、低価格IoTエンド端末へ、高機能IoT MCUは、IoTの申し子となる高機能IoTエンド端末へ搭載されます。

IoT端末の多くはこの低価格タイプになると思います。

ADCなど従来MCUのアナログ入力にセンサを接続し、IoT通信でクラウドへセンサデータを定期的に送信します。低電力処理重視のためリッチ表示などは不要で、数年~10年程度はバッテリー動作可能です。

IoT通信機能は現状未実装ですが、ルネサスエレクトロニクスのOktoberfestコースターなどが実例です。通信機能搭載で、店員のスマホから飲み物の有無や温度が解るなどの使い方が想定できます。

Oktoberfestコースター
Oktoberfestコースター

つまり、IoTクラウドの5感センシング(視覚、聴覚、触覚、味覚、嗅覚)が主機能で、クラウド処理結果やユーザへのアクション指示は、スマホなどの別端末が行うのがこのタイプです。

*  *  *

高機能IoTエンド端末は、低価格端末機能に加え、リッチ表示ディスプレイでユーザに端末やクラウド解析結果なども表示可能で、ユーザが状況に応じて判断するためのタッチパッド入力なども備わっています。

端末データをローカルなSDカードなどのストレージへ蓄積し、一括してクラウド送信することや、ディスプレイ表示を状況に応じて変更するための画像データをローカル保存することもなどもできます。

IoT普及時の高機能端末がこれで、言わば簡易スマホ機能も備えた端末と言えます。最新評価ボードは、このタイプの開発レファレンスに使えるように設計されています。

実時間で複雑な並列動作が要求されるので、RTOS(FreeRTOS)が用いられます。

NXPのSwiss Army Knife Multi toolなどが実例です。

Swiss Army Knife Multi tool Block Diagram
Swiss Army Knife Multi tool Block Diagram

まとめ

最新MCU評価ボードから、現状MCUへの技術追加(強化)5項目を抽出しました。追加項目により低価格IoT MCUと高機能IoT MCUの2つに分け、IoTエンド端末イメージを示しました。

現状MCUにIoT無線通信を追加した低価格IoTエンド端末は、IoTセンサとして機能し通信プロトコルが確定すれば、現状技術でも実現性は高そうです。

簡易スマホ機能も備えた高機能IoTエンド端末は、新技術(IoT無線通信、FreeRTOS)や、従来MCUであまり使われなかったリッチ表示出力、パッチパッド入力、大容量ストレージ技術が強化されそうです。

リッチ表示出力や大容量ストレージには、高速大容量向きのSerial Peripheral Interface:SPIバス接続が有力です。センサ接続には、従来同様低速なInter Integrated Circuit:I2Cバスを使い続けるでしょう。

タッチパッド入力は、ベンダ提供の独自ライブラリを利用する形態になります。ベンダ毎にセンス能力やウエット耐性などに性能差が生じる可能性があります。

IoT通信処理とRTOSは、様々な仕様が混在中ですが、BLEとThread両用、FreeRTOSに収束しそうな気配があります。

mbed OS 5.4.0のLチカ動作、LPCXpresso824-MAXで確認

四半期毎更新のIoTマイコン向けRTOS、ARM mbed OS 5の最新版5.4.0がリリースされました。このmbed OS 5を使って、ARM mbed開発環境でBlinky:Lチカサンプルプログラムを、LPCXpresso824-MAX評価ボードで動作確認しました。

ARM mbed開発環境

ARM mbed開発環境は、オンラインでコンパイル環境が提供されます。ブラウザさえあれば、統合開発環境:IDEをPCへインストールすること無しにソフト開発が可能です。コンパイル出力を、USB経由で評価ボードへダウンロードすれば、動作確認も簡単です。

ARM mbed開発環境
ARM mbed開発環境

mbed OS 5が動作するCortex-M0+評価ボードは、現在6種あります(全74種対応中)。

mbed OS 5.4.0のBlinkyサンプルとFreeRTOS v8の比較

この6種評価ボードに、FreeRTOSで使用中のLPCXpresso824-MAXもありますので、mbed OS 5でLチカサンプルプログラムを作成し、FreeRTOSのそれとソース比較しました。

RTOS Blinky Comparioson
RTOS Blinky Comparioson

mbed OS 5は、Cをオブジェクト指向へ拡張したC++言語で記述します。

ハード初期設定などは、評価ボード選定時に(別の個所で)済ませるので、記述ソースはFreeRTOSに比べて少なくなります。FreeRTOSのSuspendedは、mbed OS 5では、waitingに相当します。また、mbed OS 5 APIの方が、全般的に短く記述できます。

mbed開発環境は、直ぐに試せて取っ付き易い反面、ボード差や詳細なRTOS処理内容が隠される(見えない)気がしますが、本来のアプリ早期開発には、こちらの方が細かいことは気にせずに良いのでしょう。また、ボード間の移植性も高まります(次章CMSISを参照)。

両RTOSのLチカリソース使用量比較は、止めておきます。FreeRTOSの方はDebug出力で、一方、mbed OSの方は(多分)Release出力で条件が違うと思うからです。ARM mbed環境のデバッグ方法は、いろいろありそうなので、今後調査する予定です。

CMSIS

CMSIS Structure
CMSIS Structure

CMSIS:Cortex Microcontroller Software Interface Standardは、Cortex IPコア開発元のARM規定のソフトウエア規格で、図が全体像(v4版)です(セムシイスと読むようです)。最上位アプリケーションと最下位Microcontrollerの間に、7種のCMSIS-xyzを規定します(CMSIS-RTOSなどCMSIS Software Packの緑色領域)。

CMSISの目的は、アプリ側(青緑領域)から見えるハードウエアCortexコア(灰色領域)の隠蔽です。ARM Cortexコアを使うMCU各社が、このCMSIS準拠でソフト開発すれば、各社間のアプリ移植問題は解決します。つまり、CMSIS準拠アプリならば、例えARMコア以外であっても、全てのMCUで同じアプリが動作するということです。

ARMは、Cortex IPコア販売でMCUハードウエアのデファクトスタンダードになりました。CMSISは、よりCortexコアを普及させ、さらにMCUソフトウエアのスタンダードを狙うARM戦略の1つでしょう。

本家本元のARMが開発するmbed OS 5は、CMSIS-RTOS準拠のAPIを持ちます。その結果が、Lチカソースにも表れていて、ボード移植性が高いのです。

弊社マイコンテンプレートも、図のCode Templateと同等!になれば、良いのですが…。