IoTデバイス向け高速軽量改ざん検出技術

NECが、IoTデバイス向け軽量改ざん検出技術を開発しました。以下の特徴があります。

  1. 機器動作に影響を与えない⾼速改ざん検知(2KB実装サイズ機能を、約6msecで検査)
  2. 改ざん検知機能⾃体の保護と軽量実装の両⽴(Cortex-M23/33のTrustZone活用、4KB以内で実装)

TrustZoneのSecure World

セキュリティ強化のARMv8-MプロセッサCortex-M23とCortex-M33には、TrustZoneと呼ぶメモリ保護領域:Secure Worldの作成機能があります。このSecure Worldがあることが前提条件です。

2KBサイズ機能を6msecで検査できるのは、検査領域の絞り込みと実行コードのみのシンプルな監視方法のためで、遅延がゆるされない搬送ロボットなどのIoT機器にも適用できるそうです。

高速改ざん検出(出典:NECサイト)
高速改ざん検出。2KB実装サイズ機能を、約6msecで検査可能。(出典:NECサイト)

Secure World内へ、改ざん検出機能、ホワイトリスト、サーバ通知機能合わせて4KB以内に実装できるので、メモリ容量が少ないIoT機器にも適用できるそうです。

改ざん検知機能⾃体の保護と軽量実装(出典:NECサイト)
改ざん検知機能⾃体の保護と軽量実装。改ざん検出機能、ホワイトリスト、サーバ通知機能合わせて4KB以内に実装できる。(出典:NECサイト)

高速かつ軽量のため、低電力消費で24時間監視とリアルタイム改ざん検出の結果、IoT機器の信頼性を高めることができます。

ARM Cortex-M23/33のTrustZoneを活かしたセキュリティ強化機能です。検査機能限定の実装方法などは、全てのMCUソフトウェア開発へも応用できます。

Secure World領域があってこその技術ですが、TrustZone無しのCortex-M0/M0+/M3へも使えれば嬉しいです。Intelは、古いCPU向けのSpectre対策パッチは提供しないそうですが、既に稼働済みのCortex-M0/M0+/M3機器に向けて、せめてものセキュリティ強化策として使えるかもしれません。

関連投稿

ARM Cortex-M23の特徴

NFC機能搭載マイコンLPC8N04、LPC800シリーズに追加

近距離無線通信(NFC)機能搭載のLPC8N04がLPC800シリーズに追加されました。
スマホで測定温度を表示するデモソフト付きのLPC8N04評価ボード:OM40002がNXPから直接購入可能(2304円)です。

LPC8xxシリーズラインナップとLPC8N04評価ボード

LPC8xxシリーズ
LPC8N04が追加されたLPC8xxシリーズMCU。コア速度の8MHz低速化、EEPROM、NFC/RFID、温度センサ搭載などの特徴がある。(出典:LPC800 Series MCUs)
LPC8N04評価ボード
LPC8N04評価ボード。Component Sideにコイン電池ホルダーがある。Top Sideは5×7 LED Arrayを搭載し動作表示。(出典:UM11082)

LPC8N04マイコンの特徴

  • 4電⼒モード(sleep、deep sleep、deep power-down、battery off)のARM 8MHz Cortex-M0+コア
  • 32KB Flash、8KB SRAM、4KB EEPROMを統合
  • 広範囲なタギング/プロビジョニング・アプリケーションをサポートするエナジーハーベスト機能付きNFC/RFID ISO 14443 Type A通信
  • 精度±1.5℃の温度センサを統合
  • 2個のシリアル・インターフェースと12個のGPIO
  • 1.72V〜3.6Vの動作電圧範囲と-40℃〜+85℃の周囲温度範囲
  • 低コスト、⼩フットプリントのQFN24パッケージ
LPC8N04ブロック図
LPC8N04のブロック図。従来LPC8xxシリーズと異なり、8MHz動作コア、NFC機能とEEPROM搭載などが特徴。(出典:Product data sheet)

スマホと連動した評価ボードの動作動画はコチラ

個人的には、従来の汎用LPC8xxシリーズとは異なり、NFCアプリケーション特化マイコンのような気がします。Cortex-M0+コア8MHzによる超低消費電力動作、EEPROM、NFC/RFIDなどがその理由です。面白いアプリケーションが期待できそうです。

マイコン評価ボード2018

マイコン装置を開発する時、ベンダ提供のマイコン評価ボードは重要です。良いハードウェア、良いソフトウェアは、評価ボードをレファンレンスとして活用した結果生まれるからです。

今回は、ARMコア対Non ARMコアという視点で最新マイコン評価ボードを分析します。掲載マイコン評価ボードは下記です(価格は、調査時点の参考値)。

デバッガの2機能

ベンダ評価ボードには、デバッガ付属とデバッガ無しの2タイプがあります。デバッガは、

  1. デバッグ機能:ソースコードのダウンロード、ソースコード実行とブレークを行う
  2. トレース機能:プログラムカウンタ実行履歴を記録する

の2機能を提供します。

トレース機能は、プログラムカウンタ遷移を記録し、ハード/ソフトの微妙なタイミングで発生するバグ取りなどに威力を発揮します。が、本ブログで扱うマイコンでは利用頻度が低く、サポートされない場合もありますので、デバッグ機能に絞って話を進めます。

各社が独自コアマイコンを供給していた頃は、各社各様のデバッガが必要でした。しかし現在は、ARMコアマイコンとNon ARMコアマイコンの2つに大別できます。

ARMコアマイコンの評価ボード

ARMコア評価ボードは、ARM CMSIS規定のSWD:Serial Wire Debugというデバッグインタフェースでコアに接続します。SWDを使うと、他社ARMコアとも接続できます。このため、評価ボードのデバッガ部分と対象マイコンを切り離し、デバッガ単独でも使えるように工夫したものもあります。

ARMコア評価ボードの多くは、対象マイコンにSWDインターフェイスのデバッガが付属しています。これは、対象マイコンが変わってもデバッガは全く同じものが使えるので、量産効果の結果、デバッガ付き評価ボードでも比較的安価に提供できるからです。

CY8CKIT-146
SWDデバッガ付属評価ボードCY8CKIT-146 (出典:CY8CKIT-146 PSoC® 4200DS Prototyping Kit Guide)

また、統合開発環境:IDEもEclipseベースを採用すれば、実行やブレークのデバッガ操作方法も同じになり、例え異なるベンダのARMコアでも同じようにデバッグできるので開発者にも好評です。

以上が、マイコンのデファクトスタンダードとなったARMコアとEclipseベースIDEを多くのベンダが採用する理由の1つです。

Non ARMコアマイコンの評価ボード

一方、Non ARMコアマイコン評価ボードは、本来コア毎に異なるデバッガが必要です。そこで、評価ボードには対象マイコンのみを実装し、その購入価格は安くして、別途デバッガを用意する方法が多数派です。

機能的には同じでもコア毎に異なるデバッガは、サポートするコアによりデバッガ価格が様々です。例えば、ルネサスのE1デバッガは、RL78、RX、RH850、V850の4コアカバーで12600円ですが、RL78とRXコアのサポートに限定したE2 Liteデバッガなら、7980円で購入できます(2018年3月の秋月電子価格)。

RL78/G11評価ボードとE1
RL78/G11評価ボードとE1

ルネサスもE1/E2 Liteデバッガ付きのRX用低価格評価ボード2980円を2018年3月に発表しました(マルツエレック価格)。

E1、E2 Liteデバッガ付きRX評価ボード
E1、E2 Liteデバッガ付きRX評価ボード (出典:Runesasサイト)

※RX評価ボードは、無償CコンパイラROM容量制限(≦128KB)に注意が必要です。入手性は良いので容量制限を撤廃してほしいです。

個人でマイコン開発環境を整える時は、購入価格は重要な要素です。マイコンがARMコアかNon ARMコアか、デバッガ搭載かなどにより、評価ボード価格がこのように異なります。

標準インターフェイスを持つマイコン評価ボードの狙い:プロトタイピング開発

最近の傾向として評価ボードの機能拡張に、Arduinoコネクタのシールド基板を利用するものが多くなりました。様々な機能のシールド基板とその専用ライブラリが、安く入手できることが背景にあります。

ARMコア、Arduinoコネクタ、EclipseベースIDEなどの標準的インターフェイスを持つマイコン評価ボードの狙いは、色々なマイコン装置の開発を、低価格で早期に着手することです。既存で低価格なハード/ソフト資産の入手性が良いのが後押しします。

中心となるマイコン評価ボードへ、機能に応じたシールド基板を実装し、早期にデバッグしてプロトタイピング開発し製品化が目指せます。

CY8CKIT-046
Arduinoコネクタを2個持つCY8CKIT-046、緑線がArduinoコネクタ (出典:CY8CKIT-046 Qiuck Start Guide)

ルネサスもEclipseベースのIDE:e2Studioを提供中ですが、これは世界中のEclipse IDEに慣れた開発者が、ルネサスマイコンを開発する時に違和感を少なくするのが主な狙いだと思います。Non ARMルネサスマイコン開発の不利な点を、少しでも補う方策だと推測します。

関連する過去のマイコン評価ボード投稿

あとがき

ルネサス最新汎用マイコンRL78/G11は気になります。従来のRL78/G1xに比べアナログ機能を大幅に強化し、ローパワーと4μsの高速ウェイクアップを実現しています(詳細情報は、コチラ)。開発資料の多くがe2Studioで、CS+ではありません。Non ARMコアなので他社ARM比、特に優れたマイコンの可能性もあります。

 

汎用マイコンかアプリケーション特化マイコンか

大別するとマイコン:MCUには、汎用マイコンとアプリケーション特化マイコンの2種類があります。

弊社は、下記理由から汎用マイコン:General Purpose MCUを主として扱います。

  1. 対象ユーザとマイコンが多い
  2. 低価格で入手性の良い評価ボードが多い → オリジナルハードウェア開発にも役立つ
  3. 無償開発環境:IDEでもマイコンソフトウェア開発ができる
  4. 応用範囲が広い汎用マイコン開発の方が、顧客、開発者双方にとって有益である

汎用マイコンとは何か?に対しては、マイコンベンダ各社サイトのGeneral PurposeのMCUを指します。一方、アプリケーション特化マイコンとは、モータ制御、ワイヤレス制御、5V耐性などが代表的です。

かつては5Vマイコンが普通でしたが、現在は3.3V動作以下です。その結果、5V耐性がアプリケーション特化マイコンにカテゴライズされました。このように、時代や多数派に合わせて汎用の定義は変わります。高度なセキュリティや無線通信が必須のIoTマイコンも、いずれこの汎用マイコンにカテゴライズされると思います。

本投稿は、4番目の理由の追風となる記事を見つけたので紹介します。

汎用マイコンの動向記事

  1. “G”と”L”で考える発展途上の産業エレクトロニクス市場、2018年3月13日、EE Times Japan
  2. 産業FAは「汎用」「多数」の時代に、国産マイコンが変化を支える、2018年2月5日、TechFactory

最初の記事の”G”は、Global、”L”は、Localを意味します。マイコンベンダも、マイコンを使うユーザも、どのマイコンを使うかは暗中模索で混迷しているが、いずれはLocalからGlobalへ移行すると筆者は考察しています。

2の記事は、産業用FAが専用、少量装置から、AI:人工知能を利用した汎用、多数装置の時代に入ったと分析し、ルネサスRZ/AシリーズにAI機能を組込んでこの時代変化に対応すると宣言しています(関連投稿のSTMはコチラ、ルネサスはコチラを参照)。

どちらの記事も、アプリケーション特化マイコンより汎用マイコンの方が、より多く利用されると予想しています。マイコンベンダにとっても、汎用品で大量生産ができ供給コストも下げられます。

お勧めはプロトタイピング開発

FPGAにソフトウェアIPを組込み、より柔軟制御を目指したことや、高分解能ADCマイコンで精密測定などの開発も行いましたが、技術的に得るものは多くても開発時間が予定より長くなり、結局収支は赤字だった経験があります。

パソコンCPUと同様、汎用マイコン処理能力やセンサ能力も半導体製造技術とともに年々向上します。特に処理能力が必要なIoTマイコンは、コア動作速度を上げる、ディアルコアを採用するなど、ここ数年で急激に向上しています(PSoC6は、Cortex-M0+ 100MH動作、Cortex-M4 150MHz動作)。

弊社も今後の組込開発は、汎用マイコンを使い、より早く低コストで装置化する方が、顧客、開発側双方にとって有益だと考えます。開発期間が長いと、その間により高性能マイコンが発売されたりするからです。つまり、プロトタイピング開発をお勧めします。

プロトタイピング開発した装置が仮に能力不足であった場合は、その不足部分のみに改良を加える方がリスクも低く、確実に目的を達成できます。プロトタイピングの意味は、この能力不足部分を明確にし、低コスト低リスクで成功への道筋を探すことも含まれています。

汎用マイコンテンプレート

開発の立ち上げを早くすることがプロトタイプ開発の第1歩です。弊社マイコンテンプレートは、

  • 汎用マイコンの評価ボード上で動作確認済み
  • 複数サンプルソフトウェアをそのまま使った時分割の並列処理可能
  • 開発のつまずきを防ぐ豊富なTips満載のテンプレート説明資料添付

などの特徴があります。汎用マイコンテンプレートを活用し、効率的なプロトタイピング開発ができます。

NXPのMCUラインナップ2018春

旧Freescaleの「Kinetisマイコン」と、元NXPの「LPCマイコン」の2つが統合した新生NXPのARMコアMCUラインナップは、2018年3月現在、KinetisとLPCの2つに別れてサイトに掲載中です。

NXP ARMCortex-M MCUs Site
NXP ARMCortex-M MCUs Site

従来ユーザには、この方が使いやすいと思います。しかし、同じCortex-Mコアでも2種類あり、困惑するユーザもいるのではと思っていました。そんな時、”Kinteis”と”LPC”を統合したNXPのCortex-Mコア資料を見つけたので示します。

その資料は、BRKINLPCPWRMCU REV 1(Oct. 2017)REV 0(Oct. 2016)です。資料から「Kinetisマイコン」と「LPCマイコン」を横断的に概観します。

NXP Cortex-MコアMCUシリーズ構成

BRKINLPCPWRMCU REV1 (Oct. 2017)のP8とP9をブログ掲載用に縦長に加工、加筆したのが下図です。

MCU Solutions for Every Design (Source: 2017)
MCU Solutions for Every Design (Source: 2017)

Kinetisは、V/K/E/L/EAの5シリーズ、LPCは、800/1100/54000の3シリーズから構成されています。各シリーズの特徴(オレンジ字)と概要(黒字)、それらを示すアイコンが解り易く記載されています。

KinetisとLPCの用途別構成

BRKINLPCPWRMCU REV0 (Oct. 2016)のP4、汎用/アプリケーション向けなど用途によるKinetisとLPCの分類が下図です。

Kinetis and LPC MCUs Offer a Range of Options (Source: 2016)
Kinetis and LPC MCUs Offer a Range of Options (Source: 2016)

2016年資料の方が、Kinetis、LPCともに、2017年資料より細かなMCUシリーズが解ります。

2017年と2016年資料比較

2016年資料はKinetisとLPCマイコンの両方が同居する分野もあり、整理統合するのでは?との疑念をユーザに抱かせます。例えば、General PurposeでCost-Effective and Small Form Factor分野には、LPC81x/82xとKinetis KL02/03/05の両方があります。同じ用途に、ほぼ同じ3種類のMCUを供給するのは新生NXPにとって非効率のハズです。

この疑念を抱かないように改版したのが、2017年資料かもしれません。但し、2017年でもLPC1500/1700/4000シリーズや一部のKinetisシリーズが掲載されていないのが気になります。効率化の第一歩かもしれません。

なぜアメリカ政府はBroadcomのQualcomm買収を阻⽌したのか︖”というGIGAZINE記事を読むと、理由は仮にBroadcomがQualcomを買収した場合、Broadcom負債の返済のため、短期的な収益性を重視し5Gや6Gなどの次世代通信規格の開発競争でQualcommが果たすべき長期的な研究開発を切り捨てる可能性があるためだそうです。

買収を免れたQualcomによるNXP買収が完了すれば、この非効率な同居マイコン部分にメスが入るかもしれません。STMicroelectronicsは、STM32マイコンに対して2018年から10年間の供給を保証しています。NXPも同様のマイコン製品longevity:寿命アナウンスが欲しいです。

NXP LPC111xテンプレートV2改版

ARMコア制御の入門マイコンとして適しているNXP LPC1114/5マイコンのテンプレートを改版しました。

このLPC111xテンプレートV2は、従来テンプレートの必須機能のみを実装したTiny(小さな)テンプレートの適用、最新開発環境MCUXpresso IDE(v10.1.1_606)での動作確認が改版目的です。

近日中に旧LPC111xテンプレートご購入者様で、無料アップグレード対象者様には、お知らせとLPC111xテンプレートV2の無償配布を行います。暫くお待ちください。

LPC1114とLPC1115の違い

NXP LPC111xテンプレートの対象マイコンは、ARM Cortex-M0コア50MHz動作のLPC1114(ROM/RAM=32KB/8KB)とLPC1115(ROM/RAM=64KB/8KB)です。

以前の投稿で紹介したNXPマイコンの推薦開発環境をLPC1114/5でフィルタしたものが下図です。

LPC1114 and LPC1115 Recommended Software
LPC1114 and LPC1115 Recommended Software

※赤線は、評価ボード搭載マイコン、青線は、単体購入可能マイコン

NXPのLPC1100シリーズは、LPC1110/11/12/13/14/15の6種の型番と、同じ型番でも低消費電力の技術進化によりLPC1100/1100L/1100XLの3つの世代があるので複雑です(通常→L→XLでより低消費電力)。

但し本ブログは、個人でも入手性が良く低価格、良い評価ボードもあるマイコンが対象です。このふるいにかけると、フィルタの下線を付けたLPC1114/302、消費電力LPC1100L搭載のNXP評価ボードLPCXpresso1114(秋月電子2000円)、デバイス単体では、DIP28ピンパッケージLPC1114/102、消費電力LPC1100L(400円)とSOP28ピンパッケージLPC1114/102、消費電力LPC1100L(190円)の3種類がそれぞれ秋月電子より購入できるので対象となります。
※LPC1114/102は、どちらもRAM=4KBで評価ボード搭載のLPC1114/302の8KBの半分に注意

LPC1115は、LPC1114のROMを2倍の64KBにし、電力消費を第3世代に進化させたマイコンです。NXP評価ボードのLPCXpresso1115には、LPC1115/303、消費電力LPC1100XLが搭載されています。
※型番/xxxの最後の数字が消費電力を示し、1が通常、2がL、3がXLを意味します。

LPCXpresso1115の入手性はあまり良くありません。しかし、開発環境MCUXpresso IDEでAvailable boardsに現れる評価ボードはLPCXpresso1115とLPCXpresso11C24のみで、LPCXpresso1114はありません。

MCUXpresso IDE Available Boards
MCUXpresso IDE Available Boards

従って、入手性が良いLPCXpresso1114評価ボードで新プロジェクトを作るには、評価ボードからでなく、Preinstalled MCUsからLPC1114/302を選択する必要があります。

LPCXpresso1114のMCUXpresso新規プロジェクト作成方法

Select LPC1114/302
Select LPC1114/302

Preinstalled MCUsから評価ボード搭載のLPC1114/302選択後>Next>LPCOpen – C Project>Project name追記と進み、Import…をクリックします。

Click Import...
Click Import…

ArchiveでLPCOpenからlpcopen_v2_00a_lpcxpresso_nxp_lpcxpresso_11c24.zipを選択しNextをクリックします。

Import lpcopen_v2_00a_lpcxpresso_nxp_lpcxpresso_11c24.zip
Import lpcopen_v2_00a_lpcxpresso_nxp_lpcxpresso_11c24.zip

使用ライブラリにlpc_chip_11cxx_libとnxp_lpcxpresso_11c24_board_libを選択後、ダイアログに従っていけば評価ボードLPCXpresso1114/302上に新プロジェクトが作成できます。

LPCXpresso1114とLPCXpresso1115評価ボードの回路図は全く同じです。違いは、搭載ターゲットマイコンのみでIO割付も同じ、PLC-Linkと呼ぶ評価ボード付属デバッガも同じです。またImportして使用するライブラリも同じです。

ならば、Available boards のLPCXpresso1115を選択して新プロジェクトを作成し、LPC1114評価ボードへダウンロードも可能だと思われるかもしれません。しかし、これはデバッガ接続時にエラーが発生します。

MCUXpressoの右下にターゲットマイコンNXP LPC1114/302が示されており、これ以外へはデバッガ接続ができない仕組みになっています。

Target NXP LPC1114/302
Target NXP LPC1114/302

このため、同一ソースコード、使用ライブラリも同じであっても、ターゲット毎にプロジェクト作成が必要です。逆に、LPC1114評価ボードで動作確認したソースコードでライブラリも同じなら、ターゲットさえ変えれば、LPC1115評価ボードでも動作すると言えます。違いは、ROM容量のみだからです。

評価ボード搭載のLPC1115/303とLPC1114/302の機能差はROM容量以外にもありますが、LPC111xテンプレートの応用例は、この差が生じる機能は使用しておりません。

従って、テンプレート応用例のシンプルテンプレート/Baseboardテンプレートを、LPC1114評価ボード、LPC1115評価ボードそれぞれに提供します。LPC111xテンプレートProject Explorerの様子が下図です。

LPC111xTemplate Project Explorer
LPC111xTemplate Project Explorer

LPC1100シリーズの位置づけと開発環境の良さ

NXP ARMコアエントリレベルのLPCマイコンラインナップを、LPC Cortex-M microcontrollers — Discover the differenceより抜粋しました。

LPC1100 Series (Source:LPC Cortex-M microcontrollers — Discover the difference)
LPC1100 Series (Source:LPC Cortex-M microcontrollers — Discover the difference)

LPC1100シリーズは、最も基本的で適用範囲も広いCortex-M0コアマイコンです。電力効率は、LPC800シリーズのCortex-M0+に及びませんが、低電力技術の進化でCortex-M0+に近い低電力動作も可能です。Cortex-M0とM0+の機能差は、コチラの投稿も参照してください。

また、LPCOpenライブラリもLPC8xxに比べ安定(≒バグ無し)しています。DIPやSOPパッケージの入手が容易で低価格、手実装も可能です。LPCXpresso1114/5評価ボードとLPC111xテンプレートを使えば、ARM Cortex-M0マイコンの早期習得とプロトタイピング開発ができると思います。

評価ボードの半分は、切り離して単体デバッガとしても使えます。デバッガとターゲットの接続は、ARMコア標準のSWDインタフェースなので、LPCマイコン以外の他社ARMコアにも使うことができます。100mAまでの電力供給と、実質4本の接続でデバッグとオブジェクトダウンロードが可能です。

LPC111xテンプレートV2のまとめ

改版したNXP LPC111xマイコンテンプレートV2構成を示します。

テンプレート名 対象マイコン(ベンダ/コア) テンプレート応用例 評価ボード:動作確認ハードウェア
LPC111xテンプレートV2(LPCOpen v2.00a利用) LPC1114(NXP/Cortex-M0) ・シンプルテンプレート
・Baseboardテンプレート
LPCXpresso1114(LPC1114/302)
+ Baseboard
LPC1115(NXP/Cortex-M0) ・シンプルテンプレート
・Baseboardテンプレート
LPCXpresso1115(LPC1115/303)
+ Baseboard

ARM Cortex-M0コアのLPC1114/302(ROM/RAM=32KB/8KB)実装のLPCXpresso1114評価ボードは、低価格で入手性良く、開発環境MCUXpressoも他社EclipseベースIDEと比べ使い勝手良く、ライブラリも安定しています。また、評価ボードとBaseboardを接続すれば、色々な周辺回路制御も手軽に学べます。

今回の改版でテンプレート本体は、より解り易く、利用し易くなりました。テンプレートを使うと、複数のサンプルソフトをそのまま流用した並列処理が簡単に実現できます。

テンプレートの特徴や仕様は、LPC111xテンプレートサイトを、使い方などはサイトのテンプレート関連情報を参照してください。

ARMコア制御の入門用として適しているLPC111xテンプレートとLPC1114評価ボードは、Cortex-M0の習得、プロトタイピング開発のお勧めキットです。

STM32マイコンへ深層学習実装、「走る」「歩く」動作判断

日刊工業新聞3月7日電子版掲載の日本で2桁成長を狙っているSTマイクロエレクトロニクス、このSTMが、STM32シリーズマイコンへディープニューラルネットワーク:DNN(深層学習)を実装し、マイコンの「走る」「歩く」状態を正確に判断するデモを展示しました。

STM32F7(Cortex-M7)搭載時計でユーザ動作を正確に判断(記事より)
STM32F7(Cortex-M7)搭載時計でユーザ動作を正確に判断(記事より)

マイコンDNN実装の3課題と解決ツール

記事によるとSTM32マイコンへDNNを実装する時の3つの課題、

  • マイコン実装のためのコードサイズ実現
  • ソフトウェア最適化
  • マイコンとクラウドの相互運用性

解決のため、STM32CubeMx.AI(現在αバージョンで2018年後半リリース予定)ツールを使うそうです。

このSTM32CubeMx.AIは、STM32CubeMXの機能拡張版だと思います。
現在のSTM32CubeMXも、全てのSTM32シリーズで共通に使えるAPIを自動生成します(STM32CubeMXのTipsはコチラの投稿も参照)。機種共通API生成とソフトウェア最適化は、既にSTM32CubeMXでも実現済みです。

従って、弊社STM32Fxテンプレートも、STM32CubeMXを使えばSTM32シリーズ全般にテンプレートが適用できるハズです(STM32F0とSTM32F1のみ実機検証済み。APIが共通なので機種差は、インクルードするヘッダーファイルなど数点のみ。他機種は未検証です念のため…)。

※STM32マイコンの開発環境は、弊社ブログのカテゴリで、“STM32マイコン”をクリックすると投稿がカテゴライズされ読みやすくなります。投稿ページの初めの方に開発環境構築方法などの投稿が集まっています。

STM32マイコン重点分野

電子版によるとSTM32マイコンは、自動車、産業用、スマートホームなどのIoT分野を重点にして市場拡大を狙うそうです。STM32マイコンに、上記クラウドAI技術が適用され、その開発環境の使い勝手も良いとなると、かなり期待ができます。

IoTマイコンとセキュリティ

NXPは、2018年3月2日Bluetooth 5/Thread/Zigbee 3.0サポートのコンシューマ/産業IoT向けセキュリティ強化ARMディアルコア(M4とM0+)搭載のKinetis K32W0x MCUを発表しました。

Kinetis K32W0x Block Diagram
Kinetis K32W0x Block Diagram

この新製品は、以前投稿したCypressのPSoC 6:Cortex-M4とCortex-M0+のディアルコア、セキュリティ強化、BLE 5サポートのCypress PSoC 6によく似た製品です。

Cypressに続きNXPもARMディアルコアを採用したことで、強固なセキュリティが必須のIoTマイコンは、シングルコアよりもディアルコア搭載が標準になりそうです。IoTマイコンのセキュリティ関連情報を調査し対処方法を検討します。

PSoC Creator 4.2

PSoC 6搭載評価ボードCY8CKIT-062-BLEPSoC Creator動画では、デュアルコアのIDEでの扱い方やデバッグ方法などがいまいち不明でしたが、最新版PSoC Creator 4.2(2018年2月13日)で正式にPSoC 6がサポートされました。コアにより別々のフォルダにソースコードを作成し、デバッガはどちらかの一方のコアに接続します。

Cypress PSoC Creator 4.2 for PSoC 6 (Source, Creator Release Notes)
Cypress PSoC Creator 4.2 for PSoC 6 (Source, Creator Release Notes)

各コアの役割や機能配分が明確でないと、シングルコアよりもデバッグが大変になりそうです。

色々なセキュリティ強化方法

今年初めから騒がれた投機実行機能の脆弱性起因の対策は、まだ収束していません。Cortex-M系コアはこの脆弱性に関してはセーフでしたが、後追いが宿命のセキュリティ対策には終わりがありません。組込みマイコンにも、常時アップデートができるOTA:Over The Air更新機能が必須になるかもしれません。

Windows更新でも失敗があることを考えると、このOTA機能はリスクが高く、マイコン処理能力や導入コストもかなり必要です。

一方Maximは、セキュア認証専用ICを1ドル未満で提供することを発表しました。言わばMCU固有の指紋を使うことで安価にセキュリティ強化が可能です。評価キットも用意されています。

NXPもA71CHで同様のICと開発キットを用意しています。

少し古い資料ですが2012年11月発表の、“つながる時代のセキュリティ、チップと組み込みOSの連携で守る”を読むと、セキュアブート、効率的な暗号化、仮想化を使ったデータ保護サブシステムをセキュアに分離する技術など、半導体チップで提供されるセキュリティ機能を最大限に活用すべきだとの指針が示されています。

MCUセキュリティ対策の費用対効果

2年から数年でハードウェアが更新される個人情報満載のスマホやユーザ自身がセキュリティ対策を行うパソコンと、組込みマイコン:MCUのセキュリティ対策は、守るべき情報内容、管理運営方法が大きく異なります。

IoTマイコンのソフトウェアやハードウェア開発能力だけでなく、導入するセキュリティ対策の費用対効果を見極めるスキルも必要になりそうです。本命がハッカー次第で変わるなど、セキュリティは厄介で面倒な技術です。

NXP LPC8xxテンプレートV2.5改版

小ROM/RAM向けに従来マイコンテンプレートの必須機能のみを実装したTiny(小さな)テンプレートは、テンプレート本体処理が解り易いと好評です。ルネサスRL78/G10やSTM32Fxテンプレートには既に適用済みで、販売各マイコンテンプレートの改版を機に、順次この好評なTinyテンプレートへ変更したいと考えています。

LPC8xxテンプレートV2.5は、Tinyテンプレートの適用、対象マイコンの追加、シールドテンプレートの開発予告、この3つを目的に改版しました。

RL78/G10(ROM/RAM=4KB/512B または 2KB/256B)とLPC810(ROM/RAM=4KB/1KB)

小ROM/RAMで本ブログ対象のマイコンは、ルネサスRL78/G10とNXPのLPC810です。
※RL78/G10へ適用済みのTinyテンプレートは、コチラの投稿を参照してください。

16ビットのルネサスS1コアRL78/G10と違い、LPC810は僅か8ピンDIPパッケージですが、中身は32ビットARM Cortex-M0+コアですので、RL78/G1xのように500B以下でテンプレート実装はできません。

テンプレート本体は同じ単純なC言語ですが、機能させるための必須ライブラリ量が、ルネサス独自開発S1コアとARM Cortex-M0+コアでは大きく異なるからです。

そこで、LPC810テンプレートに限り前回投稿のコンパイラ最適化を“最適化なし(O0)”から“1段階最適化(O1)”へ変更したところLPCOpenライブラリv2.15利用debug configuration時、ROM=2460B、RAM=12Bに収めることができました(テンプレート応用例としてWDT:ウオッチドックタイマ制御は実装)。

LPC810 Template by LPCOpen v2.15 (Optimize -O1)
LPC810 Template by LPCOpen v2.15 (Optimize -O1)

残りのROM1.6KB、RAM1KBへユーザ処理を追加すればアプリケーション開発が可能です。この残り量でも、最適化(O1)の結果、結構なユーザ処理を記述できます。

LPC810は、入手性の良いNXP評価ボードがありません。そこでLPC810テンプレートのみは、上記1段最適化でコンパイル成功したLPC810テンプレートプロジェクトを提供します。LPC810独自開発ボードへの実装方法は、前回投稿を参照してください。

LPCOpenライブラリv2.15採用理由

LPC8xxテンプレートV2.5では、LPCOpenライブラリv2.15(2015/01/08)を用いました。主な採用理由は、2つです。勿論これ以外の開発環境は、最新版MCUXpresso IDE(v10.1.1_606)、Windows 10(1709)です。

  1. LPCOpenライブラリv2.15の方が、同じソースコードでもコンパイル出力が小さい
  2. 原因不明のリンカーエラーが発生する時がある

先に示したLPC810ソースコードでLPCOpenライブラリのみv2.19に変更した最適化結果が、ROM=3024B、RAM=16Bです。

LPC810 Template by LPCOpen v2.19 (Optimize -O1)
LPC810 Template by LPCOpen v2.19 (Optimize -O1)

また、v2.19では、v2.15でコンパイル成功するソースコードでも、下記原因不明のリンカーエラーが発生することがあります。

LPCOpen v2.19 Linker Error
LPCOpen v2.19 Linker Error

LPCOpenライブラリv2.19起因のこの1/2の現象は、同じソースコードでv2.15と比較しないと判明しません。

LPC8xxマイコン開発でつまずいている開発者の方は、是非LPCOpenライブラリv2.15で確かめてください。※LPCOpenライブラリは、v3系が最新版ですが、v2.9からのバグは継続していると思います。

LPC824(ROM/RAM=32KB/8KB)テンプレート応用例はシンプルテンプレート

LPC824は、十分なROM/RAM=32KB/8KBがありますので、MCUXpressoデフォルトの“コンパイラ最適化なし(O0)”でテンプレート実装ができます。

テンプレート応用例として、NXPのLPCXpresso824-MAX評価ボード実装の3色LEDとユーザSWで動作するシンプルテンプレートを提供します。Baseboardテンプレートは、LPCOpenライブラリバグのため、今回は提供を見合わせます。
※LPC824のLPCOpenライブラリバグに関してはコチラの投稿を参照してください。

LPCXpresso824-MAXは、Arduinoシールドコネクタを実装しています。ここへ今後のマイコン開発で必要性が高いSPIインタフェースのシールドを使ったテンプレート応用例の方が、Baseboardで応用例を示すより実用的だと考えています。これが、今回LPC824をシンプルテンプレートのみで見切り発車的に発売するもう1つの理由です。シールドテンプレートは、次版で提供予定です。

NXP LPC8xxマイコンテンプレートV2.5のまとめ

V2.5改版のLPC8xxマイコンテンプレート構成一覧を示します。

テンプレート名 対象マイコン(ベンダ/コア) テンプレート応用例 評価ボード:動作確認ハードウェア
LPC8xxテンプレートV2.5
(LPCOpen v2.15利用)
LPC810(NXP/Cortex-M0+) WDT実装(1段最適化プロジェクト) なし(テンプレートプロジェクト提供)
LPC812(NXP/Cortex-M0+) シンプルテンプレート
Baseboardテンプレート
LPCXpresso812
+ Baseboard
LPC824(NXP/Cortex-M0+) シンプルテンプレート
(シールドテンプレート※次版予定)
LPCXpresso824-MAX
(+SPIシールドテンプレート※次版予定)

前版V2.1と比べると、以下の特徴があります。※V2.2~2.4は、欠番です。念のため…。

  • 対象マイコンにLPC810とLPC824が加わり、LPC8xxテンプレートらしくなった(テンプレート本体はLPC8xxで共通)
  • テンプレート本体処理が解り易く、ご購入者様の応用や変更が容易となった
  • LPC824はテンプレート応用例がシンプルテンプレートのみだが、LPCXpresso824-MAX評価ボード単独で全ての動作確認可能
  • 今後LPCXpresso824-MAXのようなArduinoシールドコネクタ付き評価ボードは、SPIインタフェースシールドで機能拡張予定(従来はBaseboard機能拡張)

あとがき

マイコン内蔵周辺回路とGPIOをマトリクススイッチで接続するLPC8xxシリーズマイコンの狙いは、8/16ビットマイコンのARM32ビット置換え市場です。

そのためか、または前述のLPCOpenライブラリバグのためかは不明ですが、LPCOpenライブラリ利用よりもレジスタ直接アクセス方式のCode Bundleライブラリ利用がNXP推薦(SDK)です。

テンプレート本体は、利用ライブラリに依存しないC言語開発ですので、どのライブラリを利用しても適用可能です。しかし弊社は、他のCortex-Mシリーズコアと同様、LPC8xxシリーズもLPCOpenライブラリ利用が本来の開発姿だと思いLPCOpenライブラリのバグが取れるのを昨年から待っていました。

今回LPC8xxテンプレートV2.5への改版に際し、このバグ解消を待つよりも、LPC810とLPC824への対象マイコンを増やすこと、高速なSPIインタフェース利用テンプレートの開発予告の方が重要だと判断しました。

ベンダ提供のマイコン評価ボードは、Arduinoシールドコネクタ付きが一般的になりました。弊社も従来のBaseboard応用例よりも、SPIシールドを利用したテンプレート応用例の提供へ移行します。SPIインタフェースの重要性はマイコン技術動向(SPI/I2C)コチラの投稿を参照ください。

近日中にLPC8xxテンプレートご購入者様で、無料アップグレード対象者様には、お知らせとLPC8xxテンプレートV2.5の無償配布を行います。暫くお待ちください。

独自開発ボードのMCUXpressoプロジェクト作成方法

今回はNXP評価ボード以外の“独自開発マイコンボード”を使って、MCUXpressoの新規プロジェクトを作成する方法を、LPC810を例に示します。

New Project by Available boards
New Project by Available boards

上図NXP評価ボードを使ったMCUXpressoの新規プロジェクト作成は簡単です。現在LPC8xxマイコンには、6種のNXP評価ボードがあり、これらの中から使用ボード選択し、Nextクリックでダイアログに従っていけば新規プロジェクトが作成できます。

Preistalled MCUsプロジェクト作成

一方、LPC810(ROM/RAM=4KB/1KB)で独自開発したマイコンボードへ新規プロジェクトを作成する場合は、Preinstalled MCUsからLPC810を選びます。

New Project by Preinstalled MCUs
New Project by Preinstalled MCUs

Nextクリック>LPCOpen – C Project>Project name追記>Import>BrowseでLPCOpenライブラリをImportします(最新版LPCOpenライブラリはv3.02ですが、ここではMCUXpresso IDE v10.1.1 にプリインスト済みのv2.19を使っています)。

Import LPCOpen Library
Import LPCOpen Library

Importするのは、lpc_chip_8xx (lpc_chip_8xx/)です。lpc_board_nxp_lpcxpresso812は、NXP評価ボード利用時、lpc_chip_8xx関数を利用したマクロ関数です(マクロ関数は後述)。

インポートが完了するとNew Projectダイアログに戻ります。ここでLPCOpen Chip Library Projectのlpc_chip_8xx_libの_lib部分を削除すると、Nextボタンが“有効”になるのでクリックします。ポイントは、_libを削除することです。削除しないと、Nextは無効のままで先に進めません。

Import lpc_chip_8xx
Import lpc_chip_8xx

この後は、デフォルト設定のままでNextを何回かクリックすれば、独自開発ボードでの新規プロジェクトが作成できます。

なおLPC810は、ROM4KB、RAM1KBと極少ですのでデフォルトで使用となっているMTBやCRPは未使用に変更すると良いでしょう。

ちなみに、MTB、CRP未使用でLPC810へ弊社LPC8xxマイコンテンプレートのみを実装した時のメモリ使用量は、ROM88%、RAM2%です(debug configuration時)。これでは、残り部分へユーザ処理を追加するとすぐに容量オーバーになります。

対策は、コンパイラ最適化をデフォルトの“最適化なし(O0)”から“、1段階最適化(O1)”へ変更することです。
Project >Properties>C/C++ Build>Settings>Tool Settings>Optimization>Optimization Levelで最適化レベルが変更できます。O1レベルでも、かなりの使用量空きが確保できます。

Optimize for Debug
Optimize for Debug

但し、最適化には副作用も伴います。変数にvolatile宣言を付記するなどして、ツールが行う勝手な最適化への対策をしましょう。対策の詳細は、コチラなどを参照してください。

マクロ関数

LPCOpen Library Stack
LPCOpen Library Stack

LPCOpenライブラリは、層構成になっています。BOARD layerは、CHIP layerを使って上位の各ExampleへAPIを提供します。例えば、LPC812評価ボード実装済みのLED出力の初期化関数:Board_LED_Init()が、chip layerのChip_GPIO_…()を使っているなどです。

Macro Function
Macro Function

本投稿では、Board_LED_Init()をマクロ関数と呼びます。NXP評価ボードは、NXPから多くのマクロ関数が提供されますが、独自開発ボードでは、これらも必要に応じて自作する必要があります。

また、自動生成ソースコードにインクルードされるファイルも、NXP評価ボードでは無いためboard.hからchip.hに代わっていることにも注意しておきましょう。

MCUXpresso Generated Source
MCUXpresso Generated Source

ベンダ提供評価ボード活用の独自開発ボード

独自開発マイコンボードと、NXP評価ボードのIO割付が同じならば、MCUXpressoの新規プロジェクト作成時に本投稿で示したような神経を使う必要はありません。多くのマクロ関数もそのまま利用できます。独自開発ボードの新規プロジェクト作成でも、NXP評価ボードと全く同じになるからです。

独自にマイコンボードを開発する前に、ベンダ提供の評価ボードIO割付を調査し、独自開発へ適用できるか否かの検討をすることをお勧めします。

ベンダ提供評価ボードは、標準的なIO割付ですが、最も応用範囲が広い割付とも言えます。さらに、上述のようにソフトウェア開発、新規プロジェクト作成に対しても多くのメリットがあるのがその理由です。