STM新汎用MCU STM32G0

2018年12月4日、STマイクロエレクトロニクス(以下STM)の公式ブログで新汎用MCU STM32G0、Cortex-M0+/64MHzを発表しました。以下の特徴があります。
※汎用=メインストリームと本稿では考えます。

新汎用STM32G0、Cortex-M0+/64MHz、メインストリーム90nmの特徴

STM32メインストリームMCU
STM32メインストリームMCU:STM32FxとSTM32G0の違い(出典:STM32 Mainstream)
  • 「メインストリーム初の90nmプロセスMCU」:従来メインストリームSTM32F0は180nmプロセス
  • 「ハイブリッド」:STM32L4(90nmプロセス)の低消費電力とSTM32F0のメインストリームの両方をハイブリッド
  • 「モアIO」:64ピンパッケージSTM32F071比較でIOピン9本増加、48ピンでもIOピン7本増加
  • 「単一電源供給」:PCBパターン設計が容易
  • 「セキュリティハード内蔵/非内蔵」:128/256ビットAES、セキュアブート、乱数発生器、Memory Protection Unit (MPU)
  • 「USB-C」: IPによりUSB-Type-C可能
  • NUCLEO-G071RB board」:低価格評価ボード提供中、「STM32G081B-EVAL board」:$382
STM32G0ラインナップ (出典:STM公式ブログ)
供給中の3種製品とSTM32G0ラインナップ (出典:STM公式ブログ)
STM32G0 Product Lines(出典:STM32G0 Serie Presentation)
STM32G0 Product Linesから3種製品の違いが解る(出典:STM32G0 Serie Presentation)

STM32G0オンライントレーニング

データシートよりも解りやすいSTM32G0オンライントレーニング資料が多数あります(要ログイン)。

例えば、以下のような興味深い情報が得られます。各数ページの英文スライド形式ですので、STM32G0以外のMCUを使用中の方でも、チョットした空き時間に読めます。

  • STM32G0 Series Presentation:内蔵ハードウェアによりValue/Access/Access & Encryptionの3種製品特徴
  • ARM Cortex-M0+ (Core):Cortex-M0とM0+の差、Memory Protection Unit 説明
  • Safety:安全基準とその実現方法
  • Random Number Generator (RNG):アナログノイズに基づいた32ビット乱数発生
  • STM32G0 Boards:NUCLEO-G071RB board解説

STM32CubeMX V5.0.0

STM32G0のコード生成は、STM32CubeMX V5.0.0からサポートされました。

V4までと同じSW4STM32、TrueSTUDIO、両方のIDEで使えます。STM32CubeMX V5が提供するMCUファームパッケージで、本ブログ関連を抜粋したのが下表です。

STM32CubeMX V5.0.0提供MCUファームウェア版数
対象MCU firmware(評価ボード、STM32G0ボード暫定) 最新Version
STM32F1(STM32F103RB、Cortex-M3/64MHz V1.7.0
STM32F0(STM32F072RB、Cortex-M0/48MHz V1.9.0
STM32G0(V5で新設、STM32G071RB、Cortex-M0+/64MHz V1.0.0

STM32Fxテンプレートでも使用中のHAL(Hardware Abstraction Layer)ライブラリでコード生成すれば、STM32F1、STM32F0とSTM32G0間で、流用/応用が容易なソフトウェア開発ができると思います。

まとめ

新発売のSTM32G0は、90nmプロセス初のメインストリーム汎用MCUです。一般的に製造プロセスを微細化すれば、動作クロックが高速になり電力消費も低下します。さらに、STM32G0は、Cortex-M0より性能が向上したCortex-M0+コアの採用により、Cortex-M3のSTM32F1クラスに並ぶ高性能と超低消費電力動作をハイブリッドした新汎用MCUと言えます。

周辺回路では、IoTで懸念されるセキュリティ対策をハードウェアで実施、IOピン数増加、PCB化容易、USB-Type Cインタフェース提供など、各種IoTエッジMCU要求を満たす十分な魅力を持つMCUです。

競合するライバルMCUは、Cortex-M0+のNXP S32K116/S32K118(2018/7発売)などが考えられます。

関連投稿:NXP新汎用MCU S32K1

NXP新汎用MCU S32K1

NXPセミコンダクターズ(以下NXP)から車載・産業機器向けの、新しい汎用Cortex-M0+/M4 MCU S32K1ファミリが発売中です。
同社の汎用MCUと比べ、何が新しいかを調べました。

S32K1の特徴(汎用MCUとの差分)

セキュリティ強化ARMコアは、Cortex-M23/M33があります。ところが、NXPのS32K1ファミリは、従来のCortex-M0+/M4コアを使います。Cortex-M0/M0+/M3汎用MCUと比べると、差分として以下の特徴があります。

AEC-Q100グレード1規格準拠

AEC-Q100:Automotive Electronics Council、車載用電子部品信頼性の規格化団体の規格AEC-Q100は、世界標準規格で欧米の車載向け集積回路の規格。製品使用温度範囲によりグレード0~3まであり、グレード0が-40℃から+150℃で最も広範囲、グレート1は-40℃から+125℃。

セキュリティ強化ハードウェア内蔵MCU

SHE準拠Cryptographic Services Engine (CSEc) - AES128、セキュアブート、ユニークID

専用IDEのソフトウェア開発

S32 Design Studio(Processor Expert)、無償、コードサイズ制限なし

車載・産業 両方向けの汎用MCUで最低15年供給

S32K11x(Cortex-M0+):S32K116/S32K118(2018/7発売)、評価ボード$49
S32K14x(Cortex-M4):S32K142/S32K144/S32K146/S32K148(2017/12発売)、評価ボード$49/$149

S32K MCUs for Automotive and Industrial Applicationsから抜粋したS32K1ファミリの特徴が下図です。図はAEC-Q100グレード0と表記がありますが、Cortex-M0+のS32K11xは、データシートによるとグレード1です。

S32K1特徴
S32K1の特徴 (出典:S32K MCUs for Automotive and Industrial Applications)

S32K118EVB-Q064はDigiKeyで購入可能

新汎用MCUのセキュリティ強化策と専用IDE:S32 Design Studio(Processor Expert)

IoTでは汎用MCUであってもセキュリティ強化が必須です。現在、対策として3アプローチあります。

  1. 汎用コアMCUに、セキィリティ強化回路を内蔵(本稿)
  2. 汎用コアMCUに、外付けセキュリティデバイスを追加 → 関連投稿:セキュリティ強化デバイス:A71CH
  3. セキュリティ強化コアを採用 → 関連投稿:セキュリティ強化ARMコアCortex-M23/M33

1のメリットは、2と比べ部品点数が少ないこと、3と比べ従来の汎用コア開発との親和性が高く、セキュリティ関連開発が容易になる可能性があることです。

専用IDE:S32 Design StudioのAPI生成ツールは、旧FreescaleのProcessor Expertです。NXPが、なぜ既存LPCXpresso IDEでなく、専用S32 Design studioとProcessor Expertを用いたかは不思議です。が、Processor Expertという優れたAPI生成ツールのことを知っている開発者にとっては朗報になるかもしれません。

S32K1の魅力:車載・産業機器・IoT全共用

現在のS32K1ファミリ想定アプリケーションは下記です。車載・産業向けに別々のS32K1が有るわけではなく共用です。

S32Kアプリケーション
S32Kアプリケーション(出典:車載・産業機器向け Arm® Cortex®ベース S32Kマイクロコントローラ (REV 3.1))

2017~2018年に供給が始まり、最低15年の供給保障、全てに評価ボードもあります。Cortex-M0+とCortex-M4間の接続は、次世代車載ネットワークCAN FDです。

S32K14x(Cortex-M4)がNode MCU化しIoT無線通信機能を実装すれば、S32K11x(Cortex-M0+)をEdge MCUとして利用可能で、S32K1が「車載・産業機器・IoT全てを狙える新しい汎用MCU」に大化けする可能性はあると思います。

関連投稿:Node MCUとEdge MCU、気になる点2の章参照

そのほか、FlexIO、FlexTimerなどの新しい周辺回路も実装されていますので、S32K1を引き続き調査する予定です。

Cortex-M0/M0+/M3比較とコア選択

デバイスが多く選択に迷う方も多いマイコン:MCU。周辺ハードウェアも異なるので、最初のMCUコア選択を誤ると、最悪の場合、開発のし直しなどに繋がることもあります。

本稿は、STマイクロエレクトロニクスのSTM32マイコンマンスリー・アップデート10月号P8のトレーニング資料、STM32L0(Cortex-M0+)掲載のARM Cortex-M0/M0+/M3の比較資料を使ってMCUコア選択方法についての私案を示します。

STM32L0(Cortex-M0+)トレーニング資料

各種STM32MCU(Cortex-Mx)毎の非常に良くできた日本語のテクニカルスライド資料が入手できます。例えばSTM32L0(Cortex-M0+)は194ページあり、1ページ3分で説明したとしても、約10時間かかる量です。他のMCU(Cortex-Mx)資料も同様です。

開発に使うMCUが決まっている場合には、当該資料に目を通しておくと、データシート読むよりも解りやすいと思います。しかし、Cortex-Mxコア差を理解していない場合や、開発機器の将来的な機能拡張や横展開等を考慮すると、どのMCU(Cortex-Mx)を現状開発に使うかは重要検討項目です。

ここで紹介するSTM32L0(Cortex-M0+)トレーニング資料には、Cortex-M0+特徴説明のため、通常データシートには記載が無いCortex-M0やCortex-M3との違いも記載されています。

そこで、STMマイコンのみでなく一般的なARMコアのMCU選択に重要な情報としても使えるこの重要情報ページを資料から抜き出しました。

Cortex-M0/M0+/M3比較

バイナリ上位互換性

Cortex-Mxのバイナリ互換性(出典:STM32L0(Cortex-M0+)トレーニング資料)
Cortex-Mxのバイナリ互換性(出典:STM32L0(Cortex-M0+)トレーニング資料)

先ず、P22のCortex-Mプロセッサのバイナリ互換性です。この図は、Cortex-Mxコアの命令セットが、xが大きくなる方向には、上位互換であることを示しています(ただし再コンパイル推薦)。逆に、xが小さくなる方向は、再コーディングが必要です。

つまり、Cortex-M0ソースコードは、M0+/M3/M4へも使えるのです。Cortex-Mxで拡張された命令セットの特徴を一言で示したのが、四角で囲まれた文章です(Cortex-M3なら、“高度なデータ処理、ビットフィールドマニピュレーション”)。
さらに、STM32MCU内臓周辺ハードウェアは、各シリーズで完全互換なので、同じ周辺ハードウェア制御ソースコードはそのまま使えます。

もちろんxが大きくなるにつれコア性能も向上します。しかし、よりCortex-Mx(x=+/3/4)らしい性能を引き出するなら、この四角文章のコーディングに力点を置けば、それに即した命令が用意されているので筋が良い性能向上が期待できる訳です。

超低電力動作Cortex-M0+、39%高性能Cortex-M3

P22ではCortex-M0とM0+の違いが解りません。そこで、P19のCortex-M0/0+/3機能セット比較を見るとCortex-M0+が、Cortex-M0とCortex-M3の良いとこ取り、中間的なことが解ります。また、Cortex-M3が、M0比39%高性能だということも解ります。

Cortex-M0_M0+_M3セット比較(出典:STM32L0(Cortex-M0+)トレーニング資料)
Cortex-M0_M0+_M3セット比較(出典:STM32L0(Cortex-M0+)トレーニング資料)

具体的なCortex-M0+とCortex-M0との差は、P20が解りやすいです。Cortex-M0+は、性能向上より30%もの低消費動作を重視しています。また、1サイクルの高速GPIOも特徴です。Cortex-M0+は、M0の性能を活かしつつより既存8/16ビットMCU市場の置換えにチューニングしたからです。

Cortex-M0とCortex-M0+の比較(出典:STM32L0(Cortex-M0+)トレーニング資料)
Cortex-M0とCortex-M0+の比較(出典:STM32L0(Cortex-M0+)トレーニング資料)

さらにP21には、低電力化に寄与した2段になったパイプラインも示されています。Cortex-M0/M0+は、今年初めから話題になっている投機的実行機能の脆弱性もありません。

Cortex-M0とCortex-M0+のブランチ動作(出典:STM32L0(Cortex-M0+)トレーニング資料)
Cortex-M0とCortex-M0+のブランチ動作(出典:STM32L0(Cortex-M0+)トレーニング資料)

関連投稿:Cortex-Mシリーズは、投機的実行機能の脆弱性はセーフ

共通動作モード:Sleep

Cortex-M0とCortex-M0+の低消費電力モード(出典:STM32L0(Cortex-M0+)トレーニング資料)
Cortex-M0とCortex-M0+の低消費電力モード(出典:STM32L0(Cortex-M0+)トレーニング資料)

低電力化は、Cortex-M0+で追加された様々な動作モードで実現します。この一覧がP70です。つまり、Cortex-M0+らしさは、M0にない動作モード、LP RUNやLP sleep (Regulator in LP mode)で実現できるのです。

逆に、SleepやSTANBYの動作モードは、Cortex-M0/M0+で共通です。さらに、Cortex-M3でも、アーキテクチャが異なるので数値は異なりますが、SleepとSTANBY動作モードはM0/M0+と共通です。

ここまでのまとめ:Cortex-M0/M0+/M3の特徴

Cortex-M0/M0+/M3の特徴・違いを一言で示したのが、下表です(関連投稿より抜粋)。

各コアの特徴は、MCUアーキテクチャや命令セットから生じます。但し、M0/M0+/M3でバイナリ上位互換性があるので、全コアで共通の動作モードがあることも理解できたと思います。

ARM Cortex-Mx機種 一言で表すと…
Cortex-M0+

超低消費電力ハイパフォーマンスマイコン

Cortex-M0

低消費電力マイコン

Cortex-M3

汎用マイコン

Cortex-M4

デジタル信号制御アプリケーション用マイコン

関連投稿:ARMコア利用メリットの評価

MCUコア選択方法

  1. Cortex-M0またはCortex-M0+コアでプロトタイプ開発を行い、性能不足が懸念されるならCortex-M3コア、さらなる消費電力低下を狙うならCortex-M0+コアを実開発で選択。
    プロトタイプ開発に用いるソースコードは、そのまま実開発にも使えるように、全コアで共通の動作モードで開発。
  2. 早期にプロトタイプ開発を実開発に近い形で作成するために、弊社マイコンテンプレートを利用。

1.は、本稿で示した内容を基に示したMCUコア選択指針です。低消費電力がトレンドですので、プロトタイプ開発の段階から超低消費電力のCortex-M0+を使うのも良いと思います。しかし、初めから超低消費動作モードを使うのでなく、全コアで共通動作モードでの開発をお勧めします。

理由は、万一Cortex-M0+で性能不足が懸念される時にCortex-M3へも使えるソースコードにするためです。プロトタイプ開発の段階では、ソースコードの実開発流用性と実開発の評価を目的にすべきです。チューニングは、実開発段階で行えばリクスも少なくなるでしょう。

2.は、プロトタイプ開発実現手段の提案です。マイコンテンプレートは、複数のサンプルソフトを結合して1つにできます。実開発に使える(近い)サンプルソフトさえ見つけられれば、それらをバラック的にまとめて動作確認できるのです。これにより、当該コアのプロトタイプ評価が早期にできます。

また、マイコンテンプレートで使用したSTM32評価ボードは、ボードレベルでピンコンパチなのでCortex-M0/M0+/M3への変更も簡単です。

関連投稿:マイコンテンプレートを使ったアプリケーション開発手順

MCUコア選択の注意事項:重要度評価

ARMコア向けの弊社マイコンテンプレートは、全てCortex-M0/M0+/M3共通の動作モードで開発しています。
その理由は、テンプレートという性質・性格もありますが、本稿で示した他のARMコアへのソースコード流用性が高いからです。試しに開発したソースコードであっても、無駄にはならないのです。

最後に、P184、P185に示されたCortex-M0(STM32F0)とCortex-M3(STM32L1)、Cortex-M0+(STM32L0)のADCの差分を示します。

Cortex-M0/M0+/M3のADC比較1(出典:STM32L0(Cortex-M0+)トレーニング資料)
Cortex-M0/M0+/M3のADC比較1(出典:STM32L0(Cortex-M0+)トレーニング資料)
Cortex-M0/M0+/M3のADC比較2(出典:STM32L0(Cortex-M0+)トレーニング資料)
Cortex-M0/M0+/M3のADC比較2(出典:STM32L0(Cortex-M0+)トレーニング資料)

STM32MCU内臓周辺ハードウェアは、各シリーズで完全互換と先に言いましたが、スペックを細かく見るとこのように異なります。

このハードウェア差を吸収するのが、STM32CubeMXで提供されるHAL(Hardware Abstraction Layer)です。つまり、STMマイコンを使うには、コア選択も重要ですが、STM32CubeMX活用も同じように重要だということです。もちろん、STM32FxマイコンテンプレートもSTM32CubeMXを使っています。

ARMコアは、バイナリ上位互換ができる優れたMCUコアです。MCUベンダーは、同じARMコアを採用していますが、自社のMCU周辺ハードウェアレベルにまで上位互換やその高性能を発揮できるような様々な工夫・ツールを提供しています。

開発MCUを選択する時には、コア選択以外にも多くの選択肢があり迷うこともあるでしょう。多くの場合、Core-M0/M0+/M3などの汎用MCUコアでプロトタイプ開発を行えば、各選択肢の重要度評価もできます。スペックだけで闇雲に選択するよりも、実務的・工学的な方法だと思います。

投稿記事の表示、検索方法

本ブログは、マイコン:MCU関連情報をWordPressというソフトウェアを使って投稿しています。今回は、WordPressブログ投稿記事を効率的に表示、検索する方法を3つ示します。

※WordPressは、ブログサイト制作時に便利なツール。機能追加が容易なプラグインや、外観を簡単に変更できるテーマが多数あるので、カスタマイズも容易で、運営者が投稿のみに専念できる。

カテゴリ選択

各投稿の下には、カテゴリとタグ(キーワード)が表示されています。

投稿カテゴリーとタグ
各投稿の下に表示されるカテゴリーとタグ

カテゴリ選択は、1つのMCU投稿をピックアップして表示する最も簡単な方法です。

例えば、カテゴリのRL78マイコンをクリックすると、日付の新しい順にRL78関連投稿のみが表示されます。PCなどの大画面表示の時は、左端にカテゴリ一覧が表示されるので選択が簡単になります。

PCのカテゴリ表示
MCU毎の投稿を簡単にピックアップできるPCのカテゴリ表示

カテゴリ選択でブログを表示すると、興味のあるMCU投稿がまとまるので便利です。投稿数が多い時は、複数ページに渡りピックアップされます。表示ページ一番下に複数ページへのリンクが表示されます。

複数ページのリンク
カテゴリ投稿数が多い時に表示される複数ページのリンク

ページ番号が大きい、つまり日付の古い投稿は、そのMCUの選択理由や、IDE:統合開発環境インストール方法など最も基本的でMCU開発初期に必要となる情報が記載されています。古い順に読むとより容易にMCU理解が進むかもしれません。

タグ選択

カテゴリとは別に、投稿下にタグと呼ばれる、いわゆるキーワードが示されています。

投稿のタグ(キーワード)
各投稿の下に表示されるタグ(キーワード)

投稿内容で興味が湧いたキーワード(例:リアルタイムOS)がこのタグ内にある場合は、タグをクリックすると、キーワードにより投稿記事がまとめられます。タグ検索は、複数カテゴリに跨った横断的な検索方法です。

自分の興味があるMCUと他社MCU比較などに使うと便利です。

検索窓

ブログ右上にあるSearch:検索窓を使っても投稿の検索ができます。

検索窓
検索窓による投稿記事検索

タグに無いキーワードや、2018年4月など時期を検索窓に入力してクリックすると関連投稿が表示されます。

まとめ

ブログ投稿記事を効率的に表示、検索する方法を3つ示しました。

  1. カテゴリ選択:MCU毎の投稿まとめに最適
  2. タグ選択:キーワードでの横断的な複数MCU比較や理解に適す
  3. 検索窓:タグ以外のキーワードや、投稿時期での検索に適す

本プログは、複数MCUの内容を、時系列で投稿するので、興味ある対象が様々な雑音で読みにくくなる可能性はあります。この場合には、上記3方法で投稿をまとめると読み易くなると思います。

また、手動で関連する投稿を添付する場合もあります(関連投稿を自動選択するWordPressプラグインもありますが使っていません)。

但し、技術者リスク分散の点からは、雑音も耳に入れておくのも良いと思います。どの投稿もチョットした空き時間で読めるように、A4で1~2ページの文章量です。本ブログをご活用いただき、MCU情報整理やプロトタイプ開発に役立つマイコンテンプレートに興味を持っていただければ幸いです。

関連投稿:ルネサスのIDE買収とリスク分散:技術者個人のリスク分散必要性の章参照

Windows 10更新中断、μT-Kernal、IoTマイコン

Windows 10 1809更新によりユーザファイルが消失するトラブルが発生しています。このためMicrosoftは、Windows 10 1809への更新を一時中断しました。

Windows 10更新でマイドキュメントフォルダ消失!

消失フォルダは、よりによってC:\User\[user name]\Documentsだそうです。マイコンIDEのプロジェクトファイルをマイドキュメントフォルダへ設定している方(私がそうです)は、1809更新を待った方が良いかもしれません。

幸い私の3台のPCは、全て問題なく1809更新に成功し、Documentsフォルダも無事でした。

よく言われる最悪を避けるには、個人データのバックアップです。しかし、Windows機能更新時に、最も守るべきユーザデータを壊す/消すという不具合は、OSとしては許されません。Fast/Slow リングで検証できなかったのでしょうか?

μT-Kernal

OSと言えば、マイコン向けのリアルタイムOS:μT-Kernalの解説がトランジスタ技術2018年10月号の組込みOS入門という別冊にあり、第2章~第6章にリアルタイムOS(RTOS)の説明があります。

また、トロンフォーラムへの登録が必要ですがルネサスRL78/G14向けにポーティングしたμT-Kernalを無料でダウンロードできます。

※μT-Kernalは、ITRONベースに2003年公開の32ビットマイコン向けオープン・ソースRTOS。

本ブログではこれまでRTOSとしてFreeRTOSを紹介してきました。μT-Kernalと比較するとより理解が進むと思います。

関連投稿:マイコンRTOS習得

IoTマイコンとRTOS

IoTマイコンにRTOSを使うと、今回のWindows 10のようなトラブルを招く可能性が生じます。ただIoT通信手段が何になるにせよ、高度なセキュリティや公共リソース利用のための通信処理をマイコンで行うには、RTOSが必要になると思います。

この状況ならいっそのことIoTマイコンには、Cortex-M4(または同等クラス)とCortex-M0/M0+マルチコアを導入し、Cortex-M4でIoT関連処理、Cortex-M0/M0+で従来のMCU処理に2分割、さらにIoT関連処理はMCUベンダーが全て無償提供してくれればIoT MCUの爆発的普及が進むと思います。

つまり、Cortex-M4のIoT関連処理がWindows 10に相当する訳です。これならIoT通信手段やセキュリティが変わってもCortex-M4部分のソフトウェアをOTA(Over The Air)で変えれば対応できます。我々開発者は、本来のマイコン処理に集中できます。
理想的な空想ですがね…。

関連投稿:OTAについてIoT端末の脆弱性対応はOTA:Over The Air更新が必須の章参照

Windows 10 1809更新とマイコンIDE

Windows 10 1809更新

Windows 10のRed Stone最後の大型更新RS5 、Windows 10バージョン1809配布が始まりました。

1809更新2方法

Windows Updateで更新

Windows Update更新プログラムのチェックで1809への更新が開始されます。
但し、これは運が良ければの話で、PCの更新準備が整っていても「最新の状態です」が表示され更新を待たされる場合があります。

手動で更新

Windows 10 October 2018 Updateの今すぐアップデートをクリックし、アップデートツールをダウンロードすると、手動で1809更新開始ができます。

1809更新時間と操作

どちらの方法でも、1809プログラムのダウンロードとインストールに1時間、その後、再起動して新しいWindows 10 1809の自動設定に1時間、合計約2時間程度かかります(PCや通信リンク速度によって異なりますので目安です)。

ダウンロードとインストール中は、通常のPC操作やソフトウェア開発は可能です。再起動は、自動的に始まります。
つまり、何らかの操作を行っている場合は、再起動前に終了しなければなりません。

新Windows 10自動設定中は、PC操作はできませんし、操作不要で設定完了します。
つまり、再起動したら1時間は待つしかありません。

Windows 10 1809の各社マイコンIDE動作

ブログ掲載中マイコンIDE(ルネサス:CS+、NXP:LPCXpresso、Cypress:PSoC Creator、STM:SW4STM32)は、私のWindows 10 1809では正常に動作しました。

ルネサスのIDT買収とリスク分散

ルネサスエレクトロニクス(以下ルネサス)が米)IDT買収を発表したことは9月13日投稿済みです。
この買収にはいろいろな憶測が報じられています。これらをまとめ、技術者個人でのリスク分散を考えます。

ルネサスのIDT買収関連記事(2018年9月28日現在)

どの記事もルネサスのIDT買収を、社長兼CEO呉文精氏コメントのように肯定的には捉えていません。むしろリスクの方が大きく、買収が成功するかを危ぶむ声さえあります。

IDT技術のルネサス車載MCUへの応用/流用よりも、むしろNVIDAやインテルなど大手半導体メーカーの自動車半導体市場介入に対する衝突回避/防衛が真の買収目的だ、が各記事の主張です。

私は記事内容から、なぜ回避や防衛ができるのかはイマイチ理解できません。ただ巨大な買収額が、経営的な足かせとなる可能性があることは解ります。半導体業界の巨額買収は、ルネサスに限った話ではありません。

かなり昔、デバイス間通信にIDTの2ポートRAMを使った経験があり便利でした。IDT買収の日の丸MCUメーカー最後の生き残り:ルネサスエレクトロニクスには頑張ってほしいと思います。

技術者個人のリクス分散必要性

動きの激しいMCU半導体製品を使う技術者個人が生き残るには、リスク分散が必要だと思います。

例えば、業務で扱うMCU以外の開発経験を持つのはいかがでしょう。万一の際にも通用する技術を個人で準備しておくのです。その際には、手軽で安価、しかも実践応用もできることが重要です。

弊社マイコンテンプレートは、下記大手4メーカー6品種の汎用MCUに対応中です(各1000円税込)。

  • ルネサス)RL78/G1xテンプレート
  • NXPセミコンダクターズ)LPC8xxテンプレート
  • NXPセミコンダクターズ)LPC111xテンプレート
  • NXPセミコンダクターズ)Kinetis Eテンプレート
  • サイプレス・セミコンダクター)PSoC 4/PSoC 4 BLE/PRoCテンプレート
  • STマイクロエレクトロニクス)STM32Fxテンプレート
    ※各テンプレートに紹介ページあり

テンプレートを使うと新しいMCU開発を実践、習得できます。経験が有るのと無いのとでは雲泥の差です。
リクス分散の1方法としてご検討ください。

MCU統合開発環境の後方互換性検証

MCU統合開発環境は、後方互換が重要です。数年前に開発したプロジェクトを改良・改版する際には、最新の開発環境(IDE)でも開発当時と同じ動作が求められるからです。

ベンダー各社もこの点に留意してIDE改版を行っているハズです。ただ、リリースノートにも具体的な互換性説明などは見当たりません。そこで、MCU最新IDEの後方互換性を検証します。

本稿は、ルネサスエレクトロニクス(以下、ルネサス)の最新IDE:CS+に、弊社2015年開発のRL78/G1xテンプレートプロジェクトを適用し、発生するメッセージなどを示し、開発当時と同じ動作をするかを確認します。もちろん、これはあくまでも一例にすぎませんが、開発中にIDE更新に遭遇した際などの安心材料になれば幸いです。

ルネサス統合開発環境CS+

2018年9月最新ルネサスIDE CS+は、Ver.: V7.00.00(2018/07/20リリース)です。CS+は、業界標準のEclipseベースIDEではなくルネサス独自開発のIDEです。

好都合なことにWindows 10 1803をクリーンインストールしたので、まっさらなWindows 10へ最新CS+をインストールした条件で検証ができます(1803クリーンインストール顛末はコチラを参照)。

CS+ダウンロードサイトでカテゴリ:無償評価版を選び、分割ダウンロードか一括、CS+ for CCかCS+ for CA,CX のどれかのパッケージをダウンロード後、実行すれば必要なツール全てがWindowsへインストールされます。

統合開発環境CS+パッケージ
統合開発環境CS+パッケージ(一括ダウンロードの例)

関連投稿:CS+ for CCとCS+ for CA,CXの違い

既存プロジェクトを新しいCS+で開いた時のメッセージ

以下CS+ for CCの例で示しますが、CS+ for CA,CXでも同じです。

既存のプロジェクトを開く
既存のプロジェクトを開く。BB-RL78G13-64.mtpjをクリック。

CS+ for CCを起動し、既存のプロジェクトを開くでRL78/G1xテンプレートプロジェクトのCC-RLを選択すると、最初に警告メッセージが表示され、出力パネルにその内容、プロジェクト開発当時と新しいCS+での「プロジェクトの差分情報」が表示されます。

既存プロジェクトを開いた時に表示されるメッセージとその内容
既存プロジェクトを開いた時に表示されるメッセージとその内容

※“プロジェクト差分情報”は、新規CS+をインストールした時だけでなく、プロジェクト開発中にCS+更新に遭遇した際にも表示されます。

黒字の “デバイス・ファイルが更新……”は、CS+がサポートするMCUデバイスが増えたために発生します。あまり気にする必要はありません。

青字の “プロジェクト差分情報”は、新しいCS+を用いた結果、既存プロジェクトに生じた差分、影響のことです。

例えば、CS+のCC-RLコンパイラが改良・改版され、開発当時のコンパイル・オプションには無かった [間接参照を1バイト単位で行う] 選択肢が発生し、これに関しては、「いいえ」を選択したことなどが解ります。

これらの選択は、基本的に既存プロジェクトに影響が無い(少ない)方をデフォルトとしてCS+が選びます。このデフォルト選択が、CS+の後方互換を実現している鍵です。

後方互換の検証:プロジェクトビルド成功と評価ボードの動作確認

そのままビルド(B)>ビルド・プロジェクト(B)を実行すると、サブプロジェクトを含め全プロジェクトがリビルドされます。出力パネル青字は警告:Warring、赤字はエラー:Errorを示します。

全プロジェクトビルド結果
全プロジェクトビルド結果

出力パネルに赤字が出るのは問題ですが、青字内容に問題がなければ、新規CS+でもプロジェクトが正常にビルドできたことを示します。

そこで、ターゲット評価ボードへビルド出力をダウンロード、既存プロジェクト開発当時の動作確認ができ、最新CS+で後方互換が検証できました。

CS+の便利機能

ルネサスCS+には、プロジェクトと開発ツールをパックして保存する便利な機能があります。

CS+の便利機能
CS+の便利機能。プロジェクト開発時の環境を丸ごとそのまま保存できる。

この開発ツールとは、使用中の統合開発環境のことで、文字通りプロジェクトとCS+、デバイス・ファイル情報などのプロジェクト開発時の環境を丸ごとそのまま保存し、復元もできます。
但し、当然OS:Windowsまでは保存しなので、年2回の大規模OS更新やWindows 7サービス終了などには開発者自ら対応する必要があります。

後方互換とプロジェクト開発方針

IDEの後方互換は、開発者にとっては当然のことです。ただし、改良・改版された最新コンパイラ性能を、既存プロジェクトで最大限引き出しているかは疑問を持つ方もいるでしょう。個人的には、この点について以下のように考えます。

  • プロジェクト開発時、使用する統合開発環境のコンパイル・オプションは、最適化も含めてデフォルト設定で開発。
  • サイズ優先や速度優先の設定は、開発の最終段階で必要性がある時にのみ最小限設定し、その設定をソースに明記。

例えば、弊社マイコンテンプレートは、1つを除いて全て上記方針で開発しています。除いた1点とは、NXPのLPC8xxテンプレートのLPC810(ROM 4KB/RAM 1KB)の小ROMデバイスの1段最適化のみです。テンプレート(ひな形)の性質上、いろいろなプロジェクトへの適応性が高いのもこの方針の理由です。また、デフォルト設定と最小限設定なので、結果的に最新統合開発環境への後方互換も取りやすいと言えます。

経験上、コンパイル・オプションを操作して開発したトリッキーなプロジェクトは、設計段階(MCU選択やプログラム構成)の失敗だと考えています。個人的には、デフォルト設定で十分余裕(50%程度)がある設計がお勧めです。これを確かめるためにも、プロトタイプ開発は重要だというのが私の考えです。

MCU統合開発環境、後方互換のまとめ

MCU統合開発環境(IDE)とWindows環境の年間メジャー更新スケジュールは下図です(2018年7月9日投稿の再掲)。

主要開発環境の年間更新スケジュール
主要開発環境の年間更新スケジュール

プロジェクト開発中にこれら更新に遭遇することは少なくないでしょう。本稿は、ルネサスCS+を例に最新IDEの後方互換性を確認しました。EclipseベースのIDEでも同様です。まとめると、

  • IDE更新後、最初に既存プロジェクトを開く時の差分情報で、プロジェクトに生じた差分、影響を分析し、後方互換を検証
  • コンパイル・オプションはデフォルト設定が、更新された統合開発環境の後方互換を取りやすい

ことを示しました。

最新ARM Cortex-Mマイコン動向とIoT MCUを特徴付ける3要素

最新ARM Cortex-Mマイコン:MCU製品からその動向を調査します。前稿ルネサスエレクトロニクス(以下ルネサス)RL78ファミリの汎用MCU変遷に続き、ARM Cortex-MコアMCU編という位置づけです。最後に両者を比較し、IoT MCUを特徴付ける3要素についての私見を示します。

最新ARM Cortex-Mマイコン製品の特徴

本ブログ掲載中のベンダ各社とMCUです。

ブログ掲載中の各社MCU
ブログ掲載中の各社MCU

ルネサス以外は、全てARM Cortex-Mコアを用いています。これらをARMコア製品、一方ルネサスはNon ARMコア製品と呼ばれます。現在のMCUは殆どがARMコア製品です。

各社ともIoT向けのMCU新製品を発売中です。その中からNXPセミコンダクターズ(以下NXP)のLPC51U68 MCU(2018年3月発売)をピックアップし特徴を抽出します。

LPC51U68は、8/16ビット置換えを狙う低消費電力Cortex-M0+コアを最大100MHz動作まで高め、USB2.0、256KB ROM、96KB RAM実装、12bit 5Mspsと高機能ADC内蔵のMCUです。

LPC51U68 MCU Block Diagram (出典:LPC51U68 Fact Sheet)
LPC51U68 MCU Block Diagram (出典:LPC51U68 Fact Sheet)

コア速度のアプリケーション対応(置換えからIoT市場開拓へ)

32ビットCortex-M0/M0+コア本来の目的は、既存8/16ビットMCUの置換えです。従ってこれまでは、既存MCU(例えばルネサスS1/S2/S3コア)速度と同等の30~50MHzがCortex-M0/M0+コア動作速度でした。しかし、NXPはより低速で低消費電力な8MHzや15MHzのコア速度の新製品を発表しました。

関連投稿:8MHz Cortex-M0+コア採用のLPC8N04

関連投稿:15MHz Cortex-M0+コア採用のLPC80x

つまり、既存MCU置換えだけでなく、よりアプリケーションに適したコア速度採用のARMコア製品の一環として開発されたのが紹介した100MHz動作のLPC51U68です。

ARMコア製品は、8/16ビット置換えから、IoTアプリケーション市場開拓への展開も始めたと言えるでしょう。

IoT向きの周辺回路実装(汎用からIoTアプリケーションMCUへ)

従来MCUもUSB接続でプログラムダウンロードやデバッグはできます。これらに加えLPC51U68のUSBは、USB 2.0ホスト機能もライブラリで提供します。PC同様、USBキーボードやデータロガー用に簡単に大容量USBメモリがMCUに接続できるので、HMI(Human Machine Interface)に優れたIoTデバイスが開発できます。

ADCもE-meterなどにも使いやすいような高機能版が用いられています。

ROM/RAM容量が増えるのは、これらIoT向け周辺回路を制御・活用するために必要で、副次的なものと言えるでしょう。

評価ボードLPCXpresso51U68 (OM40005) Development Board価格も¥3,518(DigiKey調べ)であることから、これだけ機能が増えても、従来ARMコア製品と同レベルで入手できると思われます。

LPCXpresso51U68 (OM40005) Development Board
LPCXpresso51U68 (OM40005) Development Board

最新ARM Cortex-Mマイコン動向まとめ

NXP)LPC51U68だけでなく、競合他社Cortex-M0/M0+/M3新製品についても同様の傾向が見られます。最新Cortex-Mマイコンの動向をまとめたのが下記です。

  1. IoTアプリケーションのためコア動作速度を数MHz~100MHz超の範囲で電力消費最適化
  2. USBホスト機能や高機能アナログなど、IoTアプリケーション対応高機能周辺回路を実装

一方、前稿Non ARMコア製品のルネサスMCU動向をまとめると、

  1. 低消費電力16ビットS1/S2/S3コアの使い分けで、きめ細かな電力消費へ対応
  2. アナログ機能やモータ制御機能を追加実装し、IoTアプリケーションMCUへ展開

どちらも、無線通信やセキュリティの要求が高いIoT MCUに対して、従来の汎用MCU製品のままでは対応しにくく、より具体的なIoTアプリケーションへ向けた機能拡張を行い、セミASSP的なIoT MCU製品となっています。
※セミASSP:汎用MCUをベースに、特定アプリケーション向けに調整したMCU。汎用MCU開発に慣れた開発者が、特定アプリ開発に臨む時、ASSPに比べ馴染みやすく開発障壁が低い。

ARMコア製品が柔軟性や拡張性に富み、一方で、Non ARMコア製品のルネサスもIoT向きに汎用MCUを調整しています。いずれにしても汎用MCUは、よりアプリケーション向きのMCUへ変化しつつあります。

IoT MCUを特徴付ける3要素

IoT MCUは、以下3要素から構成されると考えると理解が容易になります。

  1. IoTアプリケーション対応高機能周辺回路
  2. MCUコア
  3. 汎用周辺回路:タイマー、GPIO、UART、I2C、一般的ADC

先ず、どのようなアプリケーションにMCUを使うかで「IoTアプリケーション対応周辺回路」が実装されます。例えば、USBホスト機能が必要なアプリであれば、NXP)LPC51U68などです。

次に、そのアプリケーション周辺回路制御に十分な動作周波数や性能をもつ「MCUコア」が決まります。

最後に、「汎用周辺回路:タイマーやGPIO、UART、I2C回路」の実装数がアプリケーションに対して十分か調べます。

IoT MCUの3要素
IoT MCUの3要素。NXP)LPC51U68の分解例と開発方法。

多くのアプリケーションに広く対応できる汎用MCUの汎用周辺回路のみで開発できるアプリケーションであれば、実績が多い汎用MCUを選び、IoTに必要となる無線やセキュリティ機能を外付け部品で構成すると良いと思います。

より具体的なIoTアプリケーションに対応する場合は、IoTアプリケーション対応周辺回路を持つ各社の新製品MCU(セミASSP MCU)を選び、開発するのが良いと思います。

「IoTアプリケーション対応高機能周辺回路」とは、文字通りアプリに応じた開発や応用、最適化が必要です。各社はこのIoTアプリケーション対応周辺回路に対して、ライブラリやアプリケーションノートを提供しますので、開発はそれらを応用、流用するとリスクが低くなります。

一方、「MCUコア」と「汎用周辺回路:タイマーやGPIO、UART、I2C回路、一般的なADC」は、既存の開発ソフトウェアやハードウェアがほとんどそのまま使える可能性が高い部分です。

IoT MCUを早期開発するには、この既存ソフトウェアやハードウェアを流用し、より多くの時間をIoTアプリケーション開発へ配分する方法が適します。弊社マイコンテンプレートは、この汎用開発部分に役立ちます。ご活用ください。

マイコンテンプレート活用プロトタイピング開発(4)

マイコンテンプレートへ機能を追加するには、既に枠組みが出来上がっているテンプレートへ、追加機能名のファイルを新規作成し、追加機能をこのファイル内で記述、テンプレートのLauncher()で起動すれば完成です。長文であった第3回を、一口で言えばこうなります(トホホ… Orz)。

Basic Form of Embedded Software (Initial Setting and Repetitive)
無限ループ前に1回実行する初期設定処理と、無限ループ内の繰返し処理の2つから構成される「組込みソフトの基本形」

これは、Arduino IDEの新規作成ファイル画面です。このsetup()とloop()の構造は、Arduinoに限らず全ての「組込みソフトの基本形」です。つまり、無限ループ前に1回実行する「初期設定処理」と、無限ループ内の「繰返し処理」の2つから構成されます。

弊社マイコンテンプレートもこの基本形に則っています。但し、機能追加がし易いように、無限ループがLauncher()に変形し、複数のユーザ関数を起動できるように工夫しているだけです。

従って、最も安直(!?)な機能追加の方法は、追加機能のサンプルソフトを見つけることです。あとはテンプレートのLauncher()でこのサンプルソフトを起動すれば、テンプレートへ機能追加ができるのです。

今回の目標は、テンプレートへのSDカード機能の追加です。そこで、このSDカード機能追加に最適と思うサンプルソフト:Developing Applications on STM32Cube with FatFs:UM1721を解説します。

UM1721: Developing Applications on STM32Cube with FatFs

2014年6月版 UM1721では、STM32Cubeと記述されていますが、これはSTM32CubeMX(以下CubeMX)のことです。また、STM32F4xxとSTM32CubeF4で記述されていますが、全てのSTM32デバイスとCubeMXに置換えて読めば使えます。

FatFsは、ユーザアプリケーションと下層HAL(Hardware Abstraction Layer)の間で機能するミドルウェアで、主目的は、開発するアプリケーションが読書きするデータと、物理ストレージファイルの割付(領域管理)です。パソコンなどでは、本来WindowsなどのOSが行う機能を代行するのがFatFsと考えれば良いでしょう。また、FatFs自体はMCUハードウェアには依存しないので、本稿STマイクロエレクトロニクス以外のマイコンでも使えます。

FatFs Middleware module architecture (Source:UM1721)
FatFs Middleware module architecture (Source:UM1721)

もっと知りたい方は、UM1721の2章までに詳しく記述されています。本投稿は、FatFsを使うサンプルソフトが目的ですので読み進めると、3.3のサンプルソースが見つかります。

FatFsサンプルソフト

FatFs Sample Software (Source:UM1721)
FatFs Sample Software (Source:UM1721)

懇切丁寧なサンプルソフトとは言えませんが、必要最低限で記述しているのでしょう。一見、組込みソフトの基本形と違うと思われるかもしれませんが、初期設定処理はCubeMXが自動生成し、別の場所にソースコードを出力するため(おそらく)省略しています。また、ファイルアクセスは低速なので、繰返し回数を1で処理すると考えれば、このサンプルソフトも基本形に則っています。

サンプルソフトから、FatFsを使うAPI(Application Programming Interface)が5種、FatFsとLow Level Disk I/O Driversをリンクする2種のAPIを使えば、SDカードへの読書きができることが解ります。
※書込み:f_write()を、f_read()に置換えれば読込みができます。

FatFsサンプルソフトで使用するAPI
用途 API
FatFsとアプリケーション間

f_mount()

f_open()

f_close()

f_read()

f_write()

FatFsとLow Level Disk I/O Driversリンク間

FATFS_LinkDriver()

FATFS_UnLinkDriver()

FatFsサンプルソフトAPI動作テスト

このサンプルソフトを、第3回で使用したレファレンスプロジェクトへ挿入し、各APIの動作を確認します。

FatFs Sample API Test Source
レファレンスプロジェクトへ挿入したFatFsサンプルソフト。

結果は、FatFsとアプリケーション間5種全てのAPIで正常動作が確認できました。つまり、レファレンスプロジェクトでは、このサンプルソフトを使いSDカードへの読書きができます。その結果、SDカードへwtext[] = “text to write logical disk”のデータを、ファイル名STM32.txtとして保存できました。

FatFs Write Test to SD Card
FatFsサンプルソフトを使い、SDカードへ書込んだファイルSTM32.txtと書込みデータ。

レファレンスプロジェクトは、Low Level Disk I/O Driversリンク側のAPI相当を、エキスパートが自作しているのでコメントアウトしています。

STM32CubeMXでFatFs機能追加

第3回と同様、シンプルテンプレートをRenameし、機能追加用のSPI1FatFs_Sdプロジェクトを作成し、CubeMXでSPI1とFatFs機能を追加します。また、SdCard.cファイルを作成し、この中に前章で動作確認したサンプルソフトを挿入します(プロジェクトやファイル作成の詳細は、第3回を参照)。

FATFS and SPI1 Functions Add by STM32CubeMX
STM32CubeMXでFATFSとSPI1を追加。SPI1のピン割付は、実装シールド基板に合わせている。

Launcher()からサンプルソフトを起動し、1回のみ処理するように変更を加え、レファレンスプロジェクトと同様各APIのリターン値を確認しましたが、f_open()以降で正常動作しません。

初期設定処理を自動生成するCubeMXのFatFs設定に間違いが無ければ、SPI1FatFs_SdプロジェクトでもユーザデータをSDカードへ読書きできるハズです。UM1721には、FatFsの設定記述がないので、CubeMXのFatFsデフォルト設定にしましたが、お手上げです。

そこで、STM Communityを検索すると、例えばコチラのように現在のCubeMXのFatFsにはバグがあるようです。対策もCommunityにありますが、STMもバグ状況を把握していますのでCubeMXの改版を待つ方が良さそうです。

*  *  *

サンプルソフト自体は、レファレンスプロジェクトで動作確認済みです。CubeMXのFatFs初期設定生成に問題があることは間違いありません。つまり、組込みソフト基本形の初期設定以外の半分(50%)の処理をUM1721から獲得できたと言えます。

Tips: 動作サンプルソフトは、FatFsがMCUハードウェアに依存しないので、他社マイコンでも使えます。獲得した50%処理は、適用範囲が広いものです。

対策としては、STMによるCubeMX改版を待つこと、レファレンスプロジェクトからFatFs関連の初期設定を抜き出すこと、の2つあります。後者については、検討中です。