ISDN終了とIoTキラーアプリ

2020年以降、現行のISDN公衆交換電話網Public Switched Telephone Network:PSTNが、Internet Protocol:IP網へ全面移行します。ISDNの次の世代はATM:Asynchronous Transfer Modeと思いその研究開発が社会人スタートだった私には隔世の感があります。データ中心のコンピュータIP網が次世代ISDNの解に決まったからです。

IoTキラーアプリ

障害予測、適応型診断、状態適用型メンテナンス、これらが産業用IoTキラーアプリ候補だという記事があります。キラーアプリとは、技術を爆発的に普及させるアプリケーションのことです。

記事の中で、“キラーアプリケーションは、新技術の普及を促進するとともに、多くの場合、基板となるコンポーネントの複雑さを覆い隠す。大多数のユーザーは、その技術から得られるメリットを求めるのであり、その内部構造には関心がない”という記述があります。

これは真理です。ATMがIPに負けたのも、キラーアプリの成せる業です。

アプリよりのIoTマイコンテンプレート

販売中のマイコンテンプレートは、汎用性を重視しています。
しかし、IoT向けのマイコンテンプレートには「汎用性よりも、よりアプリよりのテンプレート提供」が求められそうです。記事を参考にIoTマイコンテンプレートの構成を検討します。

Qualcomm、10nmプロセスのSnapdragon 835発表

NXPを買収したQualcommがSnapdragon 835を発表しました。この発表の解説記事:“820比で消費電力25%削減、GPU性能25%向上、Windows 10へも対応”から、今後のIoTマイコン開発を予測します。

マイコン製品のロングライフ化

バッテリ機能低下のスマホは文鎮化します。3年使い続けた私のNexus5:2300mAhも、最近はどう工夫しても半日程度しかバッテリが持ちません。500回と言われるリチウムイオン電池の充電サイクルは、とうに過ぎているので仕方ないことです。

数年のライフでも許されるスマホと違って、組込用途のIoTマイコン:MCU製品は、一度設置されると10年程度はメンテなしで動作する必要があります。MCU製品のロングライフ化が、開発トレンドになると思います。(IoT端末の必須技術も参照)。

MCUハードの進化は、スマホMPUやパソコンCPUの後追いです。NXPのLPC8xxの2017年ロードマップのように、半導体プロセス進化と共に、新たな低電力マイコンが発売されます。
MCUソフトは、動作周波数を下げる、不要な周辺回路を停止するなどの定番手段がありますが、低電力化の要求は、ソフト記述テクニックそのものにも影響を与えるかもしれません。

レファレンスデサイン利用

スマホ開発は、レファレンスデザイン利用が一般的です。Nexus5もスマホOS:Androidの生みの親Google提供のレファレンスデザインの1つとも言えます。レファレンスデザインの利用目的は、独自仕様のハードや付加アプリの早期開発のためです。

従来MCU開発は、サンプルソフトと開発ボードで行ってきました。弊社マイコンテンプレートもこれに相当します。

しかし、高度なセキュリティと無線通信が必須のIoT MCU製品開発の場合は、リアルタイムOS:RTOSの実装も(おそらく)必要となります。従来の開発方法では、本来の差別化技術開発に到達する前段階で時間が掛かると思います。さらに、無線通信規格の乱立も開発時間を増やす要因です。

これらの対応にIoTマイコン開発も、mbed OS 5やFreeRTOSなどのRTOSが実装済みのレファレンスデザインキット提供が必要だと思います。例え無線規格変更やRTOS変更が生じても、キットの基本部分は同一で、無線モジュール載せ替えとRTOS APIを利用していればアプリ側の小変更で対応できるからです。

IoTマイコンには、UARTとは比べ物にならない複雑な通信処理と高度なセキュリティが必須です。数10億個とも言われるマーケットに普及させるには、スマホ開発やWindowsアプリ開発に近い新たな開発環境が要求されると考えます。

2016年マイコン業界と超速開発

2016年マイコン業界

Qualcomm ← NXP ← Freescale、買収先の企業へ矢印を付けるとこのようになります。
QualcommはSnapdragonなどのスマホチップセットを供給する半導体ベンダーです。車載を得意とするNXPの社名は残りそうですが、買収後のNXP/旧FreescaleのCortex-M系マイコンラインアップは気になります。
さらに、Windows 10がこのQualcommのSoCで動作するというニュースは、IoT向けPCやスマホにMicrosoftが参入し、数多くある無線規格の収束を早めるかもしれません。

先ず2017年3月、開発環境LPCXpressoとKinetis Design Studioが新しいMCUXpressoに統合されます。また、先日発表の2017ロードマップによると、スイッチマトリクスを持つLPC8xxシリーズが充実します。QualcommとのシナジーによりIoT無線規格のIoTマイコン発売が期待できます。

一方、RunesasもSynergyで遅ればせながらARM Cortex-Mマイコン開発に乗り出し、従来からある独自コアを持つRL78の16ビットマイコンやIDE:CS+は肩身が狭くなった気がします。既存マーケットにはRL78、IoTにはSynergyのCortex-M23/M33という住み分けを意識したかのようです。

Cypressは、Spansion買収によりCortex-M0+コアを入手し、PSoC4へ適用し始めました。アナログ技術が豊富なPSoC4/PRoC/PSoC4 BLEマイコンが更に強化されました。私はCortex-M0/M0+開発では、最も使いやすいIDE:PSoC CreatorとPSoC4/PRoC/PSoC4 BLEの組合せがピカ一だと評価しています。Cortex-M23のラインアップ追加が待ち遠しいです。

※上記は、下記個人レベルで準備できる「入手性が良く、低コストマイコン」の選択基準に合致する半導体ベンダーに限定して分析しております。

超速開発環境

顧客が許容するマイコンソフト/ハード開発時間は、ますます短くなります。
顧客側の技術理解レベルが追い付かないのも原因の1つですが、状況変化が激しいので即開発し、市場でのフィードバック、改良などを繰り返しながら製品化が必要なことが大きな要因です。

短い開発時間は、マイコン開発者にプレッシャーや焦りを生じさせます。しかし、焦りは禁物です。
良い成果物を効率的に出力できるワザ、これがマイコン開発者には必要です。

このワザ習得には、時間を気にせずに没頭できる環境、例えば自宅などで、新しいマイコンや現状マイコンを、身銭を使うので低コストで、しかも短時間で習得できる方法が必要です。
技術は、食べ物と同じで自分で習得(食べ物なら消化)してこそ身に付きます。食べ過ぎて消化不良になるのを避ける手段/方法があります。

この習得方法が超速開発環境、マイコン評価ボード(=スターターキット)+拡張ボード(=mbed-Xpresso Baseboard)+そして弊社マイコンテンプレートです。

マイコンテンプレート(税込1000円)は、懇切丁寧な添付資料や多くの(冗長な!?)コメントをソースに付加しています。従って、初心者が陥りがちな初期トラブルを避けることができ、ベンダー提供のサンプルソフトを活用したマルチタスクで、評価ボードと拡張ボードを動かせます。
ソフト担当者は、マイコンを自分で動かせれば、安心して厳しい状況でも開発できます。

また、基板開発時に問題となるアートワーク(配線引き回し)に配慮したIO割付を実ボードで検証できるので、基板化障壁も下がります。
ハードのみの担当者であっても、この超速開発環境はマイコン回りのベンダー推薦配線チェック、アートワークに適したIO割付をソフト開発者へ提案、基板テストプログラム開発時などにも役立ちます。

*  *  *

販売中のマイコンテンプレート5種
販売中のマイコンテンプレート5種

「入手性が良く、低コストマイコン」という基準で、現在5種マイコンをピックアップし、そのマイコンテンプレートを開発/販売することで、超速開発をサポートするのが本サイトの目的です。ご要望により新たなマイコンを追加する可能性もあります。

サイトに対するご意見、ご要望、追加マイコンなどお気軽にinfo@happytech.jpへお寄せください。

本年もありがとうございました。来年も引き続き弊社サイト、どうぞよろしくお願い申し上げます。

米クアルコム、NXPを470億ドルで買収

先日の記事で記載した米クアルコムは、現地時間の2016年10月27日、NXPを約470億ドルで買収したと発表しました。

Qualcomm to acquire NXP
Qualcomm to acquire NXP

NXPのPresident & CEOのRick Clemmer氏から関係者宛(ユーザ登録のみの私も含む)メールで判明しました。

ARMコアが業界標準になった時の差別化技術

9月23日の日経テクノロジーOnlineに“技術も市場も混沌としたIoT、ソフトバンクだけが視界明瞭”という記事で、興味深い内容を2つ見つけたので抜粋します。

記事は、ソフトバンクのARM買収の意味と影響を分析しています。

差別化はアナログ技術

“IoTマイコンに於けるARM優位性がこのまま維持され事実上の業界標準になれば、MCU各社の差別化技術はアナログ分野になる。”

本ブログで扱う低価格MCUコアは、ARM Cortex-M0/M0+がデファクトスタンダードで、Runesas 1社のみが独自RL78-S1/S2/S3コアです。そのRunesasも9月13日に、電圧制御やのアナログ分野に強みがある米インターシルの買収を発表しました。記事の予想は、正しいと思います。

センサー、通信マイコン、電源ICがIoT端末必須技術

“IoT端末の必須技術は、センサー、通信マイコン、電源ICの3つ。”

弊社が言うIoTマイコン各社が、アナログ技術を強化すれば、センサーインタフェースへ適用するでしょう。
例えば、オペアンプ実装などです。また、MCUとMPU/SCB間無線技術も、仕様が固まれば、当然実装されます。

これらが実装済みのIoTマイコンが、待ち遠しいです。ROMやRAMの容量次第では、マイコンテンプレートの活きる場所もありそうです。また、ARMと親和性が高いEclipseベースのIDEであっても、その使い勝手や、アナログ技術の取り込み方法の上手さもMCU選択の重要な基準となると思います。

追記:Cypress PSoC Creator 3.42.4が、3.25.0に更新されています。更新は、Update Managerから簡単に実行できます。

似通るBluetoothと無線LAN

Bluetooth 5と無線LANの類似性が増し、互いの領域に滲出、相互補完が薄れていくという記事、両規格の生立ちと規格の方向性が良く解ります。

Bluetoothと無線LANの領域

本ブログ掲載のMCUとMPU/SCB間の無線規格のページの下図で見ると、両規格の違いは、バッテリー消費量です。

Bluetooth(BLE)とLPWAの違い
Bluetooth(BLE)と無線LANの領域

記事要旨を表にしました。Bluetooth 5の機能強化点が、無線LAN側を浸食していきつつあるのが解ります。

Bluetooth 5と無線LANの生立ちと規格の方向性
  Bluetooth 5 無線LAN
生立ち RS-232C代替無線規格、シンプルなネットワークスタックで低消費電力 IPネットワークの無線化
周波数(Hz 2.4G 2.4G/5G
通信速度/距離 複数デバイス間の低速少量データ 数100Mbps~数Gbps、100m(max)
機能強化点 速度:2Mbps
通信範囲:4倍
ブロードキャスト容量:8倍
コネクションレス通信サポート
暗号化サポート
セキュリティ規格WEP:Wired Equipment PrivacyからWPA:Wi-Fi Protected Accessへ

無線LAN側は、スリープモード利用で省電力強化の方向ですが、実用化には時間がかかるそうです。

この規格の見通しが立つまでは、無線機能搭載MCUの選定が、しづらいです。結果、CypressのPSoCアナログ特化製品のような、無線規格変更に柔軟に対応できるコプロセサ化も必要かもしれません。

※本時期内容は、MCUとMPU/SCB間無線規格ページへ追記しました。

広範囲IoT向け無線規格「LPWA」

IoT向け無線規格「LPWA」の全貌の記事2つを紹介します。LPWAとは、Low Power Wide Areaの略で、マイコン:MCUとIoT向けコンピュータ:MPU/SBC間通信ではメジャーなBluetoothなどの近距離無線に対して、より広い範囲のIoT向けの通信規格のことです。

1つ目が、IoT向け通信に価格破壊をもたらす「LPWA」、2つ目が、いよいよ日本上陸、LPWAの最有力候補「LoRaWAN」の実力は?です。通信コストとオープン仕様というキーワードが登場します。

低電力な長距離通信技術:LPWA

BluetoothとLPWAとの違いを示すのが、1つ目記事より抜粋した下図です。3GやLTE技術で問題となる通信コストや初期投資を抑える新技術がLPWAで、低速かつ一回の通信量も数10バイト程度に抑えて、バッテリー消費量を数年または10年以上も可能とするのを目標としています。

Bluetooth(BLE)とLPWAの違い
Bluetooth(BLE)とLPWAの違い(記事より抜粋)

低通信コスト

主なLPWA技術が下表です。SIGFOXは、フランスやスペインなどで、1回線あたり年間1ドルで既にサービス開始済みで、800万回線契約があるそうです。LoRaWANは、韓国SKテレコムが日本円換算月額32円で提供中です。

主なLPWA技術
主なLPWA技術(記事より抜粋)

オープン仕様

これらLPWAは、キャリアの提供サービスです。日本では、LoRaWANが最有力候補だそうです。その理由は、Wi-Fiのように誰もがその技術を利用しサービスを提供できるオープンな仕様と、免許不要帯の利用にあります。

日本国内LoRaWANフィールドテストの結果、 6㎞程度の最大伝送距離と、20~30km/h以下の低速移動体通信が確認できたようです。

オープンイノベーション

デファクトスタンダードやオープン仕様は、マイコン:MCU開発にとっても無視できません。マイコンで産み出す機能実現とその維持のために、低コストや代替デバイスの検討も無視できないからです。

マイコン開発者自身の意識も、このオープン仕様の流れに沿う必要があるのかもしれません。オープンイノベーション白書が無料でダウンロードできますので、意識改革の手始めに目を通すのも良いと思います。

ソフトバンク、ARM買収を発表

ソフトバンクは、IoT戦略の加速を目的に、英ARM株式100%取得し買収することを発表しました。

9月30日までに買収完了予定です。IoTデバイス開発の関係者にとってはサプライズニュースです。

テクノロジーのパラダイムシフト

ソフトバンク発表資料(免責事項にふれる可能性があるため非掲載)によると、現在のモバイルインターネットの次のパラダイムシフトはIoTです。また、ARMベースSoC:System on Chipの出荷台数は、148億個(2015年)で、未だに発展段階の成長を続けていることが解ります。

ARM Cortex-M0/M0+を用いる本ブログ対象の組込用途マイコン:MCUや、IoTコンピュータ:MPU/SBCなどの2020年市場予測も掲載されています。今後Cortex-M0/M0+の採用を検討されている開発者の方々にも有用な情報です。

SoftBank+ARM

組込の世界では、実質ルネサスのみであった日本プレーヤーに、株主とはいえソフトバンクが参加することは、日本人として少し嬉しい気がします。
しかし、孫社長の後継者問題、英国EU離脱のARM陣営への財務基盤強化などが、今後IoT、特にMCU分野にどう影響するかは、要注意でしょう。

SoftBank携帯で、IoT MCUソフトウエア開発を行う状況が来るかもしれません。

IoT無線規格「Z-Wave」

欧米のホームセキュリティと室内温度コントロール、ホテルなどで実績があり普及が進むIoT無線規格が「Z-Wave」です。Z-Waveの国内動向記事によると、2015年のZ-Wave認証製品の累計出荷台数は6000万デバイス超、2016年には1億デバイス出荷が確実だそうです。

日本では未知な部分が多いIoTを、実サービスへ適用した例と、その出荷台数がインパクトある内容ですので、記事要旨を示します。

BLEの課題とZ-Waveの対策

  1. Wi-Fi環境下での干渉
  2. 石造りの家庭が多い欧州では、減衰が多い
  3. 通信距離が最大7~10m程度と短い
  4. 端末の増設に弱い

スマホ等で普及しているIoT無線通信の1つBLE:Bluetooth Low Energyの上記4課題に対して、Z-Waveは、これら課題を解決する下記特徴を備えているそうです。

  1. Wi-Fiとの干渉に強い
  2. 150m四方の通信距離
  3. 最大232個の端末増設が容易
  4. 低消費電力でバッテリー駆動の完全互換センサに数多く採用中

記事より抜粋したZ-Waveと他のIoT無線規格の比較を示します。

Z-Waveと他IoT無線規格の比較
Z-Waveと他IoT無線規格の比較(記事より抜粋)

日本国内でZ-Wave普及が遅れる理由

利用できる周波数解禁が海外比10年以上遅れていること、スマホによる家電や照明操作が電気用品安全法により規制されていること、火災警報器の厳しい基準などが原因だそうです。

また、欧米スマートホームのスタイルをそのまま導入できない日本の治安の良さも一因だそうです。

メッシュ網

技術解説記事によると、端末識別のためにMACヘッダにユニークなIDを付与することで232個までノードに対してメッシュ網を構成するそうです。

Z-Wave Singlecast
Z-Wave Singlecast(記事より抜粋)
Z-Wave Multicast
Z-Wave Multicast(記事より抜粋)

Z-Waveデバイスと評価キット

Z-Waveを制御するデバイス開発元の米Sigma-Design製評価キットは、欧州、米国、日本向けに用意されています。

日本でも医療/介護の分野で普及する可能性があるので要注意のIoT無線規格だと思います。MCUとMPU/SCB間の無線規格一覧ページへZ-Waveを追加し、今後も注視します。

IoTマイコン無線規格

6月の本ブログは、ThreadやBluetooth 5など、マイコン:MCUとIoTコンピュータ:MPU/SCB間の無線通信規格に関する記載が多くなりました。モノをインターネットへ接続するIoTの要となる無線インタフェースが、今変動中であることが解ります。

私は、コスト重視のMCUは、最終的にはどれか1つの規格(Threadが良いと思います)になり、カバー範囲重視のMPU/SBCは、複数規格(Wi-Fiは必須で、BluetoothやThread…)を実装すると思います。

このMCUとMPU/SCB間の無線規格の現状を考えた面白い記事を見つけたので紹介します。

IPアドレスとの親和性

記事によると、無線規格の要件として、よく言われる低消費電力動作の必要性以外にも、既に出来上がったWi-Fi世界との親和性が重要だとしています。IEEEでもこの線に沿った「Wi-Fi Halow」と「Passive Wi-Fi」規格検討が進んでいるそうです。

かつて私も有線通信:ATMの研究開発にたずさわったので多少解りますが、IEEE(アイトリプルイー)の規格化が済むと、直ぐに商用製品が発売され、Businessに裏打ちされた規格が開発される場、それがIEEEです。そして、MCUとMPU/SCB間の無線技術を含む多くの通信課題が解決される場でもあります。

確かに、IPアドレスとの親和性が高いと、NIC: Network Interface Cardのハードやソフトが流用でき、これらを実装したMCUでのパケット化処理(UART over IP)も簡単になるかもしれません。

MCUとMPU/SCB間の無線技術

UART、つまりSCIを実装しないMCUはありません。
SCI入出力を簡単に無線化できるソフト/ハード技術、これがIoT MCU無線規格の本命になると思います。今日時点の内容は以下ですが、この技術の一覧表を固定ページに追加しました。固定ページは、適宜、内容を更新します。

IoT MCU Wireless Specifications
無線規格 特徴 備考
Bluetooth 4.2 128ビットAES対応など従来比セキュア機能拡張 スマホへ普及中
Bluetooth 5 4.2比通信速度、通信距離、ブロードキャスト容量拡大 2017年初めリリース予定
Thread メッシュ網構成
Wi-Fi Halow Wi-Fiとの親和性高く、室内外40m、屋外1㎞通信 IEEE 802.11ah
Passive Wi-Fi IEEE 802.bベース、超低消費電力(電池駆動10年)目標